

 AN11218
emWin Porting guide: EA LPC1788 BSP to Keil MCB1700
Rev. 1 — 21 June 2012 Application note

Document information
Info Content
Keywords emWin, Graphical, LCD, MCB1700, LPC1768, Porting
Abstract This application note illustrates how to port an existing emWin

BSP to another board, assembled with another type of MCU and
another type of LCD. This guide shows step-by-step how to do
this by porting the Embedded Artists’ EA1788 (with on-chip LCD
controller) BSP to Keil’s MCB1700 (without on-chip LCD
controller) board.

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 2 of 34

Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
1 20120621 Initial version.

http://www.nxp.com/�
mailto:salesaddresses@nxp.com�

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 3 of 34

1. Introduction
NXP offers emWin Board Support Packages (BSPs) for two boards: Embedded Artists’
EA1788 and Keil’s MCB1700. Although more boards will be supported in the future,
many times it is required to port emWin to another target, e.g., custom hardware. EmWin
is designed to be easily portable and this guide shows the required steps to do this.

This guide shows step-by-step how the EA1788 BSP was ported to the MCB1700 board.
Table 1 shows the most important differences between the two boards.

Table 1. Comparison between the EA1788 and the MCB1700 board
 EA1788 MCB1700
MCU LPC1788 LPC1768

On-chip LCD controller Yes No

On-board ROM 128 MB + 512 kB 512 kB

On-board RAM 32 MB + 96 kB 64 kB

LCD 3.2”, 240 x 320 pixels/
4.3”, 480 x 272 pixels/
 7”, 800 x 480 pixels

2.4”, 240 x 320 pixels

Interface to LCD 16-bit parallel SPI

This step-by-step guide assumes the use of the LPCXpresso IDE, though the steps are
identical if using Keil or IAR. This chapter continues by explaining the steps involved in
porting emWin and explains the software organization of the EA1788 BSP. The following
chapters show the steps taken to successfully port the EA1788 project to the MCB1700
project.

1.1 Steps involved in porting emWin
Four major steps can be distinguished when porting emWin:
1. Change MCU-specific settings / source code.
2. Change board-specific settings / source code.
3. Change LCD related settings /source code.
4. Change emWin related settings / source code.

1.2 Software organization of the EA1788 BSP
The BSP used in this guide as a base for porting is available for download as a zip file at
http://www.lpcware.com/content/project/emwin-graphics-library, under the following
name: “emWin 5.14 BSP for Embedded Artist's EA1788 board and the 3.2", 4.3"and 7"
LCDs - LPCXpresso 4, Keil uVision 4, IAR Workbench 6.22, Visual Studio 2010”.

The zip file contains a single executable file, called “NXP_emWin514_BSP.exe”. When
this executable is run it will extract another zip file, called “NXP_emWin514_BSP.zip”.
After extracting this zip file, two folders are added to the file-system: “Start” & “Doc”.

The “Start” folder can be imported into LPCXpresso. After LPCXpresso is done
importing, the files displayed in Fig 1 are visible in the Project Explorer tab.

http://www.nxp.com/redirect/lpcware.com/content/project/emwin-graphics-library�

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 4 of 34

Fig 1. File and directory structure of the EA1788 BSP

The following is a description of the folders in the Project Explorer tab:

• Application. This folder contains a number of sample applications. The fairly simple
“GraphXYDemo” is set as active demo.

• Config. This folder holds several emWin configuration files to configure the emWin
GUI, how emWin is supposed to control the LCD, and how it can control the cursor
(e.g. by touch screen, joystick, mouse, if any are present).

• System. All hardware specific functions and configurations are present in this folder.
It contains the CMSIS files, start-up files and driver software required by the board.

• GUI. The GUI folder contains all emWin related files. These are the pre-compiled
libraries and the emWin header files.

• Samples. This folder contains a large number of sample files. It contains sample
applications, sample configurations and sample drivers.

• Tools. Contains a number of windows executable files which can come in handy
when developing with emWin, e.g. several conversion programs, a GUI builder and a
VNC viewer.

Only the “Application”, “Config” and “System” folders are needed when porting emWin.

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 5 of 34

1.3 Getting started
Before changing any of the files, it is recommended to make a full copy of the original
EA1788 project within the LPCXpresso workspace. Having the original BSP in the
workspace can come in handy when debugging the new BSP by comparing the two
BSP’s to each other.

The resulting copy is renamed to “NXP_emWinBSP_MCB1700”.

Depending on which compiler has to be supported, files may be deleted in order to keep
a tidy workspace. If a particular compiler does not need to be supported, the files shown
in the below list may be deleted.

Table 2. List of files
File name Development platform
flash_placement.xml [CrossWorks]

LPC1788_MemoryMap.xml [CrossWorks]

NXP_emWin512_EA1788_CW21_CMSIS.hzp [CrossWorks]

NXP_emWin512_EA1788_CW21_CMSIS.hzs [CrossWorks]

FLASH.ini [Keil]

FLASH.sct [Keil]

JLinkSettings.ini [Keil]

NXP_emWin512_EA1788_Keil_CMSIS_Debug_FLASH.dep [Keil]

NXP_emWin512_EA1788_Keil_CMSIS.uvopt [Keil]

NXP_emWin512_EA1788_Keil_CMSIS.uvproj [Keil]

RAM.ini [Keil]

System/HW/Flash.icf [Keil]

Application/cr_startup_lpc178x.c [LPCXpresso]

NXP_emWinBSP_EA1788_Keil421_Crossworks21_MSVS2010_28Feb2012_lib.ld [LPCXpresso]

NXP_emWinBSP_EA1788_Keil421_Crossworks21_MSVS2010_28Feb2012_mem.ld [LPCXpresso]

NXP_emWinBSP_EA1788_Keil421_Crossworks21_MSVS2010_28Feb2012.ld [LPCXpresso]

Simulation.sln [Visual Studio]

Simulation.suo [Visual Studio]

Simulation.vcxproj [Visual Studio]

Simulation.vcxproj.filters [Visual Studio]

Simulation.vcxproj.user [Visual Studio]

For this porting example only LPCXpresso is supported. All files related to the other
compilers are removed from the project. After deleting those files, the workspace should
look similar as in Fig 2.

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 6 of 34

Fig 2. Result after copying, renaming and removing unnecessary files

2. Step 1: Change MCU-specific settings / source code
All functions and settings related to the controller should be changed to support the
LPC1768 instead of the LPC1788.

2.1 Change project settings
Though this step depends on the IDE used, the general idea behind this step remains the
same. Each compiler/IDE has certain project settings defining which target the software
should run. For porting from the EA1788 to the MCB1700, these settings need to be
changed to support the LPC1768 controller.

2.1.1 Changing the target
In LPCXpresso these settings can be changed by opening the project properties window
(Project Explorer – Right-click on the MCB1700 project – Choose “properties”). Currently
the targeted MCU is the LPC1788; this should be changed into the LPC1768. Fig 3
shows the setting that has to be changed.

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 7 of 34

Fig 3. MCU settings tab in properties window changed to the LPC1768

2.1.2 Changing the linker settings
As shown in Table 1, the EA1788 board has external RAM and external flash memory.
To support these external memories, the standard linker script is changed to support
external memory for the EA1788 BSP. Because the MCB1700 board does not have
these external memories, the linker script must be changed accordingly.

This can be done by opening the linker settings. These settings can be found in the
project properties at “Settings” – “Tool Settings” – “MCU Linker” – “Target” (Fig 4). As the
standard LPC1768 linker script is sufficient for the MCB1700, the checkbox “Manage
linker script” can be checked, thereby restoring the default settings. Checking this box
also defaults the “Use C library” settings to “Redlib (none)”. However, emWin needs to
dynamically allocate memory, thus the “Use C Library” setting should be changed to
“Redlib (semihost)” (for using semihosting) or to “Redlib (nohost)” (for no semihosting).

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 8 of 34

Fig 4. Linker settings changed to be managed by IDE, C library is set to Redlib
(semihost)

2.1.3 Changing the name of the Build Artifact
The last remaining thing to change is the name of the Build Artifact (= generated
executable). The name in the EA1788 BSP is set to
“NXP_emWinBSP_EA1788_Keil421_Crossworks21_MSVS2010_28Feb2012”. To
change the name to “NXP_emWinBSP_MCB1700”, the “Artifact name” needs to be
changed. This property can be found in the project properties at “Settings” – “Build
Artifact” tab (Fig 5).

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 9 of 34

Fig 5. Build Artifact name set to NXP_emWinBSP_MCB1700

Three additional files (linker scripts for the EA1788) may now be removed from the
project by removing them in the “Project Explorer” window:

NXP_emWinBSP_EA1788_Keil421_Crossworks21_MSVS2010_28Feb2012_lib.ld

NXP_emWinBSP_EA1788_Keil421_Crossworks21_MSVS2010_28Feb2012_mem.ld

NXP_emWinBSP_EA1788_Keil421_Crossworks21_MSVS2010_28Feb2012.ld

2.2 Change controller related source code and header files.
The next step is to change the source code and the header files to support the LPC1768
and remove all references to the LPC1788.

2.2.1 Change the CMSIS device header file
Remove the “LPC177x_8x.h” (in folder: “System/HW/DeviceSupport/”) from the project
explorer and replace it with the correct header file (“LPC17xx.h”). These header files can
be found at http://www.lpcware.com/.

2.2.2 Change the system_LPC file
Remove the “system_LPC177x_8x.c” and “system_LPC177x_8x.h” files (in folder:
“System” – “HW” – “DeviceSupport”) from the project explorer and replace it with the
“system_LPC17xx.c” and “system_LPC17xx.h” files.

http://www.nxp.com/redirect/lpcware.com/�

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 10 of 34

2.2.3 Change the startup file
Remove the code red startup file “cr_startup_lpc178x.c” file (in folder: “Application”) and
replace it with the “cr_startup_lpc176x.c” file.

If IAR and Keil support are not necessary, the files “startup_LPC177x_8x_IAR.s” and
“startup_LPC177x_8x_Keil.s” (in folder: “System” – “HW” – “DeviceSupport”) may be
removed. If IAR and Keil support is required, these two files should be replaced with the
LPC1768 IAR and Keil startup files.

2.2.4 Change CMSIS files
When porting from the EA1788 to the MCB1700 it is not necessary to change the CMSIS
files (“core_cm3.c”, “core_cm3.h”, “core_cmFunc.h”, “core_cmInstr.h”) as both the
LPC1788 and the LPC1768 have a Cortex M3 core. When porting to another Cortex M-
architecture, it is necessary to update these CMSIS files.

Note: When porting to another architecture, it is necessary to use other emWin libraries
matching the targeted architecture. The libraries supplied with the EA1788 and the
MCB1700 BSPs are compiled for the Cortex M3 architecture. The zip file of Pre-compiled
libraries (which can be found on http://www.lpcware.com/content/project/emwin-graphics-
library) contains libraries for ARM7, ARM9, M0, M3, and M4. There are two sets of these
five binaries: one built with LPCXpresso and the other built with IAR’s EWARM. The
latter can be used with the Keil compiler by simply changing the extension of the files
from .a to .lib. Binaries built with Rowley’s Crossworks are currently not available.

When all steps are completed, the files in the project explorer should look similar as in
Fig 6.

http://www.nxp.com/redirect/lpcware.com/content/project/emwin-graphics-library�
http://www.nxp.com/redirect/lpcware.com/content/project/emwin-graphics-library�

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 11 of 34

Fig 6. Project explorer after changing the controller related files

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 12 of 34

2.2.5 Changing in-source references to the LPC1788
After removing all LPC1788 related files from the project, all references to the LPC1788
should be removed from the source files. A number of files need to be changed. For the
MCB1700 port this means that file “System/HW/HWConf.c” must be changed from:

To:

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 13 of 34

3. Step 2: Change board-specific settings / source code
The next step is to change all code that is board-specific.

3.1 I2C
The display board connected to the EA1788 uses an I2C I/O expander, the PCA9532.
The MCB1700 does not come with this IC, and the entire I2C-bus remains unused. The
following four more files may be removed from the project:

• System/HW/I2C_PCA9532.c
• System/HW/I2C_PCA9532.h
• System/HW/I2C.c
• System/HW/I2C.h

3.2 External memory
The BSP of the EA1788 uses the on-board 32 MB SDRAM memory, which the MCB1700
does not have. The LPC1788 also has an external memory bus controller while the
LPC1768 does not feature this. Therefore the support for the SDRAM should be
removed. In file “System/HW/HWConf.c” a number of functions must be completely
removed:

• static int _TestSDRAM(void)
• static void _FindDelay(int DelayType)
• static U32 _CalibrateOsc(void)
• static void _AdjustEMCTiming(U32 Delay)
• static void _EMC_Init(void)

Some SDRAM related symbols may be removed from the “System/HW/HWConf.c” file
too:

The call to function “_EMC_Init” from function “__low_level_init” in file
“System/HW/HWConf.c” must be removed:

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 14 of 34

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 15 of 34

4. Step 3: Change LCD related settings / source code
The next step is to change the BSP to support the LCD used on the target hardware, for
this porting example the MCB1700 board. While the EA1788 uses the on-chip LCD
controller of the LPC1788, the LPC1700 does not have an on-chip LCD controller and
has to rely on the LCD controller integrated in the LCD instead. When porting to another
type of LCD/LCD controller, the emWin Display Driver website
(http://www.segger.com/emwin-display-drivers.html) should be checked to see what
driver should be used for the target hardware and how to use this driver.

4.1 General LCD porting hints
Each driver listed on the emWin website has its own webpage containing information on
how to use the display driver. These web pages give detailed information on how to use
the driver. As porting to another LCD/LCD controller heavily depends on which driver is
used, a detailed description targeting all drivers cannot be given. However, there are a
few general rules of thumb to follow:

• Segger’s driver description webpage together with the LCD datasheet and the LCD
controller datasheet should provide all required information.

• The file “Config/LCDConf.c” contains all LCD specific source code.
• When porting to another type of LCD controller, try to find an “LCDConf.c” file

matching the targeted LCD controller instead of trying to change the “LCDConf.c” file
from the source BSP.

• When only porting to another type of LCD while using the same LCD controller, edit
the “LCDConf.c” file from the source BSP.

4.2 LCD porting example
The following details are specific on how the LCD specific source code and settings were
ported from the EA1788 to the MCB1700.

The MCB1700 comes with a FlexColor display, using the ILI9320 LCD controller, which
is supported by emWin.

4.2.1 EmWin FlexColor Driver explained
Information on the FlexColor driver, which is the required driver for the MCB1700, can be
found on http://www.segger.com/guidrv_flexcolor.html.

The above mentioned webpage specifies the available functions (Table 3) and which
low-level functions should be provided to be able to communicate with the LCD controller
(Table 4). It also states how to tell emWin to use the FlexColor driver:
pDevice = GUI_DEVICE_CreateAndLink(GUIDRV_FLEXCOLOR,
COLOR_CONVERSION, 0, Layer);

Table 3. Available configuration functions for the FlexColor driver
Routine Description
GUIDRV_FlexColor_SetFunc() Configures bus, cache and hardware routines.

GUIDRV_FlexColor_Config() Configures orientation and offset of the SEG-
and COM-lines.

http://www.nxp.com/redirect/segger.com/emwin-display-drivers.html�
http://www.nxp.com/redirect/segger.com/guidrv_flexcolor.html�

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 16 of 34

Table 4. Required low-level functions when using the FlexColor API in 16-bit mode
Element Data type Description
pfWrite16_A0 void (*)(U16 Data) Write single command to LCD

pfWrite16_A1 void (*)(U16 Data) Write single data word to LCD

pfWriteM16_A1 void (*)(U16 * pData, int
NumItems)

Write multiply data words to
LCD

pfReadM16_A1 void (*)(U16 * pData, int
NumItems)

Read multiply data words from
LCD

Note 1: Besides these four functions, the user should also provide a function performing
basic initialization of the display and any peripherals used to communicate with the LCD
controller.

Note 2: The “Elements” (first column) of Table 4 are actually not functions, but pointers
to functions. Eventually these pointers will each be loaded with the address where the
actual function resides.

More detailed information on the FlexColor configuration functions can be found in the
FlexColor driver documentation by Segger.

Though the ILI9320 supports a number of interfaces to communicate with the host, only
the SPI bus can be used on the MCB1700 board. Fig 7 shows the basic transmission
through SPI as specified by the datasheet of the ILI9320.

Fig 7. Basic data transmission through SPI as specified in the ILI9320 datasheet

Segger’s API can be configured to communicate over an 8-bit bus or over a 16-bit bus.
As the datasheet specifies 16-bit wide transmissions over SPI, the FlexColor API must
be configured for 16 bit.

4.2.2 Editing the “Config/LCDConf.c” file
After analyzing the driver documentation, begin the porting of the LCD related source
code by editing the “Config/LCDConf.c” file. This file contains the required source code
for emWin to specify which emWin display driver should be used, how this driver
communicates with the LCD controller and what type of LCD is used.

Note: A full listing of the “LCDConf.c” file is available in Appendix A: LCDConf.c listing.

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 17 of 34

4.2.2.1 Finding a suitable “LCDConf.c” file

As mentioned in Chapter 4.1, when porting to another type of LCD controller it usually
makes more sense to try to find an “LCDConf.c” file matching the targeted LCD / LCD
controller instead of using the “LCDConf.c” from the source BSP as a base. Segger
supplies a number of sample configuration files with emWin, which can be found in the
“Sample/LCDConf/” folder. For the MCB1700 port the
“Sample/LCDConf/GUIDRV_FlexColor/66708_C16_240x320/LCDConf.c” has been
used. This file, together with header file
“Sample/LCDConf/GUIDRV_FlexColor/LCDConf.h” are copied to the “Config/” folder,
overwriting the “Config/LCDConf.c” and “Config/LCDConf.h” files.

To get this file to work on the MCB1700 the following changes are made:

Including a new low-level interface header file

First the inclusion of file "LCD_X_8080_16.h" is replaced with the inclusion of the
“LCD_X_SPI.h” file. This file does not exist yet, but should contain low-level functions for
the driver to communicate with the LCD controller. Further down this chapter the content
of the “LCD_X_SPI” source- and header file are discussed.

Changing the resolution and orientation

The MCB1700 is designed to operate the display in landscape mode, thereby
transforming the 240x320 display into a 320x240 display. Therefore, symbols
“XSIZE_PHYS” and “YSIZE_PHYS” should have a value of 320 and 240, respectively.
Symbol DISPLAY_ORIENTATION should be set to GUI_SWAP_XY to effectively swap
the x- and y-axis.

Note: Depending on which type of MCB1700 is used, it might also be necessary to set
the DISPLAY_ORIENTATION to “GUI_MIRROR_X | GUI_SWAP_XY”.

Color conversion

The “COLOR_CONVERSION” symbol determines how the data words are mapped to
colors. The internal graphical RAM of the ILI9320 is 18-bit, while in SPI mode only 16 bits
per pixel are transferred. Fig 8 shows how these 16 bits are mapped to the internal
graphical RAM.

Fig 8. Color mapping of the ILI9320 in SPI mode

• Bits 0-4 (5 bits) determine the blue color,
• Bits 5-10 (6 bits) determine the green color and
• Bits 11-15 (5 bits) determine the red color.

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 18 of 34

emWin supports a large number of color mappings which can be found in Segger’s
emWin user manual (chapter 13.3 “Fixed Palette Modes”). The mode corresponding with
the ILI9320 format is GUICC_565, meaning that symbol “COLOR_CONVERSION”
should be set to GUICC_565. Also the FlexColor driver webpage explains that a 565
format is used.

Supplying a proper LCD controller initialization routine

After these changes only some functions should be added to allow communication to,
and initialization of, the LCD controller. The configuration function from the sample
“LCDConf.c” file is not suitable as this assumes the parallel bus to be used and thus
must be replaced. All items related to the initialization may be removed and the function
“_InitController” should be replaced with a suitable one.

Working drivers are already provided with most available LCDs by an example, which
can be used as a base for writing the required low-level functions. For the MCB1700
emWin BSP an example by Keil (MCB1700 LCD_Blinky) has been used as a base,
adapted for use with emWin and optimized for speed. If such an example does not exist
for the targeted LCD, the required functions should be written with the aid of the
documentation from Segger and the LCD’s datasheet. Please see the “LCDConf.c” file
(Appendix A: LCDConf.c listing or the MCB1700 BSP) for the full initialization function.

Setting up the low-level interface pointers

Next, the function pointers specified in Table 4 must be set in order for emWin to use the
correct low-level routines to allow communication to the display controller. As previously
explained in this chapter, an additional file shall contain the low-level functions which are
used for communicating with the LCD controller. Fig 9 shows the loading of these
function pointers.

Fig 9. Loading of FlexColor-driver function-pointers with low-level SPI communication
functions

In some rare cases it’s necessary for emWin to know the content of the screen, e.g.
when inverting (part of) the screen or when using an XOR draw. In the case of the
MCB1700 port, the board does not have enough RAM data to hold a full frame-buffer. If
no frame-buffer is used, these kinds of functions require a read from the graphical
memory of the LCD (by calling the function specified by the pfReadM16_A1 pointer). The
ILI9320 requires a number of dummy reads before valid content is transmitted when
reading from the graphical RAM. The number of dummy reads depends on the interface
used; for the parallel interface a single dummy read is enough, while the SPI interface
requires five dummy reads (Fig 10). The function specified by the pfReadM16_A1 pointer
should do a single byte dummy read. The remaining four dummy bytes need to be
explicitly defined in the FlexColor config structure (Fig 11).

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 19 of 34

Fig 10. Quote from the ILI9320 datasheet stating 5 dummy bytes are necessary when
reading from GRAM though SPI

Fig 11. Configuring the display orientation and the number of dummy reads. 2*16-bits
dummy reads in addition to 1 dummy read in low-level function equals the
required 5 dummy reads

Cleaning up

Function “_DelayMs” in the file “System/HW/HWConf.c” is not used anymore and must
be removed from the source as it is not compatible with the LPC1768.

4.2.3 Creating low-level functions for the emWin FlexColor driver
After changing the “LCDConf.c” file, the next step is to implement the four functions
mentioned in Table 4 and Fig 9 so that the emWin FlexColor driver can communicate
with the LCD controller. As these functions are hardware depended, these functions are
put in a separate file in the “System/HW/” folder in the MCB1700 BSP, though they could
also have been placed in the “LCDConf.c” file.

The two files that have been created to accommodate the low-level SPI functions are a
new source file with accompanying header file (“LCD_X_SPI.c”, “LCD_X_SPI.h”) and are
placed in the “System/HW/” folder.

Again Keil’s MCB1700 LCD_Blinky example is used as a base for these functions,
adapted for use with emWin and optimized for speed. If such an example does not exist
for the targeted LCD, the required functions should be written with the aid of the
documentation from Segger and the LCD’s datasheet.

Note: A full listing of the “LCD_X_SPI.c” file is available in Appendix B: LCD_X_SPI.c
listing.

4.2.4 Removing touch-screen source code
The EA1788 comes with touch-screen functionality, while the MCB1700 lacks this. Much
of the touch-screen related source code has already been removed by replacing the
“LCDConf.c” file, but there is still one place left where touch-screen related functions are
referenced. In file “System/HW/HWConf.c” reference to touch-screen functionality has
been removed from function “SysTick_Handler()”.

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 20 of 34

Fig 12. SysTick_Handler after all references to touch-screen functionality are removed

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 21 of 34

5. Step 4: Change emWin related settings / source code
The last step is to configure emWin to be compatible with the hardware. Files
“Config/GUIConf.c” and “config/GUIConf.h” are used to configure emWin.

A major difference between the EA1788 board and the MCB1700 board is the amount of
on-board RAM (~32 MB vs. 64 kB). In the EA1788 BSP, emWin is given a large portion
of RAM. Symbol “GUI_NUMBYTES”, defined in “Config/GUIConf.c”, defines how much
RAM emWin is given. In the EA1788 BSP it’s set to 12 MB, which should be down-sized
to 16 kB to fit into the LPC1768. More information on what emWin exactly does with this
allocated memory can be found in Segger’s emWin user manual
(http://www.segger.com/admin/uploads/productDocs/UM03001_emWin5.pdf).

File “Config/GUIConf.h” contains a number of defined symbols. The value of these
symbols tailors emWin and should be set to match the hardware and provided source
code. Fig 13 shows the values used for the MCB1700 BSP.

Fig 13. EmWin settings as used for the MCB1700 BSP

Support for touch-screen, mouse and memory devices are removed because the
MCB1700 does not support these. Anti-aliasing is removed because of performance
issues.

http://www.nxp.com/redirect/segger.com/admin/uploads/productDocs/UM03001_emWin5.pdf�

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 22 of 34

6. Overview of most important changes

Table 5. Overview of important changes
File Change
Config\GUIConf.c Lowered allocated RAM for GUI from 12 MB to 16 kB.

Config\GUIConf.h Re-configured emWin to match target hardware (e.g. removed
touch-screen and memory device support).

Config\LCDConf.c Changed LCD driver from linear to FlexColor. Changed resolution
of the screen and added initialization function for the FlexColor
controller.

System\HW\HWConf.c Changed to support the LPC1768 instead of the LPC1788.
Removed read-out of touch-screen.

System\HW\LCD_X_SPI.c New source file, contains all source related to LPC1768’s SSP
(SPI) peripheral for communicating to the LCD controller.

System\HW\LCD_X_SPI.h New header file belonging to the LPC_X_SPI.c source file.

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 23 of 34

7. Reference
[1] http://www.nxp.com/redirect/segger.com/emwin.html

[2] LPC1788 Datasheet / User Manual

[3] LPC1768 Datasheet / User Manual

[4] ILI9320 Datasheet

http://www.nxp.com/redirect/segger.com/emwin.html�

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 24 of 34

8. Appendix A: LCDConf.c listing
/**
 * @file LCDConf.c
 * @brief Display controller configuration
 * @version 1.0
 * @date 09. May. 2012
 *
 * @note
 * Copyright (C) 2012 NXP Semiconductors(NXP), All rights reserved.
 */
#include "GUI.h"
#include "GUIDRV_FlexColor.h"
#include "LCD_X_SPI.h"

/***
*
* Layer configuration (to be modified)
*
**
*/

//
// Physical display size
//
#define XSIZE_PHYS 320
#define YSIZE_PHYS 240

//
// Color conversion
//
#define COLOR_CONVERSION GUICC_565

//
// Display driver
//
#define DISPLAY_DRIVER GUIDRV_FLEXCOLOR

//
// Orientation
//
//#define DISPLAY_ORIENTATION (0)
//#define DISPLAY_ORIENTATION (GUI_MIRROR_X)
//#define DISPLAY_ORIENTATION (GUI_MIRROR_Y)
//#define DISPLAY_ORIENTATION (GUI_MIRROR_X | GUI_MIRROR_Y)
#define DISPLAY_ORIENTATION (GUI_SWAP_XY)
//#define DISPLAY_ORIENTATION (GUI_MIRROR_X | GUI_SWAP_XY)
//#define DISPLAY_ORIENTATION (GUI_MIRROR_Y | GUI_SWAP_XY)
//#define DISPLAY_ORIENTATION (GUI_MIRROR_X | GUI_MIRROR_Y | GUI_SWAP_XY)

/***
*
* Configuration checking
*
**
*/
#ifndef VXSIZE_PHYS
 #define VXSIZE_PHYS XSIZE_PHYS
#endif
#ifndef VYSIZE_PHYS
 #define VYSIZE_PHYS YSIZE_PHYS
#endif

#ifndef XSIZE_PHYS
 #error Physical X size of display is not defined!
#endif
#ifndef YSIZE_PHYS
 #error Physical Y size of display is not defined!
#endif
#ifndef COLOR_CONVERSION

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 25 of 34

 #error Color conversion not defined!
#endif
#ifndef DISPLAY_DRIVER
 #error No display driver defined!
#endif

#define wr_reg(reg, data) LCD_X_SPI_Write00(reg); LCD_X_SPI_Write01(data);

/**
*
* _InitController
*
* Purpose:
* Initializes the LCD controller
*
*/
static void _InitController(void) {
 GUI_X_Delay(10);
 LCD_X_SPI_Init();
 GUI_X_Delay(10);

 /* Start Initial Sequence --*/
 wr_reg(0x01, 0x0100); /* Set SS bit */
 wr_reg(0x02, 0x0700); /* Set 1 line inversion */
 wr_reg(0x04, 0x0000); /* Resize register */
 wr_reg(0x08, 0x0207); /* 2 lines front, 7 back porch */
 wr_reg(0x09, 0x0000); /* Set non-disp area refresh cyc ISC */
 wr_reg(0x0A, 0x0000); /* FMARK function */
 wr_reg(0x0C, 0x0000); /* RGB interface setting */
 wr_reg(0x0D, 0x0000); /* Frame marker Position */
 wr_reg(0x0F, 0x0000); /* RGB interface polarity */

 /* Power On sequence ---*/
 wr_reg(0x10, 0x0000); /* Reset Power Control 1 */
 wr_reg(0x11, 0x0000); /* Reset Power Control 2 */
 wr_reg(0x12, 0x0000); /* Reset Power Control 3 */
 wr_reg(0x13, 0x0000); /* Reset Power Control 4 */
 GUI_X_Delay(200); /* Discharge cap power voltage (200ms)*/
 wr_reg(0x10, 0x12B0); /* SAP, BT[3:0], AP, DSTB, SLP, STB */
 wr_reg(0x11, 0x0007); /* DC1[2:0], DC0[2:0], VC[2:0] */
 GUI_X_Delay(50); /* Delay 50 ms */
 wr_reg(0x12, 0x01BD); /* VREG1OUT voltage */
 GUI_X_Delay(50); /* Delay 50 ms */
 wr_reg(0x13, 0x1400); /* VDV[4:0] for VCOM amplitude */
 wr_reg(0x29, 0x000E); /* VCM[4:0] for VCOMH */
 GUI_X_Delay(50); /* Delay 50 ms */
 wr_reg(0x20, 0x0000); /* GRAM horizontal Address */
 wr_reg(0x21, 0x0000); /* GRAM Vertical Address */
 /* Adjust the Gamma Curve --*/
 wr_reg(0x30, 0x0B0D);
 wr_reg(0x31, 0x1923);
 wr_reg(0x32, 0x1C26);
 wr_reg(0x33, 0x261C);
 wr_reg(0x34, 0x2419);
 wr_reg(0x35, 0x0D0B);
 wr_reg(0x36, 0x1006);
 wr_reg(0x37, 0x0610);
 wr_reg(0x38, 0x0706);
 wr_reg(0x39, 0x0304);
 wr_reg(0x3A, 0x0E05);
 wr_reg(0x3B, 0x0E01);
 wr_reg(0x3C, 0x010E);
 wr_reg(0x3D, 0x050E);
 wr_reg(0x3E, 0x0403);
 wr_reg(0x3F, 0x0607);
 /* Set GRAM area ---*/
 wr_reg(0x50, 0x0000); /* Horizontal GRAM Start Address */
 wr_reg(0x51, (XSIZE_PHYS-1)); /* Horizontal GRAM End Address
*/
 wr_reg(0x52, 0x0000); /* Vertical GRAM Start Address */

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 26 of 34

 wr_reg(0x53, (YSIZE_PHYS-1)); /* Vertical GRAM End Address
*/

 /* Set Gate Scan Line --*/
 wr_reg(0x60, 0x2700);
 wr_reg(0x61, 0x0001); /* NDL,VLE, REV */
 wr_reg(0x6A, 0x0000); /* Set scrolling line */

 /* Partial Display Control ---*/
 wr_reg(0x80, 0x0000);
 wr_reg(0x81, 0x0000);
 wr_reg(0x82, 0x0000);
 wr_reg(0x83, 0x0000);
 wr_reg(0x84, 0x0000);
 wr_reg(0x85, 0x0000);

 /* Panel Control ---*/
 wr_reg(0x90, 0x0010);
 wr_reg(0x92, 0x0000);
 wr_reg(0x93, 0x0003);
 wr_reg(0x95, 0x0110);
 wr_reg(0x97, 0x0000);
 wr_reg(0x98, 0x0000);
 /* Set GRAM write direction
 I/D=11 (Horizontal : increment, Vertical : increment) */
 /* AM=1 (address is updated in vertical writing direction) */
 wr_reg(0x03, 0x1038);
 wr_reg(0x07, 0x0137); /* 262K color and display ON */
}

/***
*
* Public code
*
**
*/
/***
*
* LCD_X_Config
*
* Purpose:
* Called during the initialization process in order to set up the
* display driver configuration.
*
*/
void LCD_X_Config(void) {
 GUI_DEVICE * pDevice;
 CONFIG_FLEXCOLOR Config = {0};
 GUI_PORT_API PortAPI = {0};
 //
 // Set display driver and color conversion
 //
 pDevice = GUI_DEVICE_CreateAndLink(DISPLAY_DRIVER, COLOR_CONVERSION, 0, 0);
 //
 // Display driver configuration, required for FlexColor driver
 //
 if (DISPLAY_ORIENTATION & GUI_SWAP_XY) {
 LCD_SetSizeEx (0, YSIZE_PHYS, XSIZE_PHYS);
 LCD_SetVSizeEx(0, VYSIZE_PHYS, VXSIZE_PHYS);
 } else {
 LCD_SetSizeEx (0, XSIZE_PHYS, YSIZE_PHYS);
 LCD_SetVSizeEx(0, VXSIZE_PHYS, VYSIZE_PHYS);
 }
 //
 // Orientation
 //
 Config.Orientation = DISPLAY_ORIENTATION;
 //
 // Dummy reads
 //

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 27 of 34

 Config.NumDummyReads = 2; /* 5 dummy bytes are required when reading GRAM by
SPI. */
 GUIDRV_FlexColor_Config(pDevice, &Config);
 //
 // Set controller and operation mode
 //
 PortAPI.pfWrite16_A0 = LCD_X_SPI_Write00;
 PortAPI.pfWrite16_A1 = LCD_X_SPI_Write01;
 PortAPI.pfWriteM16_A1 = LCD_X_SPI_WriteM01;
 PortAPI.pfReadM16_A1 = LCD_X_SPI_ReadM01;
 GUIDRV_FlexColor_SetFunc(pDevice, &PortAPI, GUIDRV_FLEXCOLOR_F66708,
GUIDRV_FLEXCOLOR_M16C0B16);
}

/***
*
* LCD_X_DisplayDriver
*
* Purpose:
* This function is called by the display driver for several purposes.
* To support the according task the routine needs to be adapted to
* the display controller. Please note that the commands marked with
* 'optional' are not cogently required and should only be adapted if
* the display controller supports these features.
*
* Parameter:
* LayerIndex - Index of layer to be configured
* Cmd - Please refer to the details in the switch statement below
* pData - Pointer to a LCD_X_DATA structure
*
* Return Value:
* < -1 - Error
* -1 - Command not handled
* 0 - Ok
*/
int LCD_X_DisplayDriver(unsigned LayerIndex, unsigned Cmd, void * pData) {
 int r;
 (void) LayerIndex;
 (void) pData;

 switch (Cmd) {
 //
 // Required
 //
 case LCD_X_INITCONTROLLER: {
 //
 // Called during the initialization process in order to set up the
 // display controller and put it into operation. If the display
 // controller is not initialized by any external routine this needs
 // to be adapted by the customer...
 //
 // ...
 _InitController();
 return 0;
 }
 default:
 r = -1;
 }
 return r;
}

/*************************** End of file ****************************/

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 28 of 34

9. Appendix B: LCD_X_SPI.c listing
/**
 * @file LCD_X_SPI.c
 * @brief FlexColor SPI driver
 * @version 1.0
 * @date 09. May. 2012
 *
 * @note
 * Copyright (C) 2012 NXP Semiconductors(NXP), All rights reserved.
 */

#include "GUI.h"
#include "LPC17xx.h"
#include "LCD_X_SPI.h"

/*********************** Hardware specific configuration **********************/

/* SPI Interface: SSP1

 PINS:
 - CS = P0.6 (GPIO pin)
 - SCK = P0.7 (SCK1)
 - SDO = P0.8 (MISO1)
 - SDI = P0.9 (MOSI1) */

#define PIN_CS (1 << 6)

/*--------------- Graphic LCD interface hardware definitions -----------------*/

/* Pin CS setting to 0 or 1 */
#define LCD_CS(x) ((x) ? (LPC_GPIO0->FIOSET = PIN_CS) : (LPC_GPIO0->FIOCLR =
PIN_CS))

#define SPI_START (0x70) /* Start byte for SPI transfer */
#define SPI_RD (0x01) /* WR bit 1 within start */
#define SPI_WR (0x00) /* WR bit 0 within start */
#define SPI_DATA (0x02) /* RS bit 1 within start byte */
#define SPI_INDEX (0x00) /* RS bit 0 within start byte */

/* local functions */
__inline void wr_cmd (unsigned char cmd); /* Write command to LCD
*/
__inline void wr_dat (unsigned short dat); /* Write data to LCD */
__inline unsigned char spi_tran (unsigned char byte); /* Write and read a byte
over SPI */
__inline void spi_tran_fifo (unsigned char byte); /* Only write a byte over
SPI (faster) */

/***
* Initialize SPI (SSP) peripheral at 8 databit with a bitrate of 12.5Mbps *
* Parameter: *
* Return: *
***/
void LCD_X_SPI_Init(void)
{
 uint8_t Dummy;

 /* Enable clock for SSP1, clock = CCLK / 2 */
 LPC_SC->PCONP |= 0x00000400;
 LPC_SC->PCLKSEL0 |= 0x00200000; /* PCLK = CCLK / 2 = 50MHz */

 /* Configure the LCD Control pins */
 LPC_PINCON->PINSEL9 &= 0xF0FFFFFF;
 LPC_GPIO4->FIODIR |= 0x30000000;
 LPC_GPIO4->FIOSET = 0x20000000;

 /* SSEL1 is GPIO output set to high */
 LPC_GPIO0->FIODIR |= 0x00000040;
 LPC_GPIO0->FIOSET = 0x00000040;

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 29 of 34

 LPC_PINCON->PINSEL0 &= 0xFFF03FFF;
 LPC_PINCON->PINSEL0 |= 0x000A8000;

 /* Enable SPI in Master Mode, CPOL=1, CPHA=1 */
 /* 12.5 MBit used for Data Transfer @ 100MHz */
 LPC_SSP1->CR0 = 0x1C7; /* SCR = 1 */
 LPC_SSP1->CPSR = 0x02; /* CPSDVSR = 2. Bit frequency = PCLK /
(CPSDVSR × [SCR+1]) = 50 / (2 × [1+1]) = 12.5Mbps */
 LPC_SSP1->CR1 = 0x02;

 while(LPC_SSP1->SR & (1<<2))
 Dummy = LPC_SSP1->DR; /* Clear the Rx FIFO */

 LPC_GPIO4->FIOSET = 0x10000000; /* Activate LCD backlight */
}

/***
* Write command *
* Parameter: c: command to write *
* Return: *
***/
void LCD_X_SPI_Write00(U16 c)
{
 wr_cmd(c);
}

/***
* Write data byte *
* Parameter: c: word to write *
* Return: *
***/
void LCD_X_SPI_Write01(U16 c)
{
 wr_dat(c);
}

/***
* Write multiple data bytes *
* Parameter: pData: pointer to words to write *
* NumWords: Number of words to write *
* Return: *
***/
void LCD_X_SPI_WriteM01(U16 * pData, int NumWords)
{
 LCD_CS(0);
 spi_tran_fifo(SPI_START | SPI_WR | SPI_DATA); /* Write : RS = 1, RW = 0
*/

 while(NumWords--)
 {
 spi_tran_fifo(((*pData) >> 8)); /* Write D8..D15 */
 spi_tran_fifo(((*(pData++)) & 0xFF)); /* Write D0..D7 */
 }
 while(LPC_SSP1->SR & (1<<4)); /* wait until done */
 LCD_CS(1);
}

/***
* Read multiple data bytes *
* Parameter: pData: pointer to words to read *
* NumWords: Number of words to read *
* Return: *
***/
void LCD_X_SPI_ReadM01(U16 * pData, int NumWords)
{
 LCD_CS(0);
 spi_tran_fifo(SPI_START | SPI_RD | SPI_DATA); /* Read: RS = 1, RW = 1 */
 spi_tran_fifo(0); /* Dummy byte 1 */
 while(NumWords--)
 {
 pData = spi_tran(0) << 8; / Read D8..D15 */

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 30 of 34

 (pData++) |= spi_tran(0); / Read D0..D7 */
 }
 while(LPC_SSP1->SR & (1<<4)); /* wait until done */
 LCD_CS(1);
}

/***
* Write a command the LCD controller *
* Parameter: cmd: command to be written *
* Return: *
***/
__inline void wr_cmd (unsigned char cmd)
{
 LCD_CS(0);
 spi_tran_fifo(SPI_START | SPI_WR | SPI_INDEX); /* Write : RS = 0, RW = 0 */
 spi_tran_fifo(0);
 spi_tran_fifo(cmd);
 while(LPC_SSP1->SR & (1<<4)); /* wait until done */
 LCD_CS(1);
}

/***
* Write data to the LCD controller *
* Parameter: dat: data to be written *
* Return: *
***/
__inline void wr_dat (unsigned short dat)
{
 LCD_CS(0);
 spi_tran_fifo(SPI_START | SPI_WR | SPI_DATA); /* Write : RS = 1, RW = 0
*/
 spi_tran_fifo((dat >> 8)); /* Write D8..D15 */
 spi_tran_fifo((dat & 0xFF)); /* Write D0..D7 */
 while(LPC_SSP1->SR & (1<<4)); /* wait until done */
 LCD_CS(1);
}

/***
* Transfer 1 byte over the serial communication, wait until done and return *
* received byte *
* Parameter: byte: byte to be sent *
* Return: byte read while sending *
***/
__inline unsigned char spi_tran (unsigned char byte)
{
 uint8_t Dummy;

 while(LPC_SSP1->SR & (1<<4) || LPC_SSP1->SR & (1<<2)) /* while SSP1 busy or Rx
FIFO not empty ... */
 Dummy = LPC_SSP1->DR; /* ... read Rx FIFO */
 LPC_SSP1->DR = byte; /* Transmit byte */
 while (!(LPC_SSP1->SR & (1<<2))); /* Wait until RNE set */
 return (LPC_SSP1->DR);
}

/***
* Put byte in SSP1 Tx FIFO. Used for faster SPI writing *
* Parameter: byte: byte to be sent *
* Return: *
***/
__inline void spi_tran_fifo (unsigned char byte)
{
 while (!(LPC_SSP1->SR & (1<<1))); /* wait until TNF set */
 LPC_SSP1->DR = byte;
}

/*************************** End of file ****************************/

property
nam

e.

Error! U
nknow

n docum
ent property nam

e.
E

rror! U
nknow

n docum
ent property

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 31 of 34

10. Legal information

10.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

10.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s
own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

10.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 32 of 34

11. List of figures

Fig 1. File and directory structure of the EA1788 BSP 4
Fig 2. Result after copying, renaming and removing

unnecessary files .. 6
Fig 3. MCU settings tab in properties window changed

to the LPC1768 ... 7
Fig 4. Linker settings changed to be managed by IDE,

C library is set to Redlib (semihost) 8
Fig 5. Build Artifact name set to

NXP_emWinBSP_MCB1700 9
Fig 6. Project explorer after changing the controller

related files .. 11
Fig 7. Basic data transmission through SPI as

specified in the ILI9320 datasheet 16
Fig 8. Color mapping of the ILI9320 in SPI mode 17
Fig 9. Loading of FlexColor-driver function-pointers

with low-level SPI communication functions 18
Fig 10. Quote from the ILI9320 datasheet stating 5

dummy bytes are necessary when reading from
GRAM though SPI .. 19

Fig 11. Configuring the display orientation and the
number of dummy reads. 2*16-bits dummy
reads in addition to 1 dummy read in low-level
function equals the required 5 dummy reads .. 19

Fig 12. SysTick_Handler after all references to touch-
screen functionality are removed 20

Fig 13. EmWin settings as used for the MCB1700 BSP
 .. 21

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

AN11218 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 21 June 2012 33 of 34

12. List of tables

Table 1. Comparison between the EA1788 and the
MCB1700 board .. 3

Table 2. List of files ... 5
Table 3. Available configuration functions for the

FlexColor driver ... 15
Table 4. Required low-level functions when using the

FlexColor API in 16-bit mode 16
Table 5. Overview of important changes 22

NXP Semiconductors AN11218
 emWin Porting guide: EA LPC1788 BSP to Keil MCB1700

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2012. All rights reserved.

For more information, visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 21 June 2012
Document identifier: AN11218

13. Contents

1. Introduction ... 3
1.1 Steps involved in porting emWin 3
1.2 Software organization of the EA1788 BSP 3
1.3 Getting started .. 5
2. Step 1: Change MCU-specific settings / source

code .. 6
2.1 Change project settings 6
2.1.1 Changing the target .. 6
2.1.2 Changing the linker settings 7
2.1.3 Changing the name of the Build Artifact 8
2.2 Change controller related source code and

header files. .. 9
2.2.1 Change the CMSIS device header file 9
2.2.2 Change the system_LPC file 9
2.2.3 Change the startup file 10
2.2.4 Change CMSIS files ... 10
2.2.5 Changing in-source references to the LPC1788

 ... 12
3. Step 2: Change board-specific settings / source

code .. 13
3.1 I2C .. 13
3.2 External memory .. 13
4. Step 3: Change LCD related settings / source

code .. 15
4.1 General LCD porting hints 15
4.2 LCD porting example 15
4.2.1 EmWin FlexColor Driver explained 15
4.2.2 Editing the “Config/LCDConf.c” file 16
4.2.2.1 Finding a suitable “LCDConf.c” file 17
4.2.3 Creating low-level functions for the emWin

FlexColor driver .. 19
4.2.4 Removing touch-screen source code 19
5. Step 4: Change emWin related settings / source

code .. 21
6. Overview of most important changes 22
7. Reference ... 23
8. Appendix A: LCDConf.c listing 24
9. Appendix B: LCD_X_SPI.c listing 28
10. Legal information .. 31
10.1 Definitions .. 31
10.2 Disclaimers ... 31
10.3 Trademarks .. 31
11. List of figures ... 32
12. List of tables .. 33

13. Contents ... 34

	1.1 Steps involved in porting emWin
	1.2 Software organization of the EA1788 BSP
	1.3 Getting started
	2.1 Change project settings
	2.2 Change controller related source code and header files.
	4.2.2.1 Finding a suitable “LCDConf.c” file
	Including a new low-level interface header file
	Changing the resolution and orientation
	Color conversion
	Supplying a proper LCD controller initialization routine
	Setting up the low-level interface pointers
	Cleaning up

	4.2.3 Creating low-level functions for the emWin FlexColor driver

	10. Legal information
	10.1 Definitions
	10.2 Disclaimers
	10.3 Trademarks

