

 AN10993
Pegoda Software Design Guide
Rev. 2.1 — 08 August 2012
196121

Application note
COMPANY PUBLIC

Document information
Info Content
Keywords Pegoda software design guide, firmware documentation, software

documentation, firmware update, Pegoda firmware architecture,
Pegoda functional overview, PC/SC mode

Abstract This document provides a comprehensive architectural overview
of the Pegoda software.

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

2 of 53

Contact information
For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
2.1 20120808 References updated

2.0 20120716 General update for new firmware (v2.2.7)

1.0 20101101 First release

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

3 of 53

1. Introduction

1.1 Scope
The scope of this document covers the software architecture coming with the Pegoda
package. This includes a description of the integrated firmware stack on the LPC1768
controller as well as a high level overview of available modes in RD710.

The NPX Reader Library (nxprdlib) architecture and modules are covered in a separate
document [10].

The firmware\nxprdlib may be changed individually to its own needs. An adequate tool
chain for loading the firmware project file and doing further programming/debugging is
introduced in the documents [7].

This document primarily describes the latest firmware release (V2.2.7) but for historical
reasons a description of the old firmware is added as well in the Appendix in section 5.

Updates for the latest or for future firmware releases may be provided by NXP and can
be easily downloaded by USB as described in [9].

Fig 1. Flowchart

Pegoda Reader

RD710

Reader Firmware

on LPC1768

Software Design

Guide

AN10993

PC/HOST

Reader library and

examples running

.NET

Example Project

AN10990

MIFARE

Discover

or any

PC/SC SW

Quick Start

Guide

AN10992

Legend

Software and Tools

Application Notes

Toolchain

Loading Firmware

Programming and

Debugging

Pegoda

Toolchains

AN11002

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

4 of 53

1.2 Audience
This document is intended for use by manufacturers wanting to develop applications
based on the software stack delivered within the Pegoda package.

Note that understanding parts of this document requires knowledge on microcontroller
and their underlying systems.

1.3 Applicable documents or references
[1] [ISO/IEC 14443]

[2] PC/SC Workgroup Specifications
(www.nxp.com/redirect/pcscworkgroup.com/specifications/specdownload)

[3] onARM: see www.nxp.com/redirect/onarm for more information

[4] See www.nxp.com/redirect/freetos for more information

[5] www.nxp.com/redirect/en.wikipedia.org/wiki/Interrupt_handler

[6] AN10990 Example Project Pegoda

[7] AN11002 Pegoda Toolchain Information

[8] www.nxp.com/redirect/ics.nxp.com/products/lpc1000/all/~LPC1768 or on CD

[9] AN10992 Quick start up guide

[10] NXP Reader Library (in .chm format in the source code on CD include)

For information on availability of samples as well as documentation, please refer
to the application note ‘AN10994 Pegoda EV710 Documentation and Sampling
guide’.

1.4 Acronyms and abbreviations
SAM Secure Access Module

S SAM in S-Mode

N no SAM

X SAM in X-Mode

BFL Basic Function Library

http://www.nxp.com/redirect/pcscworkgroup.com/specifications/specdownload
http://www.nxp.com/redirect/onarm
http://www.nxp.com/redirect/freetos
http://www.nxp.com/redirect/en.wikipedia.org/wiki/Interrupt_handler
http://www.nxp.com/redirect/ics.nxp.com/products/lpc1000/all/~LPC1768

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

5 of 53

2. Functional overview and mode of operation
The reader firmware can perform contact and contactless communication. The contact
part is used to communicate with a SAM. The contactless part performs the polling and
activation sequence according to PC/SC part 2, ISO/IEC 14443-3 and 14443-4
standards.

The polling and activation sequence can be turned off and on with the use of escape
(PC/SC part 3) commands. The polling and activation sequence is automatically disabled
if escape commands are executed that would interfere with the normal operations. The
firmware also interprets the ADPUs for MIFARE which are defined in PC/SC part 3.

The main modes of operation are being set by DIP switches which are located on the
reader. Some configuration parameters can be set with the escape commands. The
reader will store them in non-violate memory. The user will be able to reset the
configuration back to default state.

The firmware will construct the product name – which is returned by USB descriptor – to
easily identify the reader/SAM configuration. Depending on the DIP switches, there are
three possible configurations

1. No SAM (Pegoda 2 N)

2. SAM in X-Mode (Pegoda 2 X)

3. SAM in S-Mode (Pegoda 2 S)

The user will be able to flash the board with custom or original firmware with three
methods:

1. Over USB (IAP)

2. Over serial port (ISP)

3. Over JTAG with the use of external program

The Pegoda reader provides four modes of operation:

• Demo Mode

• PCSC Mode

• Overwrite Configuration Mode

• Enter Secondary Bootloader Mode

2.1 Demo mode
The demo mode is used to showcase in an autonomous way the functionality of the
reader. In this mode, ISO14443-3A and ISO14443-3B activation loop are performed and
based on SAK and Type the LEDs blink and an acoustic signal is generated according to
the next table:

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

6 of 53

Table 1. Card type according to SAK and number of beeps and lights
Card type sound blink
MIFARE 1K (0x08) 1 2

MIFARE Classic 4K (0x18) 2 2

MIFARE Ultralight (0x00) 3 2

MIFARE DESFire 4 2

MIFARE Plus 5 2

ISO14443 Type B 1 1

The demo mode is implemented in src/ p3fw_demo.c in the task:

void p3fw_task_demo_mode (void * param);

Demo mode firstly performs initialization of NXPRdLib and then enters the activation
loop.

2.2 PC/SC Mode
For PCSC Mode to function we first need to setup card slots and prepare NXPRdLib
protocol stacks with:

void p3fw_slots_init(void);

which can be found in src/p3fw_slots.c.
Next we set up external communication interface as USB, with the help of:

void p3fw_ext_if_init_usb(void);

Now we can start the two main tasks which perform all the necessary work:

 Card Poll and Activation Task
 PCSC Execute Task

As ther are three types of operating modes within the PC/SC mode:

 No SAM mode

 SAM in non X-mode

 SAM in X-Mode
We must decide which is required because if we use Pegoda in SAM-X mode then
we do not need the Card Poll and Activation task.

2.2.1 No SAM mode
The most important aspect of this mode is performing activation and polling sequence for
ISO 14443 A type cards as defined in PC/SC part 3. Selected cards are put in slot
manager and notification is sent to PC/SC driver. There can be only one ISO 14443-3
card or multiple (maximum 14) ISO 14443-4 cards in the field.

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

7 of 53

Fig 2. No SAM configuration

2.2.2 SAM in non X-mode
SAM in non X-mode is similar as 2.2.1 No SAM mode. The only difference is that slot 0 is
always occupied with SAM, which can be used as key store, cryptographic engine, etc.

The reader chip can not be controlled by SAM in this mode.

Fig 3. SAM in non X configuration

2.2.3 SAM in X-mode
In this mode communication is only through SAM (slot 0). Only limited number of
proprietary commands can be executed.

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

8 of 53

Fig 4. SAM in X-mode configuration

2.2.4 Card Poll and Activation Task
Card Poll and Activation Task checks if there is an empty slot and if one exists, it tries to
activate a new card. After a card (or cards – depends on the card and reader
configuration) is activated and added to previously empty slot, it regularly checks if the
card is still present.
Task is implemented in function:

void p3fw_task_poll_and_activate(void * param);

in src/p3fw_poll.c file, as also all the bellow functions.
Card activation (for ISO14443-3A, ISO14443-3B and ISO14443-4 cards) happens in:

void p3fw_check_for_new_card(uint8_t bCLSlotIndex);

This checks if there is any new card available and puts it in a card slot numbered by
bCLSlotIndex. Presence check is performed by:

 for ISO14443-3A cards:
void p3fw_check_presence_l3a_card(uint8_t bCLSlotIndex);

 for ISO14443-3B cards:
void p3fw_check_presence_l3b_card(uint8_t bCLSlotIndex);

 for ISO14443-4 cards:
void p3fw_check_presence_l4a_card(uint8_t bCLSlotIndex);

2.2.5 PCSC Execute Task
In this task we perform actions on behalf of the user, which uses Pegoda over USB CCID
protocol.
Task is implemented in function:

void p3fw_task_ccid_execute (void * param)

Our execution mode is split into two halves:

 top half – which runs as interrupt
 bottom half – which runs as protocol handler in a task

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

9 of 53

2.2.5.1 Top Half

Top half runs when external interface driver (USB, RS232, RS485, …) runs:
void p3fw_ccid_th_dispatch();

in src/p3fw_ccid_th.c.
This function performs various checks to determine if the received command is according
to USB CCID specification and if the card slot exists.
Next we schedule a bottom half for next USB CCID commands:

 ICC Power On
 ICC Power Off
 Get Slot Status
 Transfer
 Get Parameters
 Set Parameters
 Escape

2.2.5.2 Bottom Half

Bottom halves are implemented in src/p3fw_ccid_bh.c as:

ICC Power On
void p3fw_ccid_bh_icc_power_on(uint8_t bCCIDSlotIndex);

Powers on the SAM.

ICC Power Off
void p3fw_ccid_bh_icc_power_off(uint8_t bCCIDSlotIndex);

Powers off the SAM card or Halts a contactless card if one is present.

Get Slot Status
void p3fw_ccid_bh_get_slot_status(uint8_t bCCIDSlotIndex);

Returns status of a card in slot

Transfer
void p3fw_ccid_bh_xfer(uint8_t bCCIDSlotIndex);

This is the most complex function which performs multiple actions depending on the sub
mode.

Get Parameters
void p3fw_ccid_bh_get_parameters(uint8_t bCCIDSlotIndex);

Returns parameters of a card in slot.

Set Parameters
void p3fw_ccid_bh_set_parameters(uint8_t bCCIDSlotIndex);

Sets parameters for a card in a slot.

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

10 of 53

Escape
void p3fw_ccid_bh_escape(uint8_t bCCIDSlotIndex);

Can be used to execute some of the direct mode commands in other modes.

The most interesting bottom half function is the transfer function which can perform in
two different modes:

 Standard PCSC mode – all commands send by the user are send to the card

(with exception of few standard memory card commands defined by PSCS
standard – see below)

 Direct PCSC mode – all commands send by the user are interpreted by the
reader

2.2.6 Standard PSCS Mode

In standard PCSC mode we relay most of the commands (APDUs) send by the user to
the card. We do that with the help of two functions:

for contact cards – from src/p3fw_samt1_wrap.c:

void p3fw_samt1_exchange(

 uint8_t *in,

uint32_t in_len,

uint8_t *out,

uint32_t *out_len

);

for contactless cards – from src/p3fw_ccid_bh.c:

void p3fw_ccid_bh_xfer_l4(uint8_t bCLSlot);

But there is an exception: we implement PC/SC Standard Memory Card Extensions
Commands:

 Get Data

void p3fw_pcsc_std_ext_cmd_get_data (uint8_t bCLSlotIndex);

 Load Key
void p3fw_pcsc_std_ext_cmd_load_key (uint8_t bCLSlotIndex);

 Authenticate
void p3fw_pcsc_std_ext_cmd_auth (uint8_t bCLSlotIndex);

 Read Binary

void p3fw_pcsc_std_ext_cmd_read_bin (uint8_t bCLSlotIndex);

 Update Binary

void p3fw_pcsc_std_ext_cmd_update_bin (uint8_t bCLSlotIndex);

This function can be used to manipulate memory cards such as MIFARE Classic and
MIFARE Ultralight. The implementation of these functions can be found in
src/p3fw_pcsc_mem_cards.c.

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

11 of 53

Fig 5. Call Graph for CCID Protocol Handler

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

12 of 53

2.2.7 Direct PCSC Mode
After we enter the direct mode the payload of xfer command is interpreted by the
firmware. The main dispatcher function for direct mode:

void p3fw_dm_xfer ();

from src/p3fw_dm.c

Every subset of direct mode is coded in its own file:

Reader Operations

Implements commands for Reader Operations. Entry point:
void p3fw_dm_ro ();

HAL Commands

Implements commands for HAL Commands. Entry point:
void p3fw_dm_hal ();

ISO14443-3

Implements commands for ISO14443-3. Entry point:
void p3fw_dm_l3 ();

ISO14443-4Activation

Implements commands for ISO14443-4Activation. Entry point:
void p3fw_dm_l4a ();

ISO14443-4

Implements commands for ISO14443-4 layer. Entry point:
void p3fw_dm_l4 ();

MIFARE Exchange

Implements commands for MIFARE Exchange. Entry point:
void p3fw_dm_xchg ();

CID Manager

Implements commands for CID Manager. Entry point:
void p3fw_dm_cid ();

Contact Card Communication

Implements commands for Contact Card Communication. Entry point:

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

13 of 53

void p3fw_dm_contact_card ();

Key Store

Implements commands for Key Store. Entry point:
void p3fw_dm_keystore ();

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

14 of 53

Fig 6. Call Graph for Direct Mode

2.2.7.1 Reader Operations

Reader operations are implemented in src/p3fw_dm_ro.c file as:
 LEDs On – turns on the antenna LEDs

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

15 of 53

void p3fw_dm_ro_led_on ();

 LEDs Off – turns off the antenna LEDs

void p3fw_dm_ro_led_off ();

 Reset – resets the reader

void p3fw_dm_ro_reset ();

 Configuration Overwrite – reverts configuration to factory defaults

void p3fw_dm_ro_conf_over ();

 Set Reader Configuration – sets reader configuration option

void p3fw_dm_ro_set_conf ();

 Get Reader Configuration – gets reader configuration option

void p3fw_dm_ro_get_conf ();

 Get Status – gets reader status (hardware and firmware versions)

void p3fw_dm_ro_get_status ();

 Read Register – reads a value from reader chip register

void p3fw_dm_ro_read_register ();

 Write Register – writes a value to reader chip register

void p3fw_dm_ro_write_register ();

 Field On – turns the reader RFID field on

void p3fw_dm_ro_field_on ();

 Field Off – turns the reader RFID field off

void p3fw_dm_ro_field_off ();

 Field Reset – resets the field

void p3fw_dm_ro_field_reset ();

 Set PCSC Mode – enters or leaves the PCSC mode

void p3fw_dm_ro_pcsc_mode ();

2.2.7.2 HAL Operations

HAL operations are implemented in src/p3fw_dm_hal.c file as:

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

16 of 53

 HAL Initialization

void p3fw_dm_hal_init (uint8_t bDMSlotIndex);

 Exchange

void p3fw_dm_hal_xchg (uint8_t bDMSlotIndex);

 Set Configuration

void p3fw_dm_hal_set_cfg (uint8_t bDMSlotIndex);

 Get Configuration

void p3fw_dm_hal_get_cfg (uint8_t bDMSlotIndex);

 Apply Protocol settings

void p3fw_dm_hal_apply_proto_settings (uint8_t bDMSlotIndex);

 Wait

void p3fw_dm_hal_wait (uint8_t bDMSlotIndex);

 MIFARE Classic Authenticate

void p3fw_dm_hal_mfc_auth (uint8_t bDMSlotIndex);

 MIFARE Classic Authenitcate With Key

void p3fw_dm_hal_mfc_auth (uint8_t bDMSlotIndex);

2.2.7.3 ISO14443-3A Operations

ISO14443-3A operations are implemented in src/p3fw_dm_l3.c file as:
 ISO14443-3A Initialization

void p3fw_dm_l3_init (uint8_t bDMSlotIndex);

 ReqA

void p3fw_dm_l3_req (uint8_t bDMSlotIndex);

 WeakUpA

void p3fw_dm_l3_wqua (uint8_t bDMSlotIndex);

 HaltA

void p3fw_dm_l3_hlta (uint8_t bDMSlotIndex);

 Anticolision

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

17 of 53

void p3fw_dm_l3_anticol (uint8_t bDMSlotIndex);

 Select

void p3fw_dm_l3_select (uint8_t bDMSlotIndex);

 Activate Card

void p3fw_dm_l3_act_card (uint8_t bDMSlotIndex);

 Exchange

void p3fw_dm_l3_xchg (uint8_t bDMSlotIndex);

 Get Serial Number

void p3fw_dm_l3_get_serial_num (uint8_t bDMSlotIndex);

2.2.7.4 ISO14443-4A Operations

ISO14443-4A operations are implemented in src/p3fw_dm_l4a.c file as:
 ISO14443-4A Initialization

void p3fw_dm_l4a_init (uint8_t bDMSlotIndex);

 RATS

void p3fw_dm_l4a_rats (uint8_t bDMSlotIndex);

 PPS

void p3fw_dm_l4a_pps (uint8_t bDMSlotIndex);

 Activate Card

void p3fw_dm_l4a_act_card (uint8_t bDMSlotIndex);

 Get Protocol Parameters

void p3fw_dm_l4a_get_proto_parm (uint8_t bDMSlotIndex);

2.2.7.5 ISO14443-4 Operations

ISO14443-4 operations are implemented in src/p3fw_dm_l4.c file as:
 ISO14443-4 Initialization

void p3fw_dm_l4_init (uint8_t bDMSlotIndex);

 Set Protocol

void p3fw_dm_l4_set_protocol (uint8_t bDMSlotIndex);

 Reset Protocol

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

18 of 53

void p3fw_dm_l4_reset_protocol (uint8_t bDMSlotIndex);

 Deselect

void p3fw_dm_l4_deselect (uint8_t bDMSlotIndex);

 Presence Check

void p3fw_dm_l4_presenc_check (uint8_t bDMSlotIndex);

 Exchange

void p3fw_dm_l4_xchg (uint8_t bDMSlotIndex);

 Set Configuration

void p3fw_dm_l4_set_cfg (uint8_t bDMSlotIndex);

 Get Configuration

void p3fw_dm_l4_get_cfg (uint8_t bDMSlotIndex);

2.2.7.6 CID Operations

CID operations are implemented in src/p3fw_dm_cid.c file as:

 CID Initialization

void p3fw_dm_cid_init (uint8_t bDMSlotIndex);

 CID Free

void p3fw_dm_cid_free (uint8_t bDMSlotIndex);

 CID Get Free

void p3fw_dm_cid_get_free (uint8_t bDMSlotIndex);

2.2.7.7 MIAFARE Operations

MIFARE operations are implemented in src/p3fw_dm_xchg.c file as:
 MIFARE Initialization

void p3fw_dm_xchg_init (uint8_t bDMSlotIndex);

 Exchange L3

void p3fw_dm_xchg_l3 (uint8_t bDMSlotIndex);

 Exchange L4

void p3fw_dm_xchg_l4 (uint8_t bDMSlotIndex);

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

19 of 53

 Exchange PC

void p3fw_dm_xchg_pc (uint8_t bDMSlotIndex);

 Exchange RAW

void p3fw_dm_xchg_raw (uint8_t bDMSlotIndex);

 MIFARE Authenticate

void p3fw_dm_xchg_mfc_auth (uint8_t bDMSlotIndex);

 MIFARE Authenticate with Key

void p3fw_dm_xchg_mfc_auth_key (uint8_t bDMSlotIndex);

2.2.7.8 Key Store Operations

Key Store operations are implemented in src/p3fw_dm_keystore.c file as:
 Key Store Initialization

void p3fw_dm_keystore_init (uint8_t bDMSlotIndex);

 Format Key

void p3fw_dm_keystore_format_key (uint8_t bDMSlotIndex);

 Set Key

void p3fw_dm_keystore_set_key (uint8_t bDMSlotIndex);

 Set Key Position

void p3fw_dm_keystore_set_key_pos (uint8_t bDMSlotIndex);

 Set KUC

void p3fw_dm_keystore_set_kuc (uint8_t bDMSlotIndex);

 Set Full Key Entry

void p3fw_dm_keystore_set_full_key (uint8_t bDMSlotIndex);

 Get Key Entry

void p3fw_dm_keystore_get_key_entry (uint8_t bDMSlotIndex);

 Get Key

void p3fw_dm_keystore_get_key (uint8_t bDMSlotIndex);

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

20 of 53

 Set Configuration

void p3fw_dm_keystore_set_config (uint8_t bDMSlotIndex);

 Get Configuration

void p3fw_dm_keystore_get_config (uint8_t bDMSlotIndex);

 Change KUC

void p3fw_dm_keystore_chg_kuc (uint8_t bDMSlotIndex);

 Get KUC

void p3fw_dm_keystore_get_kuc (uint8_t bDMSlotIndex);

 Set Configuration String

void p3fw_dm_keystore_set_cfg_str (uint8_t bDMSlotIndex);

 Get Configuration String

void p3fw_dm_keystore_get_cfg_str (uint8_t bDMSlotIndex);

2.2.7.9 Contact Card Operations

Contact Card operations are implemented in src/p3fw_dm_cc.c file in function:

void p3fw_dm_contact_card (uint8_t bDMSlotIndex);

Commands implemented are:
 Activate Card

 Cold Reset

 Warm Reset

 Clock Stop

 Clock Start

2.3 Overwrite Configuration Mode
In this mode we issue:

void p3fw_flash_erase_config(void);

from src/p3fw_flash.c which erases configuration from flash and then we call:
void p3fw_invoke_err_and_nfo_mode(uint32_t dwErrorCode);

to inform the user that the overwrite was done.

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

21 of 53

2.4 Enter Secondary Bootloader Mode
In this mode we set a configuration option P3FW_CFG_BOOTLOADER_ACTIVE with
the use of

phStatus_t p3fw_flash_set_config(uint32_t dwCfgId, uint8_t * pBuff);

and then we issue a reset with the use of CMSIS function.

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

22 of 53

3. Library and source code overview
The firmware is composed from different libraries:

• CMSIS - Cortex Microcontroller Software Interface Standard with extra peripheral
drivers (can be found in cmsis directory in the source tree) – provides startup code and
peripheral drivers and easier porting to other hardware platforms [3]

• FreeRTOS operating system (can be found in FreeRTOS_6_0_0 directory in the source
tree) – provides multitasking and tasks intercommunication and easier porting to other
hardware platforms

• lpcusb – USB stack designed for NXP LPC family of microcontrollers (can be found in
lpcusb directory in the source tree)

• NXPRdLib – NXP Reader Library (can be found in nxprdlib directory in the source tree)
– provides all functions related to interaction with cards

• Firmware code including simple debug library (can be found in src and include directory
in the source tree)

3.1 Architecture of the Pegoda 2 Firmware
The firmware is interrupt driven and can be split in two logical parts:
 the interrupt handling
 scheduled tasks

All interrupts are processed through top/bottom half (see [5]) interfaces. Basically the
interrupt service routine (also called top half) schedules bottom half which does not run in
interrupt execution space but in “normal” execution space.

The scheduled tasks are described in the following chapters.

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

23 of 53

3.2 Description of firmware code
The following firmware source files (see Fig 7) can be found in the project. The main
functionality will be described in the following section.

Fig 7. Firmware source files In project

3.2.1 src/debug_frmwrk.c
Implements functions for debugging over serial port

3.2.2 src/p3fw_bsp.c
Implements ports and PINs configuration

3.2.3 src/p3fw.c
Main entry point for Pegoda firmware - exploration of source code should start here

The firmware starts in this file. In the main loop (int main()), initialization of hardware and
software parts of the firmware are performed:

1. first we set up hardware (see p3fw_hw_init() in p3fw_bsp.c for more information
about setting up hardware)

2. then we initialize the debugging framework – this depends on type of build that we are
building

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

24 of 53

3. next come reading the configuration from DIP switches and flash (see p3fw.c for more
information about reading configuration)

4. now we can do all reader modes except the PCSC one

5. in case of PCSC mode we have to setup the external interface

6.then we have to set up FreeRTOS queue – used for communication between top
bottom halfs and semaphore for protecting access to reader chip – so that we do not use
it from two tasks at the same time

6. next we try to set up the reader chip

7. if we find a supported chip we set up the correct tasks for particular mode – if not
found we enter into error and information task with correct error code

8. next we have to start the FreeRTOS scheduler (please refer to FreeRTOS
documentation for more information) and loop forever

For more detailed information please refer to the source code file.

3.2.4 src/p3fw_ccid_bh.c
Implements bottom half of the CCID protocol handler

The following messages are implemented in this file:

 ICC Power On
void p3fw_ccid_bh_icc_power_on(uint8_t bCCIDSlotIndex);

 ICC Power Off
void p3fw_ccid_bh_icc_power_off(uint8_t bCCIDSlotIndex);

 Get Slot Status
void p3fw_ccid_bh_get_slot_status(uint8_t bCCIDSlotIndex);

 Transfer
void p3fw_ccid_bh_xfer(uint8_t bCCIDSlotIndex);

 Get Parameters
void p3fw_ccid_bh_get_parameters(uint8_t bCCIDSlotIndex);

 Set Parameters
void p3fw_ccid_bh_set_parameters(uint8_t bCCIDSlotIndex);

 Escape
void p3fw_ccid_bh_escape(uint8_t bCCIDSlotIndex);

Please refer to the source code and USB CCID documentation for more information.

3.2.5 src/p3fw_ccid.c
Implements the CCID protocol handler task:

void p3fw_task_ccid_execute (void * param)

For more information please refer to the source file.

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

25 of 53

3.2.6 src/p3fw_ccid_th.c
Implements the top half (interrupt part) of the CCID handler

3.2.7 src/p3fw_demo.c
The demo mode is a simple demonstration on how to query for a card. The mode
performs a selection of an NXP card according to ISO/IEC14443. Depending on the SAK
byte of the selected card and the type, the antenna LEDs start blinking and an acoustic
signal is generated.

The whole demo mode is implemented as one FreeRTOS task:

void p3fw_task_demo_mode (void * param)

1. set up type ISO/IEC14443-3A card type reading

2. set up type ISO/IEC14443-3B card type reading

3. turn on the antenna LEDs

4. enter infinity loop

5. perform ISO/IEC14443 3a_ActivateCard

6. if ActivateCard returns error, go to step 9.

7. if ActivateCard of card is successful, blink two times and beep according
to reported SAK byte:

• if SAK == 0x08 → one time (MIFARE Classic Card 1k)

• if SAK == 0x18 → two times (MIFARE Classic Card 4k)

• if SAK == 0x00 → three times (MIFARE Ultralight/Ultralight C Card)

• if SAK == 0x20 → four times (ISO14443-4 Type Card (MIFARE Plus,
MIFARE DESFire, ...))

8. halt the card

9. reset the field

10. perform ISO/IEC14443 3b_ActivateCard

11. if ActivateCard returns error, return to step 5.

12. if ActivateCard of card is successful, beep and blink one time

13. halt the card and return to step 5

3.2.8 src/p3fw_dm.c
Implements main direct mode functions. The following files contain functions. This mode
is meant to be used by the NXPRdLib. If you are interested in how this mode works
please refer to the source code.

src/p3fw_dm_cc.c
src/p3fw_dm_cid.c
src/p3fw_dm_hal.c
src/p3fw_dm_keystore.c

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

26 of 53

src/p3fw_dm_l3.c
src/p3fw_dm_l4a.c
src/p3fw_dm_l4.c
src/p3fw_dm_ro.c
src/p3fw_dm_xchg.c

3.2.9 src/p3fw_error_mode.c
Implements error and notification task/function. Contains a FreeRTOS task:

void p3fw_invoke_err_and_nfo_mode(uint32_t dwErrorCode)– which is used to
inform the user of an error or that some action was completed. First the antenna LEDs
blinks for five seconds with two blinks per second and then with rate of one blink and one
beep per second informs the user of the error or that some action is completed. Please
refer to source code file for more information.

3.2.10 src/p3fw_ext_if_usb.c
This file contains implementation of the USB interface (USB CCID 1.1) for
communication with a client.

For more information please refer to:

• LPCUSB documentation (http://sourceforge.net/projects/lpcusb/)

• USB CCID 1.1 specification
(http://www.usb.org/developers/devclass_docs/DWG_Smart-Card_CCID_Rev110.pdf)

• source file

3.2.11 src/p3fw_flash.c
Implements flash memory handling functions which perform actions over the IAP
interface of LPC1768. For more information on IAP please refer to NXP LPC1768 User
Manual. These actions are:

 static phStatus_t p3fw_flash_erase(int sec_from, int sec_to)– performs
erase of the flash from sec_from to sec_to

PARAMETERS: - sec_from – int – start erase at this sector

 - sec_to – int – stop erase at this sector

RETURN: - phStatus_t Status

 static phStatus_t p3fw_flash_flash(int sec, uint8_t * buff, int size) – performs
flashing of the internal flash

PARAMETERS: - sec – int – sector to flash

 - buff – uint8[] - data to flash

 - size – int – size of buff (should be 128, 512 or 1024)

RETURN: - phStatus_t Status

 phStatus_t p3fw_flash_read_serial(uint32_t * pSerNum) – returns the CPU
serial

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

27 of 53

PARAMETERS: - sernum – uint32_t * - pointer to a uint32_t for storing the read
CPU serial number

RETURN: - phStatus_t Status

3.2.12 src/p3fw_pcsc.c
Implements PCSC protocol handling functions

• Send APDU

 phStatus_t p3fw_pcsc_send_apdu(uint8_t bSW1, uint8_t bSW2, uint16_t
wPayloadLength)

• Prepare L3 Card

phStatus_t p3fw_pcsc_std_ext_prepare_l3_card(uint8_t bCLSlotIndex)

• Do Authentication

phStatus_t p3fw_pcsc_std_ext_do_auth(uint8_t bCLSlotIndex, uint8_t
bBlockNumber, uint8_t bKeyType)

3.2.13 src/p3fw_pcsc_mem_cards.c
Implements PCSC Memory Cards Standard Extensions

• Get Data
– see static phStatus_t p3fw_pcsc_std_ext_cmd_get_data (uint8_t bCLSlotIndex)

• Load Keys
– see static phStatus_t p3fw_pcsc_std_ext_cmd_ load_key (uint8_t bCLSlotIndex)

• General Authenticate
 – see static phStatus_t p3fw_pcsc_std_ext_cmd_ auth (uint8_t bCLSlotIndex)

• Read Binary
 – see static phStatus_t p3fw_pcsc_std_ext_cmd_ read_bin (uint8_t bCLSlotIndex)

• Update Binary
– see static phStatus_t p3fw_pcsc_std_ext_cmd_ update_bin (uint8_t
bCLSlotIndex)

For more information please refer to the source file.

3.2.14 src/p3fw_poll.c
Implements cars poll and activation task

 void p3fw_task_poll_and_activate (void * param)

This task provides polling and activation mechanism required by the PC/SC specification
and does the main polling and ISO14443-3A/4A/3B activation and polls existing cards

Please refer to the source file for more information.

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

28 of 53

3.2.15 src/p3fw_samt1.c
This file contains implementation of the ISO/IEC 7816/3 standard:T1 protocol for contact
cards :

 void p2_fw_sam_t1_init(uint8_t chip, uint8_t mode) – initialize the processors
I/O pins according to chip and mode parameter to work with SAM card.

PARAMETERS: chip – P2_FW_READER_CHIP_RC523 or

 P2_FW_READER_CHIP_SAM

mode – P2_FW_READER_MODE_SAM_IN_X or

 P2_FW_READER_MODE_SAM_NON_X

 void p2_fw_sam_t1_start(void) – it perform activation sequence according ISO
7816-3:2006 (Figure 1). The function returns immediately but the user should
wait until the module is busy (see p2_fw_sam_t1_is_busy) then he can read the
ATR of inserted SAM card with p2_fw_sam_t1_get_atr.

 void p2_fw_sam_t1_deinit(void) – the function perform Deactivation sequence
according to ISO 7816/3:2006 (Figure 6).

 void p2_fw_sam_t1_warm_reset(void) – the function perform warm reset
according to ISO 7816-3:2006 (Figure 1). The function returns immediately but
the user should wait until the module is busy (see p2_fw_sam_t1_is_busy) then
he can read the ATR of inserted SAM card with p2_fw_sam_t1_get_atr.

 void p2_fw_sam_t1_send(uint8_t *data, uint32_t len, uint8_t frame_type)
The function sends len bytes of data to SAM.

PARAMETERS: data – uint8_t * - pointer to data to send

len – uint32_t – length of data to send

frame_type:

 P2_FW_SAM_FRAME_APDU the function
prepends NAD, PCB and LEN bytes, and appends
LRC to data parameter (according ISO 7816-
3:2006).

 P2_FW_SAM_FRAME_T1 the function just send
data to SAM card.

The function returns immediately but the user should wait until the module is busy (see
p2_fw_sam_t1_is_busy) then he can read the response with p2_fw_sam_t1_receive.

 uint32_t p2_fw_sam_t1_receive(uint8_t *data, uint8_t frame_type) – the
function returns the number of bytes received from SAM card. If frame_type
equals P2_FW_SAM_FRAME_APDU only the INF field is returned.

PARAMETERS: data – uint8_t * - pointer to received data

 frame_type – uint8_t – frame type

RETURN: number of bytes received

 Bool p2_fw_sam_t1_is_busy(void) – the function return true if the SAM
module is busy and false otherwise.

 void p2_fw_sam_t1_get_atr(uint8_t * buffer, uint8_t *max_length) – the
function returns ATR of currently inserted SAM card.

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

29 of 53

PARAMETERS: buffer – uint8_t * - buffer in which to store ATR

 max_length – uint8_t * - the size of the buffer/length of ATR (on
return)

 void p2_fw_sam_t1_set_etu(uint8_t fi_di) – function sets the module's internal
etu according to fi_di parameter. fi_di is encoded as TA1 of ATR (ISO
7816/3:2006; 8.3).

The module uses TIMER0, TIMER2, GPIO falling edge interrupt on SAM's I/O pin and
PWM0 for SAM's CLK pin. When the user calls p2_fw_sam_t1_start or
p2_fw_sam_t1_warm_reset the SAM card is in reset state and after 400 clocks (ISO
7816-3:2006) the TIME0 interrupt triggers and sets the RST pin high. Then the module is
in read state and waits for GPIO failing edge interrupt (start bit). After receiving start bit
TIMER0 is used to capture data bits and parity bit. TIMER2 is used to timeout if no start
bit is received. All that time the function p2_fw_sam_t1_is_busy returns true. For
sending data to SAM, TIMER0 is used to shift each bit to I/O pin. When the answer is
received the module is not busy anymore and it can be read with
p2_fw_sam_t1_receive function.

3.2.16 src/p3fw_samt1_wrap.c
Implements integration of T1 protocol in to Pegoda new Firmware

3.2.17 src/p3fw_slots.c
We define multiple slots in which cards can reside. At one time you can use only one
ISO144443 card of fourteen ISO14443 cards. Every card has its own communication
settings and this are stored in a slot. All slot and CID management functions can be
found in this source file:

 phStatus_t p3fw_slots_init(void)– initialize slots and prepare them for work

RETURN: - phStatus_t Status

 void p3fw_slot_reset_all_slots(uint8_t contact_card) removes cards from all
slots

PARAMETERS: contact_card – uint8_t – indicates if the slots for contact cards
(SAMs) are reset as well

RETURN: NONE

 void p3fw_slot_remove_cl_card(uint8_t bCLSlotIndex) – removes
contactless card from a slot

PARAMETERS: bCLSlotIndex – uint8_t – index of the slot from which we would
like to remove the card

RETURN: NONE

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

30 of 53

 void p3fw_slot_add_l4_card(uint8_t bCLSlotIndex, uint8_t bSak)

– adds a new ISO14443-4 card to a slot

PARAMETERS:

 bCLSlotIndex – uint8_t – Index of slot the card should be stored in

 bSak – uint8_t – SAK that card returned at ISO14443-3A activation

RETURN: NONE

 void p3fw_slot_add_l3a_card(uint8_t bCLSlotIndex, uint8_t bSak)

– adds a new ISO14443-3a card to a slot

PARAMETERS:

 bCLSlotIndex – uint8_t – Index of slot the card should be stored in

 bSak – uint8_t – SAK that card returned at ISO14443-3A activation

RETURN: NONE

 void p3fw_slot_add_l3b_card(uint8_t bCLSlotIndex)

– adds a new ISO14443-3b card to a slot

PARAMETERS:

 bCLSlotIndex – uint8_t – Index of slot the card should be stored in

RETURN: NONE

 phStatus_t p3fw_slot_get_atr(uint8_t bCCIDSlotIndex, uint8_t *
pbAtrBuffer, uint8_t * pbMaxLength) returns an ATR for a particular slot (by
calling p3fw_slot_get_atr_or p3fw_slot_get_atr_l3 function)

PARAMETERS:

 bCCIDSlotIndex- uint8_t -index of the slot for which we would like to get
ATR

 pbAtrBuffer – uint8_t * - pointer where to save the ATR

 pbMaxLength – maximum length of the ATR that can be stored to the
buffer

RETURN: - phStatus_t Status

 static phStatus_t p3fw_slot_get_atr_l3 (uint8_t bCLSlotIndex, uint8_t *
pbAtrBuffer, uint8_t * pbMaxLength)returns a level 3 ATR for a particular slot

PARAMETERS:

 bCCIDSlotIndex- uint8_t -index of the slot for which we would like to get
ATR

 pbAtrBuffer – uint8_t * - pointer where to save the ATR

 pbMaxLength – maximum length of the ATR that can be stored to the
buffer

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

31 of 53

RETURN: - phStatus_t Status

 static phStatus_t p3fw_slot_get_atr_l4 (uint8_t bCLSlotIndex, uint8_t *
pbAtrBuffer, uint8_t * pbMaxLength)returns a level 4 ATR for a particular slot

PARAMETERS:

 bCCIDSlotIndex- uint8_t -index of the slot for which we would like to get
ATR

 pbAtrBuffer – uint8_t * - pointer where to save the ATR

 pbMaxLength – maximum length of the ATR that can be stored to the
buffer

RETURN: - phStatus_t Status

3.2.18 P3fw_timing.c
Handles timers.

4. Code execution overview

4.1 Initialization

On program entry, after main, we first setup the hardware by calling:

void p3fw_hw_init();

which can be found in src/p3fw_bsp.c. This function initializes the ARM CMSIS library
and sets up the correct PINs functions.
Now we are ready to read configuration – this configuration tells us how Pegoda should
function and which chip is on the board – from PINs – by using:

void p3fw_read_config(void);

which can be found in src/p3fw.c.
Now we need to initialize the timer for timing services by calling:

p3fw_timing_init();

If not using the PCSC Mode the execution of the other modes can be stared.

For PCSC Mode the next step is to setup the slots with a call to:

 status = p3fw_slots_init();

Depending on the configuration the correct interface is initialized:

 USB:
p3fw_ext_if_init_usb();

Now we can check which mode is requested and start the correct tasks for it.

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

32 of 53

Please refer to the implemented main method in src/p3fw.c for more information.

5. Appendix
This Appendix covers for historical reasons the design guide for the old pagoda firmware
as it is present in the subfolder \firmware_v1_3. We do not recommend using this
firmware for future development as it does not include the nxprdlib.

5.1 Introduction
5.1.1 Scope

The scope of this appendix covers the old software architecture coming with the Pegoda
package (/firmware_v1_3). This includes a description of the integrated firmware stack
on the LPC1768 controller as well as a high level overview of available modes in RD710.

The Basic Function Library (BFL) architecture and modules are covered in a separate
document. Examples on how to setup the BFL stack on PC environment to communicate
in different SAM modes and card products are covered in the Example Project Document
[5].

The firmware/BFL may be changed individually to its own needs. An adequate tool chain
for loading the firmware project file and doing further programming/debugging is
introduced in the documents [7].

Updates for future firmware releases may be provided by NXP and can be easily
downloaded by USB.

5.2 Functional overview and mode of operation
The reader firmware can perform contact and contactless communication. The contact
part is used to communicate with a SAM. The contactless part performs the polling and
activation sequence according to PC/SC part 2, ISO/IEC 14443-3 and 14443-4
standards.

The polling and activation sequence can be turned off and on with the use of escape
(PC/SC part 3) commands. The polling and activation sequence is automatically disabled
if escape commands are executed that would interfere with the normal operations. The
firmware also interprets the ADPUs for MIFARE which are defined in PC/SC part 3.

The main modes of operation are being set by DIP switches which are located on the
reader. Some configuration parameters can be set with the escape commands. The
reader will store them in non-violate memory. The user will be able to reset the
configuration back to default state.

The firmware will construct the product name – which is returned by USB descriptor – to
easily identify the reader/SAM configuration. Depending on the DIP switches, there are
three possible configurations

1. No SAM (Pegoda 2 N)

2. SAM in X-Mode (Pegoda 2 X)

3. SAM in S-Mode (Pegoda 2 S)

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

33 of 53

The user will be able to flash the board with custom or original firmware with three
methods:

1. Over USB (IAP)

2. Over serial port (ISP)

3. Over JTAG with the use of external program

The Pegoda reader provides four modes of operation:

• Demo Mode

• PCSC Mode

• Overwrite Configuration Mode

• Enter Secondary Bootloader Mode

5.2.1 Demo mode
The demo mode is used to showcase in an autonomous way the functionality of the
reader. In this mode, ISO14443-3A activation loop is performed and based on SAK blink
the LEDs according to the next table:

Table 2. Card type according to SAK and number of beep
Card type sound
MIFARE 1K (0x08) 1

MIFARE Classic 4K (0x18) 2

MIFARE Ultralight (0x00) 3

MIFARE DESFire 4

MIFARE Plus 5

The demo mode can run in all three operation modes (non SAM, SAM in S, SAM in X
mode).

The demo mode is implemented in src/p2_fw_demo_mode.c in the task:
void p2_fw_task_demo_mode (void * param);

it distinguishes between BFL and SAM driven demo.

The BFL mode is implemented in
static void p2_fw_task_demo_mode_bfl (void * param);

for the usage of the BFL library.

The SAM mode is implemented in
static void p2_fw_task_demo_mode_sam (void * param);

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

34 of 53

for the usage of SAM APDUs and T=1 protocol.

5.2.2 PC/SC Mode
In this mode the reader acts as a fully compliant PC/SC reader. The PC/SC mode
provides two sub modes called
 Standard mode
 Direct mode.

The standard mode provides routines and commands according to the PC/SC standard.
The user can also directly control the reader (e.g. manual activation of cards, settings IC
registers) by using the direct mode.

The mode is split into two tasks:
void p2_fw_task_pcsc_execute (void * param);

which takes care of scheduling the bottom halfs of interrupt functions and
void p2_fw_task_pcsc_poll_and_act_loop (void * param);

which performs activation and pooling of cards.

There are three types of operating modes within the PC/SC mode:

 No SAM mode

 SAM in non X-mode

 SAM in X-Mode

5.2.2.1 The Interrupt Driven Part

Interrupts from external interfaces are serviced by interrupt services which mainly read-in
data sent from external device to the reader. After the data is read-in to the
communication buffer we call:

void p2_fw_ccid_top_half_dispatch(void);

in src/p2_fw_ccid.c which acts as a dispatcher for the CCID messages. For serial and
ethernet messages (if selected interface is other then USB then the reader goes in to
direct mode) the interrupt service always provides a CCID XFER Block command.

In the dispatcher we check if the requested command is supported and allowed and then
call one of the dedicated functions:

• for CCID ICC_POWER_ON we call
void p2_fw_ccid_icc_power_on_top_half (void);

• for CCID GET_SLOT_STATUS we call
void p2_fw_ccid_get_slot_status_top_half (void);

• for CCID ICC_POWER_OFF we call
void p2_fw_ccid_icc_power_off_top_half (void);

• for CCID XFR_BLOCK we call
void p2_fw_ccid_xfr_block_top_half (void);

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

35 of 53

• for CCID GET_PARAMETERS we call
void p2_fw_ccid_get_parameters_top_half (void);

• for CCID SET_PARAMETERS we call
void p2_fw_ccid_set_parameters_top_half (void);

• for CCID ESCAPE we call
void p2_fw_ccid_escape_top_half (void);

These top half handlers do the smallest amount of work because we are still in the
interrupt service routine. Mostly they only check if the frame is valid and of correct size
and at the end schedule a bottom half which is run by execute task and which does the
real work.

The bottom half functions are implemented in src/p2_fw_ccid.c with the following
routines:

Get Status Bottom half
Bool p2_fw_ccid_get_slot_status_bottom_half (uint8_t slot_idx);

Returns status for slot defined by slot_idx.

Power On Bottom Half
Bool p2_fw_ccid_icc_power_on_bottom_half (uint8_t slot_idx);

Powers on the SAM.

Power Off Bottom Half
Bool p2_fw_ccid_icc_power_off_bottom_half (uint8_t slot_idx);

Powers off the SAM card or Halts a contactless card if one is present.

Get Parameters Bottom Half
Bool p2_fw_ccid_get_parameters_bottom_half (uint8_t slot_idx);

Returns parameters of a card in slot.

Set Parameters Bottom Half
Bool p2_fw_ccid_set_parameters_bottom_half (uint8_t slot_idx);

Sets parameters for a card in a slot.

Escape Bottom Half
Bool p2_fw_ccid_escape_bottom_half (uint8_t slot_idx);

Can be used to execute some of the direct mode commands in other modes.

Xfer Bottom Half

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

36 of 53

Bool p2_fw_ccid_xfr_block_bottom_half (uint8_t slot_idx);

This is the most complex function which performs multiple actions depending on the sub
mode.

5.2.2.2 Standard Submode

In standard mode the reader sends APDUs to an ISO14443-4 compliment card:

static Bool p2_fw_ccid_xfr_bh_l4_xfer (uint8_t slot_idx);

and to the SAM:

static Bool p2_fw_ccid_xfr_bh_sam (uint8_t slot_idx);

The firmware also interprets the APDUs for MIFARE which are defined in PC/SC part 3.
The list of supported APDUs is as following:

• Get Data
 static Bool p2_fw_pcsc_ext_cmd_get_data(uint8_t slot_idx);

• Load Keys
 static Bool p2_fw_pcsc_ext_cmd_load_key(uint8_t slot_idx);

• General Authenticate
 static Bool p2_fw_pcsc_ext_cmd_auth(uint8_t slot_idx);

• Read binary
 static Bool p2_fw_pcsc_ext_cmd_read_bin(uint8_t slot_idx);

• Update binary
 static Bool p2_fw_pcsc_ext_cmd_update_bin(uint8_t slot_idx);

5.2.2.3 Direct Submode

After we enter the direct mode the payload of xfer command is interpreted by the
firmware. The main dispatcher function for direct mode:

Bool p2_fw_dm (uint8_t message_type, uint16_t allowed_cmds);

Every subset of direct mode is coded in its own file:

Reader Operations

Implements commands for Reader Operations. Entry point:
Bool p2_fw_dm_ro (uint8_t message_type);

HAL Commands

Implements commands for HAL Commands. Entry point:
Bool p2_fw_dm_hal (uint8_t message_type);

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

37 of 53

ISO14443-3

Implements commands for ISO14443-3. Entry point:
Bool p2_fw_dm_l3 (uint8_t message_type);

ISO14443-4Activation

Implements commands for ISO14443-4Activation. Entry point:
Bool p2_fw_dm_l4a (uint8_t message_type);

ISO14443-4

Implements commands for ISO14443-4 layer. Entry point:
Bool p2_fw_dm_l4 (uint8_t message_type);

MIFARE Exchange

Implements commands for MIFARE Exchange. Entry point:
Bool p2_fw_dm_xchg (uint8_t message_type);

CID Manager

Implements commands for CID Manager. Entry point:
Bool p2_fw_dm_cid (uint8_t message_type);

Contact Card Communication

Implements commands for Contact Card Communication. Entry point:
Bool p2_fw_dm_cc (uint8_t message_type);

Key Store

Implements commands for Key Store. Entry point:
Bool p2_fw_dm_key_store (uint8_t message_type);

Pooling and Activation Part

Pooling and activation is implemented in three functions. It has its own task:
void p2_fw_task_pcsc_poll_and_act_loop (void * param);

This function performs the activation for ISO14443-3 level. If a card supports an
ISO14443-4 level card then it calls:

static Bool p2_fw_task_int_do_l4 (uint8_t * atq);

For pooling it uses:
static void p2_fw_task_int_do_poll (void);

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

38 of 53

5.2.3 Overwrite Configuration Mode
In this mode we issue:

void p2_fw_flash_erase_config(void);

from src/p2_fw_flash_utils.c which erases configuration from flash and then we call:
void p2_fw_invoke_error_mode(uint32_t error_code);

to inform the user that the overwrite was done.

5.2.4 Enter Secondary Bootloader Mode
In this mode we set a configuration option P2_FW_CFG_ENT_SEC_BOOT_MODE to
buff[0] = 1 with the use of

Bool p2_fw_flash_set_config(uint32_t cfg_id, uint8_t * buff);

and then we issue a reset with the use of CMSIS function.

5.3 Library and source code overview
The firmware is composed from different libraries:

• BFL – NXP Basic Function Library 4.8 (can be found in bfl directory in the source tree)
– provides all functions related to interaction with cards

• BFL Extensions – Extensions to the BFL provided by NXP – provides key store
implementation required by the direct mode reader operation

• CMSIS - Cortex Microcontroller Software Interface Standard with extra peripheral
drivers (can be found in cmsis directory in the source tree) – provides startup code and
peripheral drivers and easier porting to other hardware platforms [3]

• FreeRTOS operating system (can be found in FreeRTOS_6_0_0 directory in the source
tree) – provides multitasking and tasks intercommunication and easier porting to other
hardware platforms

• lpcusb – USB stack designed for NXP LPC family of microcontrollers (can be found in
lpcusb directory in the source tree)

• debug – simple debug library (can be found in debug directory in the source tree)

• firmware code (can be found in src and include directory in the source tree)

5.3.1 Architecture of the Pegoda 2 Firmware
The firmware is interrupt driven and can be split in two logical parts:
 the interrupt handling
 scheduled tasks

All interrupts are processed through top/bottom half (see [5]) interfaces. Basically the
interrupt service routine (also called top half) schedules bottom half which does not run in
interrupt execution space but in “normal” execution space.

The scheduled tasks are described in the following chapters.

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

39 of 53

5.3.2 Description of firmware code
The following firmware source files (see Fig 7) can be found in the project. The main
functionality will be described in the following section.

Fig 8. Firmware source files In project

5.3.2.1 P2_fw_bfl.c

This file contains functions related to old BFL initialization and usage.

 bool p2_fw_bfl_init (void) – performs initialization of required BFL structures.
We initialize the hardware interface, the required subsystems (IO and OpCtrl)
and ISO14443 layer 3, 4A and 4 components.

PARAMETERS: NONE

RETURN: NONE

 void p2_fw_bfl_set_up_rc_type_a_reading (void) – sets up registers for
ISO14443-3A card type reading.

PARAMETERS: NONE

RETURN: NONE

 bool p2_fw_bfl_reset_reader (void) – resets reader chip.

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

40 of 53

PARAMETERS: NONE

RETURN: NONE

 void p2_fw_bfl_set_timeout (uint16_t qsec, uint8_t aFlags) – sets timeout to
the reader chip timer in milliseconds or microseconds depending on the flags
setting. Please note that values larger than 39590ms will cause overflow.

PARAMETERS: qsec – uint16_t value

aFlags – can be:

• P2_FW_TMR_MS – qsec is in milliseconds

• P2_FW_TMR_US – qsec is in microseconds

• P2_FW_TMR_START_NOW – force timer start

RETURN: NONE

 void p2_fw_bfl_set_com_speed(uint8_t dri, uint8_t dsi) – set card
communication speed parameters to the reader.

PARAMETERS: dri – DRI parameter to set

 dsi – DSI parameter to set

RETURN: NONE

 void p2_fw_bfl_change_rc523_baud_rate (uint32_t baudrate) – changes the
reader UART speed to higher one from the default (9600

PARAMETERS: baudrate – the baudrate value (9600 – 12880000)

RETURN: NONE

 static void p2fw_pcd_utils_wtx_cb (phcsBflI3P4_CbSetWtxParam_t*
wtx_param) – a callback for ISO14443-4 layer which sets the new WTX value.

PARAMETERS: wtx_param – internal BFL structure

RETURN: NONE

5.3.2.2 P2_fw_ccid.c

The file contains implementation of the USB CCID 1.1 messages. For every message
there is a top and bottom half function.

The following messages are implemented in this file:

ICC Power On

 void p2_fw_ccid_icc_power_on_top_half (void);

Bool p2_fw_ccid_icc_power_on_bottom_half (uint8_t slot_idx);

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

41 of 53

ICC Power Off

 void p2_fw_ccid_icc_power_off_top_half (void);

Bool p2_fw_ccid_icc_power_off_bottom_half (uint8_t slot_idx);

Get Slot Status

 void p2_fw_ccid_get_slot_status_top_half (void);

Bool p2_fw_ccid_get_slot_status_bottom_half (uint8_t slot_idx);

Get Parameters

 void p2_fw_ccid_get_parameters_top_half (void);

Bool p2_fw_ccid_get_parameters_bottom_half (uint8_t slot_idx);

Set Parameters

 void p2_fw_ccid_set_parameters_top_half (void);

Bool p2_fw_ccid_set_parameters_bottom_half (uint8_t slot_idx);

Escape

 void p2_fw_ccid_escape_top_half (void);

Bool p2_fw_ccid_escape_bottom_half (uint8_t slot_idx);

Please refer to the source code and USB CCID 1.1 documentation for more information.

5.3.2.3 p2_fw_ccid_xfer.c

The file contains implementation of the USB CCID 1.1 XfrBlock message for contact and
contactless cards which support APDUs.

The top half is implemented in: void p2_fw_ccid_xfr_block_top_half (void) function.

The bottom half function: Bool p2_fw_ccid_xfr_block_bottom_half (uint8_t slot_idx)
calls the correct sub functions:

• for contactless cards:

static Bool p2_fw_ccid_xfr_bh_l4_xfer (uint8_t slot_idx) – function implements the
ISO1444-4 protocol with chaining support, for more details refer to the source file

Bool p2_fw_pcsc_commands (uint8_t slot_idx) – function implements the APDUs

which are part PC/SC

• for contact cards:

static Bool p2_fw_ccid_xfr_bh_sam (uint8_t slot_idx) – function uses T=1 to
exchange data with a contact SAM card, or more details refer to the source file

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

42 of 53

5.3.2.4 p2_fw_demo_mode.c

The demo mode is a simple demonstration on how to query for a card. The mode
performs a selection of an NXP card according to ISO/IEC14443. Depending on the SAK
byte of the selected card, the antenna LEDs start blinking and an acoustic signal is
generated.

The whole demo mode is implemented as one FreeRTOS task:

void p2_fw_task_demo_mode (void * param) – main task function which calls the
correct sub task according to requested mode:

 use reader chip directly:

o static void p2_fw_task_demo_mode_bfl (void * param) – the flow of
this function is as following:

1. set up type ISO/IEC14443-3A card type reading

2. set up communication speed to 106kbps

3. turn on the antenna LEDs

4. enter infinity loop

5. set up timeout for REQA (pool for card) function

6. set up parameters for REQA function

7. execute REQA function

8. if REQA returns error, return to step 5.

9. REQA /ATQA returned success – card is in the field

10. set up timeout for AnticollSelect function

11. set up parameters for AnticollSelect function

12. perform AnticollSelect function

13. if selection of card is successful, beep according to reported SAK byte:

• if SAK == 0x08 → one time (MIFARE Classic Card 1k)

• if SAK == 0x18 → two times (MIFARE Classic Card 4k)

• if SAK == 0x00 → three times (MIFARE Ultralight/Ultralight C Card)

• if SAK == 0x20 → four times (ISO14443-4 Type Card (MIFARE Plus,
MIFARE DESFire, ...))

14. halt the card and return to step 5

 use SAM:

o static void p2_fw_task_demo_mode_sam (void * param) – to use
the SAM to control the chip, the following steps are required:

1. enter an endless loop (a FreeRTOS requirement)

2. reset the SAM by performing reinitialization

3. check SAM version and correct mode of operation

4. initialize the reader chip by performing Rc_Init command on SAM

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

43 of 53

5. after the reader chip has been successfully initialized, set up the RF field
by issuing RC_RF_Control command

6. activate a card by performing Activate Card command on SAM

7. after successful selection of a card, an acoustic signal is generated as
described in the direct reader chip usage step 13.

5.3.2.5 Functions for Direct mode

The following files contain functions for so called direct mode of operation of the Pegoda
reader. This mode is meant to be used by the NXPRdLib. Functions found in this file
bridge the difference between the NXPRdLib and the old BFL which is used as
foundation of the current Pegoda firmware. If you are interested in how this mode works
please refer to the source code.

p2_fw_direct_mode.c
p2_fw_direct_mode_cid.c
p2_fw_direct_mode_contact_card.c
p2_fw_direct_mode_hal.c
p2_fw_direct_mode_key_store.c
p2_fw_direct_mode_l3.c
p2_fw_direct_mode_l4a.c
p2_fw_direct_mode_l4.c
p2_fw_direct_mode_ro.c
p2_fw_direct_mode_xchg.c

5.3.2.6 p2_fw_err_and_nfo_mode.c

Contains a FreeRTOS task:

void p2_fw_task_err_and_nfo_loop (void * param) – which is used to inform the user
of an error or that some action was completed. First the antenna LEDs blinks for five
seconds with two blinks per second and then with rate of one blink and one beep per
second informs the user of the error or that some action is completed. Please refer to
source code file for more information.

5.3.2.7 p2_fw_ext_intf_serial.c

This file contains implementation of the serial interface (RS232, RS485) for LPC1768
UART for communication with a client. The serial communication can be only used in
Direct Mode.

For more information please refer to

• LPC1768 user manual – Chapter 15. LPC17xx UART1 [8]

• the source file

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

44 of 53

5.3.2.8 p2_fw_ext_intf_usb.c

This file contains implementation of the USB interface (USB CCID 1.1) for
communication with a client.

For more information please refer to:

• LPCUSB documentation (http://sourceforge.net/projects/lpcusb/)

• USB CCID 1.1 specification
(http://www.usb.org/developers/devclass_docs/DWG_Smart-Card_CCID_Rev110.pdf)

• source file

5.3.2.9 p2_fw_flash_utils.c

The p2_fw_flash_utils.c file contains functions which perform actions over the IAP
interface of LPC1768. For more information on IAP please refer to NXP LPC1768 User
Manual. These actions are:

 static Bool p2_fw_flash_utils_erase(int sec_from, int sec_to) – performs
erase of the flash from sec_from to sec_to

PARAMETERS: - sec_from – int – start erase at this sector

 - sec_to – int – stop erase at this sector

RETURN: -TRUE if success

 -FALSE if error

 static Bool p2_fw_flash_utils_flash(int sec, uint8_t * buff, int size) –
performs flashing of the internal flash

PARAMETERS: - sec – int – sector to flash

 - buff – uint8[] - data to flash

 - size – int – size of buff (should be 128, 512 or 1024)

RETURN: - TRUE if success

 - FALSE if error

 Bool p2_fw_flash_read_serial(uint32_t * sernum) – returns the CPU serial

PARAMETERS: - sernum – uint32_t * - pointer to a uint32_t for storing the read
CPU serial number

RETURN: - TRUE if success

 - FALSE if error

5.3.2.10 p2_fw_main.c

The firmware starts in this file. In the main loop (int main()), initialization of hardware and
software parts of the firmware are performed:

1. first we set up hardware (see p2_fw_reader.c for more information about setting up
hardware)

2. then we initialize the debugging framework – this depends on type of build that we are
building

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

45 of 53

3. next come reading the configuration from DIP switches and flash (see p2_fw_reader.c
for more information about reading configuration)

4. now we can setup the external interface

5. now we have to set up FreeRTOS queue – used for communication between top
bottom halfs and semaphore for protecting access to reader chip – so that we do not use
it from two tasks at the same time

6. next we try to set up the reader chip

7. if we find a supported chip we set up the correct tasks for particular mode – if not
found we enter into error and information task with correct error code

8. next we have to start the FreeRTOS scheduler (please refer to FreeRTOS
documentation for more information) and loop forever

For more detailed information please refer to the source code file.

5.3.2.11 p2_fw_pcsc_ext.c

In this file we implement PC/SC extensions for memory cards. The implemented
commands are:

• Get Data – see static Bool p2_fw_pcsc_ext_cmd_get_data(uint8_t slot_idx);

• Load Keys – see static Bool p2_fw_pcsc_ext_cmd_load_key(uint8_t slot_idx);

• General Authenticate – see static Bool p2_fw_pcsc_ext_cmd_auth(uint8_t
slot_idx);

• Read Binary – see static Bool p2_fw_pcsc_ext_cmd_read_bin(uint8_t slot_idx);

• Update Binary – see static Bool p2_fw_pcsc_ext_cmd_update_bin(uint8_t
slot_idx);

For more information please refer to the source file.

5.3.2.12 p2_fw_pcsc_mode.c

This file contains functions related to PC/SC mode of operation by Pegoda 2 reader. We
define two FreeRTOS tasks:

 void p2_fw_task_pcsc_execute (void * param)

This task provides executions of bottom halfs which are scheduled by top halfs. Most of
time this task blocks on a queue waiting for interrupts to schedule a bottom half which is
then executed by this task.

 void p2_fw_task_pcsc_poll_and_act_loop (void * param)

This task provides polling and activation mechanism required by the PC/SC specification
and it is split in three parts:

 main polling and ISO14443-3A activation (found in this function)

 ISO14443-4A activation function (see static Bool p2_fw_task_int_do_l4
(uint8_t * atq, phcsBflI3P3A_AnticollSelectParam_t * ans_p))

 existing cards polling function (see static void p2_fw_task_int_do_poll (void))

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

46 of 53

Please refer to the source file for more information.

5.3.2.13 p2_fw_reader.c

In this file we initialize the hardware parts of the Pegoda 2 reader:

 void p2_fw_reader_setup_hardware(void) function:

1. runs SystemInit() function provided by the CMSIS library

2. sets the Interrupt Vector table pointer to the correct address

3. sets up the pin function of used GPIOs – first the DIP switches, next
configuration pins and lastly LEDs and beeper pin

4. next we set the correct direction and initial value (only for output pins) for this
pins

• void p2_fw_reader_read_config(void) function reads the value of the DIP switches
and stores a local copy of it

• void p2_fw_reader_set_up_external_interface (void) function sets up the correct
external interface according to the configuration that was set by DIP switches

• Bool p2_fw_reader_set_up_reader_chip(void) function checks if the set
configuration is possible – if it can find the correct reader chip and/or SAM – and sets up
the old BFL if needed

Please refer to the source code for more information.

5.3.2.14 p2_fw_sam_t1.c

This file contains implementation of the ISO/IEC 7816/3 standard:

 void p2_fw_sam_t1_init(uint8_t chip, uint8_t mode) – initialize the processors
I/O pins according to chip and mode parameter to work with SAM card.

PARAMETERS: chip – P2_FW_READER_CHIP_RC523 or

 P2_FW_READER_CHIP_SAM

mode – P2_FW_READER_MODE_SAM_IN_X or

 P2_FW_READER_MODE_SAM_NON_X

 void p2_fw_sam_t1_start(void) – it perform activation sequence according ISO
7816-3:2006 (Figure 1). The function returns immediately but the user should
wait until the module is busy (see p2_fw_sam_t1_is_busy) then he can read the
ATR of inserted SAM card with p2_fw_sam_t1_get_atr.

 void p2_fw_sam_t1_deinit(void) – the function perform Deactivation sequence
according to ISO 7816/3:2006 (Figure 6).

 void p2_fw_sam_t1_warm_reset(void) – the function perform warm reset
according to ISO 7816-3:2006 (Figure 1). The function returns immediately but
the user should wait until the module is busy (see p2_fw_sam_t1_is_busy) then
he can read the ATR of inserted SAM card with p2_fw_sam_t1_get_atr.

 void p2_fw_sam_t1_send(uint8_t *data, uint32_t len, uint8_t frame_type)
The function sends len bytes of data to SAM.

PARAMETERS: data – uint8_t * - pointer to data to send

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

47 of 53

len – uint32_t – length of data to send

frame_type:

 P2_FW_SAM_FRAME_APDU the function
prepends NAD, PCB and LEN bytes, and appends
LRC to data parameter (according ISO 7816-
3:2006).

 P2_FW_SAM_FRAME_T1 the function just send
data to SAM card.

The function returns immediately but the user should wait until the module is busy (see
p2_fw_sam_t1_is_busy) then he can read the response with p2_fw_sam_t1_receive.

 uint32_t p2_fw_sam_t1_receive(uint8_t *data, uint8_t frame_type) – the
function returns the number of bytes received from SAM card. If frame_type
equals P2_FW_SAM_FRAME_APDU only the INF field is returned.

PARAMETERS: data – uint8_t * - pointer to received data

 frame_type – uint8_t – frame type

RETURN: number of bytes received

 Bool p2_fw_sam_t1_is_busy(void) – the function return true if the SAM
module is busy and false otherwise.

 void p2_fw_sam_t1_get_atr(uint8_t * buffer, uint8_t *max_length) – the
function returns ATR of currently inserted SAM card.

PARAMETERS: buffer – uint8_t * - buffer in which to store ATR

 max_length – uint8_t * - the size of the buffer/length of ATR (on
return)

 void p2_fw_sam_t1_set_etu(uint8_t fi_di) – function sets the module's internal
etu according to fi_di parameter. fi_di is encoded as TA1 of ATR (ISO
7816/3:2006; 8.3).

The module uses TIMER0, TIMER2, GPIO falling edge interrupt on SAM's I/O pin and
PWM0 for SAM's CLK pin. When the user calls p2_fw_sam_t1_start or
p2_fw_sam_t1_warm_reset the SAM card is in reset state and after 400 clocks (ISO
7816-3:2006) the TIME0 interrupt triggers and sets the RST pin high. Then the module is
in read state and waits for GPIO failing edge interrupt (start bit). After receiving start bit
TIMER0 is used to capture data bits and parity bit. TIMER2 is used to timeout if no start
bit is received. All that time the function p2_fw_sam_t1_is_busy returns true. For
sending data to SAM, TIMER0 is used to shift each bit to I/O pin. When the answer is
received the module is not busy anymore and it can be read with
p2_fw_sam_t1_receive function.

5.3.2.15 p2_fw_slots.c

We define multiple slots in which cards can reside. At one time you can use only one
ISO144443 card or fourteen ISO14443 cards. Every card has its own communication
settings and this are stored in a slot. All slot and CID management functions can be
found in this source file:

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

48 of 53

 void p2_fw_slots_init(void) – initialize slots and prepare them for work

 Bool p2_fw_slots_free_cid (uint8_t cid) – frees occupied CID channel for
ISO14443-4 communication

PARAMETERS: cid – uint8_t – CID channel to free

RETURN: TRUE if success, FALSE in case of ERROR

 Bool p2_fw_slots_get_free_cid (uint8_t * cid) – returns a free CID channel for
ISO14443-4 communication

PARAMETERS: cid – uint8_t * – pointer to uint8_t where to store CID channel

RETURN: TRUE if success, FALSE in case of ERROR

 Bool p2_fw_slots_get_free_slot (uint8_t * slot) – returns a free slot to store a
card (CID channel and slot index are two different things and should not be
mixed up)

PARAMETERS: slot – uint8_t * - pointer to uint8_t where to store slot index

RETURN: TRUE if success, FALSE in case of ERROR

 Bool p2_fw_slots_add_new_l4_card (phcsBflI3P4AAct_RatsParam_t *
rat_p, uint8_t cid_index, uint8_t sak, uint8_t * atq, uint8_t * uid, uint8_t
uid_len) – adds a new ISO14443-4 card to a slot

PARAMETERS:

 rat_p – phcsBflI3P4AAct_RatsParam_t * – pointer to RATS structure used
for card activation

 cid_index – uint8_t – CID channel used for communication

 sak – uint8_t – SAK that card returned at ISO14443-3A activation

 atq – uint8_t * - pointer to buffer containing ATQ

 uid – uint8_t * - pointer to buffer containing UID

 uid_len – uint8_t – uid buffer length

RETURN: TRUE if success, FALSE in case of ERROR

 Bool p2_fw_slots_add_new_l3_card (uint8_t sak, uint8_t * atq, uint8_t * uid,
uint8_t uid_len) – adds a new ISO14443-3 card to a slot

PARAMETERS:

 sak – uint8_t – SAK that card returned at ISO14443-3A activation

 atq – uint8_t * - pointer to buffer containing ATQ

 uid – uint8_t * - pointer to buffer containing UID

 uid_len – uint8_t – uid buffer length

RETURN: TRUE if success, FALSE in case of ERROR

 Bool p2_fw_slots_add_new_sam_card (void) – adds a new SAM to a slot

PARAMETERS: NONE

RETURN: TRUE if success, FALSE in case of ERROR

 Bool p2_fw_slots_is_known_l3_card (uint8_t * uid, uint8_t uid_len) – check
if the card is already occupying a slot

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

49 of 53

PARAMETERS:

 uid – uint8_t * - pointer to buffer containing UID

 uid_len – uint8_t – uid buffer length

RETURN: TRUE if success, FALSE in case of ERROR

 Bool p2_fw_slots_get_atr (uint8_t slot_index, uint8_t * buffer, uint8_t
*max_length) – returns an ATR for a particular slot (by calling
p2_fw_slots_atr_l4_cards or p2_fw_slots_atr_l3_card function)

PARAMETERS:

 slot_index – uint8_t – index of the slot for which we would like to get ATR

 buffer – uint8_t * - pointer where to save the ATR

 max_length – maximum length of the ATR that can be stored to the buffer

RETURN: TRUE if success, FALSE in case of ERROR

 static Bool p2_fw_slots_atr_l4_cards (uint8_t slot_index, uint8_t * buffer,
uint8_t *max_length) – returns correctly formatted ATR for ISO14443-4 type
card

PARAMETERS:

 slot_index – uint8_t – index of the slot for which we would like to get ATR

 buffer – uint8_t * - pointer where to save the ATR

 max_length – maximum length of the ATR that can be stored to the buffer

RETURN: TRUE if success, FALSE in case of ERROR

 static Bool p2_fw_slots_atr_l3_cards (uint8_t slot_index, uint8_t * buffer,
uint8_t *max_length) – returns correctly formatted ATR for ISO14443-3 type
card

PARAMETERS:

 slot_index – uint8_t – index of the slot for which we would like to get ATR

 buffer – uint8_t * - pointer where to save the ATR

 max_length – maximum length of the ATR that can be stored to the buffer

RETURN: TRUE if success, FALSE in case of ERROR

 void p2_fw_slots_remove_card (uint8_t slot_index) – removes card from a
slot

PARAMETERS:

 slot_index – uint8_t – index of the slot from which we would like to remove
the card

RETURN: NONE

Please refer to the source code for more information.

5.3.2.16 p2_fw_timing_com.c

This file contains functions for timing of operations. The supported timing modes are:

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

50 of 53

• FTD – frame time delay – time between the end or transmission to the card and start
of reply (this time is calculated from the RC523 timer)

• COM – whole command time – from start of the command until the end (this time is
calculated by using LPC1768 timer TIM1)

Please refer to the source code for more information.

5.3.2.17 p2_fw_utils.c

Contains simple helpful functions:

 uint8_t p2_fw_utils_get_dri(uint8_t ta1) – returns DRI parameter from cards
ATS

PARAMETERS: ta1 – cards ATSs TA1

 uint8_t p2_fw_utils_get_dsi(uint8_t ta1) – returns DSI parameter from cards
ATS

PARAMETERS: ta1 – cards ATSs TA1

 void p2_fw_utils_blink(int count) – blinks antenna LEDs count times

PARAMETERS: count – times to blink the antenna LEDs

 void p2_fw_utils_field_off (void) – turns off the RF field

 void p2_fw_utils_field_on (uint16_t wFiledRecoveryTime) – turns on the RF
field

PARAMETERS: wFiledRecoveryTime – time to wait fro field to settle

 void p2_fw_utils_reg_write (uint8_t addr, uint8_t val) – write to a RC523
register

PARAMETERS: addr – uint8_t – register address

 value – uint8_t – value to write

 void p2_fw_utils_reg_read (uint8_t addr, uint8_t * val) – read from RC523
register

PARAMETERS: addr – uint8_t – register address

 value – uint8_t * – pointer to store the value

5.4 Code execution overview
5.4.1 Initialization

On entry, after main we first setup the hardware by calling:
void p2_fw_reader_setup_hardware(void);

in src/p2_fw_reader.c. This function initializes the ARM CMSIS library and sets up
hardware.

Next we setup the slots with a call to:
void p2_fw_slots_init(void);

Now we are ready to read configuration – this configuration tells the currently set
operating mode of the Pegoda.

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

51 of 53

void p2_fw_reader_read_config(void);

Now that we have read the configuration we can set up the external interface defined by
PINs connected to DIP switch 3 and 4 by calling:

void p2_fw_reader_set_up_external_interface (void);

Depending on the configuration the correct interface is initialized:

 USB:
void p2_fw_usb_init_usb(void);

 serial (RS232 and RS485):
void p2_fw_usb_init_serial(void);

 ethernet:
void p2_fw_usb_init_ethernet(void);

Now we need to initialize the timer for timing services by calling:
void p2_fw_timing_init(void);

Now we only have to set up the reader chip by calling:
Bool p2_fw_reader_set_up_reader_chip(void);

This function – depending on the configuration and chip type – initializes the correct
subsystems.

Initialization can be performed on BFL or/and SAM depending on configuration.

For initialization of the BFL we call:
Bool p2_fw_bfl_init (void);

For SAM initialization we have to call the correct sequence of:
void p2_fw_sam_t1_init(uint8_t chip, uint8_t mode);

void p2_fw_sam_t1_start(void);

Bool p2_fw_sam_t1_is_busy(void);

Bool p2_fw_sam_t1_is_sam_inserted(void)

void p2_fw_sam_t1_deinit(void);

Now we can check which mode is requested and start the correct tasks for it.

E
rror!

U
nknow

n docum
e

nt
property
nam

e.

Error! U
nknow

n docum
ent property nam

e.
E

rror! U
nknow

n docum
ent property

nam
e.

NXP Semiconductors AN10993
 Pegoda Software Design Guide

AN10993 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.1 — 08 August 2012
196121

52 of 53

6. Legal information

6.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

6.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s

third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

6.3 Licenses
Purchase of NXP ICs with ISO/IEC 14443 type B functionality

This NXP Semiconductors IC is ISO/IEC 14443 Type
B software enabled and is licensed under Innovatron’s
Contactless Card patents license for ISO/IEC 14443 B.

The license includes the right to use the IC in systems
and/or end-user equipment.

RATP/Innovatron
Technology

6.4 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

MIFARE — is a trademark of NXP B.V.

DESFire — is a trademark of NXP B.V.

MIFARE Ultralight — is a trademark of NXP B.V.

MIFARE Plus — is a trademark of NXP B.V.

NXP Semiconductors AN10993
 Pegoda Software Design Guide

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2012. All rights reserved.

For more information, visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 08 August 2012
196121

Document identifier: AN10993

7. Contents

1. Introduction ... 3
1.1 Scope ... 3
1.2 Audience .. 4
1.3 Applicable documents or references 4
1.4 Acronyms and abbreviations 4
2. Functional overview and mode of operation 5
2.1 Demo mode.. 5
2.2 PC/SC Mode .. 6
2.2.1 No SAM mode .. 6
2.2.2 SAM in non X-mode ... 7
2.2.3 SAM in X-mode .. 7
2.2.4 Card Poll and Activation Task 8
2.2.5 PCSC Execute Task .. 8
2.2.5.1 Top Half.. 9
2.2.5.2 Bottom Half .. 9
2.2.6 Standard PSCS Mode 10
2.2.7 Direct PCSC Mode ... 12
2.2.7.1 Reader Operations ... 14
2.2.7.2 HAL Operations .. 15
2.2.7.3 ISO14443-3A Operations 16
2.2.7.4 ISO14443-4A Operations 17
2.2.7.5 ISO14443-4 Operations 17
2.2.7.6 CID Operations .. 18
2.2.7.7 MIAFARE Operations 18
2.2.7.8 Key Store Operations 19
2.2.7.9 Contact Card Operations 20
2.3 Overwrite Configuration Mode 20
2.4 Enter Secondary Bootloader Mode 21
3. Library and source code overview 22
3.1 Architecture of the Pegoda 2 Firmware 22
3.2 Description of firmware code 23
3.2.1 src/debug_frmwrk.c .. 23
3.2.2 src/p3fw_bsp.c ... 23
3.2.3 src/p3fw.c ... 23
3.2.4 src/p3fw_ccid_bh.c ... 24
3.2.5 src/p3fw_ccid.c ... 24
3.2.6 src/p3fw_ccid_th.c .. 25
3.2.7 src/p3fw_demo.c .. 25
3.2.8 src/p3fw_dm.c .. 25
3.2.9 src/p3fw_error_mode.c 26
3.2.10 src/p3fw_ext_if_usb.c 26
3.2.11 src/p3fw_flash.c ... 26
3.2.12 src/p3fw_pcsc.c .. 27
3.2.13 src/p3fw_pcsc_mem_cards.c 27
3.2.14 src/p3fw_poll.c ... 27
3.2.15 src/p3fw_samt1.c ... 28

3.2.16 src/p3fw_samt1_wrap.c 29
3.2.17 src/p3fw_slots.c .. 29
3.2.18 P3fw_timing.c ... 31
4. Code execution overview 31
4.1 Initialization ... 31
5. Appendix .. 32
5.1 Introduction ... 32
5.1.1 Scope ... 32
5.2 Functional overview and mode of operation 32
5.2.1 Demo mode .. 33
5.2.2 PC/SC Mode .. 34
5.2.2.1 The Interrupt Driven Part 34
5.2.2.2 Standard Submode .. 36
5.2.2.3 Direct Submode .. 36
5.2.3 Overwrite Configuration Mode 38
5.2.4 Enter Secondary Bootloader Mode 38
5.3 Library and source code overview 38
5.3.1 Architecture of the Pegoda 2 Firmware 38
5.3.2 Description of firmware code 39
5.3.2.1 P2_fw_bfl.c ... 39
5.3.2.2 P2_fw_ccid.c .. 40
5.3.2.3 p2_fw_ccid_xfer.c ... 41
5.3.2.4 p2_fw_demo_mode.c 42
5.3.2.5 Functions for Direct mode 43
5.3.2.6 p2_fw_err_and_nfo_mode.c 43
5.3.2.7 p2_fw_ext_intf_serial.c 43
5.3.2.8 p2_fw_ext_intf_usb.c .. 44
5.3.2.9 p2_fw_flash_utils.c ... 44
5.3.2.10 p2_fw_main.c ... 44
5.3.2.11 p2_fw_pcsc_ext.c ... 45
5.3.2.12 p2_fw_pcsc_mode.c ... 45
5.3.2.13 p2_fw_reader.c ... 46
5.3.2.14 p2_fw_sam_t1.c ... 46
5.3.2.15 p2_fw_slots.c .. 47
5.3.2.16 p2_fw_timing_com.c ... 49
5.3.2.17 p2_fw_utils.c ... 50
5.4 Code execution overview 50
5.4.1 Initialization ... 50
6. Legal information .. 52
6.1 Definitions ... 52
6.2 Disclaimers ... 52
6.3 Licenses ... 52
6.4 Trademarks .. 52
7. Contents ... 53

