AN12458
USB to Virtual COM on LPC54018 and LPC5500

Rev. 0 — June 2019 Application Note

. Contents
1 Introduction 1 Introduction........ccccecemrriicnicccniiiennnnes 1
Serial Asynchronous Receiver/Transmitter (UART) is often used as a standard 2 USB descriptor configuration............. 1
peripheral in MCUs and embedded applications. With the development of PC, 3 Physical interface USage..........oo.. 2

serial ports have gradually disappeared from PC. For embedded engineers and
developers, they encountered the problem that cannot be debugged directly 4 USB SRAM usage........ccoeeueueurararacaeass 3
through the UART. In this case, a USB interface can be used to implement the

5 Software work flow chart.................... 7
function of the Virtual COM Port (VCOM), so that communication can be . .
performed through the VCOM on the PC and the embedded system. In some 6 FS a’_‘f‘_’ H?_ USB configuration and 17
verification.........cccusvvnnsennsnnsessnnenns

embedded applications, if the number of UARTs on the MCU does not meet
the requirements of the system, the function of USB to VCOM can also be used. 07 oY 4 Ued [V E=] o o T 19
The function of USB to VCOM can be implemented by using the common AT
commands in the sub-class of the abstract control model in the CDC class
specified by the USB protocol.

8 References.........ccoevrrmmmmmnmmmeeeemnnnenennnn 19

This application note describes how to implement a USB to multiple VCOMs functions on the LPC54018 EVK and LPC55S69
EVK boards. A USB device can support one or more VCOMSs and the number of VCOM depends on the number of physical
endpoints supported by USB device. The LPC54018 and LPC55S69's Full-Speed (FS) USB device supports 10 physical
endpoints, which can only support up to two VCOMs. High-Speed (HS) USB device supports 12 physical endpoints, and also
supports up to two VCOMs. To support more VCOMSs, based on SDK code, this application note implement the function of
supporting four VCOMs by using FS USB device and HS USB device together. The development tool is MCUXpresso IDE.

2 USB descriptor configuration

The function of a USB to multiple VCOMs can be implemented by using the USB composite class. The composite class is a
special USB class that can implement multiple different functions in a USB device. For example, a device can implement the
Mouse + Keyboard function, or VCOM + Keyboard function. In fact, the USB composite class can implement almost any
combination of USB functions. It is not just a combination of two functions but can be three or more. Therefore, you can use the
composite class to implement the functions of two CDC subclasses or multiple CDC subclasses. However, due to the limitation
of the number of physical endpoints, the HS USB device and FS USB device in LPC54018 and LPC55S69 can only support up
to two CDC class. That is, one USB device can only support up to two VCOMs. If HS and FS USB devices are used together, the
function of two USB devices to four VCOMs can be implemented.

The USB descriptor is equivalent to the business card of the USB device. It describes all the attributes and configurable information
of the USB device, such as, the class, interface information, and endpoint information. If the descriptor of the device is obtained,
the type, purpose and the parameters of the communication of the device, etc. are known, and the USB host can configure it so
that both parties of the communication work with the same parameters.

A CDC class device consists of two subclass interfaces: a CDC class interface and a data class interface.
¢ The CDC class interface uses a standard interface descriptor that requires an interrupt input endpoint.

* The data class interface is the interface that the communication device must configure. It requires two endpoints: a Bulk IN
endpoint and a Bulk OUT endpoint.

If you want to implement a CDC class device, two interfaces and three endpoints are required. If you want to implement two CDC
classes with one USB device, four interfaces and six endpoints are required. The descriptor structure of the composite class
contains two CDC subclasses used in this application note, as shown in Figure 10on page 2.

Ny
4\

NXP Semiconductors

Physical interface usage

Device
descriptor

h 4
Configuration

(DC Classl "E‘-“Cl‘ﬁpfm‘ CDC Class?
Interface association Interface association
descriptorl descriptor?

Interface Interface Ei Interface Interface
descriptor descriptor H descriptor descriptor
Endpoint Endpoint ;i Endpoint Endpoint
descriptor descriptor éi descriptor descriptor
CDC interfacel Data interfacel || C(DC interface2 Data interface2

Figure 1. USB descriptor block diagram

In Figure 10on page 2,

* CDC interface 1 and data interface 1 are associated together by interface association descriptor 1 to describe a VCOM
function.

¢ CDC interface 2 and data interface 2 are associated together by interface association descriptor 2 to describe another
VCOM function.

For details on the USB descriptor, see Chapter 9.6, Standard USB Descriptor Definitions, in USB Specification 2.0 and SDK code.

3 Physical interface usage

As described in USB descriptor configuration on page 1, each CDC class requires three physical endpoints, and two CDC classes
require six physical endpoints. When both FS and HS USB device are used, the usage of physical endpoints is shown in Table
1. Physical endpoint usage of FS USB device on page 2 and Table 2. Physical endpoint usage of HS USB device on page

3.

Table 1. Physical endpoint usage of FS USB device

Logical endpoint | Physical endpoint | Direction Endpoint type Packet size (byte) | Use or not
EPO 0 ouT Control 64 YES

EPO 1 IN Control 64 YES

EP1 2 ouT — — NO

EP1 3 IN CDCH1 interrupt 512 YES

EP2 4 ouT — — NO

EP2 5 IN CDC2 interrupt 512 YES

EP3 6 ouT CDC1 bulk 512 YES

EP3 7 IN CDC1 bulk 512 YES

Table continues on the next page...

USB to Virtual COM on LPC54018 and LPC5500, Rev. 0, June 2019
Application Note 2/20

https://www.usb.org/document-library/usb-20-specification

NXP Semiconductors

Table 1. Physical endpoint usage of FS USB device (continued)

USB SRAM usage

Logical endpoint | Physical endpoint | Direction Endpoint type Packet size (byte) | Use or not
EP4 8 ouT CDC2 bulk 512 YES
EP4 9 IN CDC2 bulk 512 YES

Two CDC classes use six non-control endpoints, plus two control endpoints, which require eight physical endpoints. As FS USB
device supports only 10 physical endpoints, it can only support two VCOMs.

Unlike the FS USB device, the HS USB device supports 12 physical (6 logical) endpoints.

Table 2. Physical endpoint usage of HS USB device on page 3 shows the physical endpoint usage of the HS USB.

Table 2. Physical endpoint usage of HS USB device

Logical endpoint | Physical endpoint | Direction Endpoint type Packet size (byte) | Use or not
EPO 0 ouT Control 64 YES
EPO 1 IN Control 64 YES
EP1 2 ouT — — NO
EP1 3 IN CDCH1 interrupt 512 YES
EP2 4 ouT — — NO
EP2 5 IN CDC2 interrupt 512 YES
EP3 6 ouT CDC1 bulk 512 YES
EP3 7 IN CDC1 bulk 512 YES
EP4 8 ouT CDC2 bulk 512 YES
EP4 9 IN CDC2 bulk 512 YES
EP5 10 ouT — — NO
EP5 11 IN — — NO
NOTE

The packet sizes described in Table 1. Physical endpoint usage of FS USB device on page 2 and Table 2. Physical

endpoint usage of HS USB device on page 3 are not the maximum values.

Each CDC class requires two physical endpoints in the IN direction and one endpoint in the OUT direction. Since there is only
one unused IN endpoint in the HS USB device, the HS USB device supports only two VCOMs.

4 USB SRAM usage

Each physical EndPoint (EP) needs a buffer to store the received data or data to be sent. This section describes the configuration
of the USB endpoint buffer. The HS USB device can only use the USB SRAM (0x4010 0000-0x4010 2000) area as the EP buffer
and the HS USB EPLIST must also be placed in the USB SRAM. In order to be compatible with HS and FS USB device driver in

the SDK code, the FS USB device also uses the USB SRAM area as the EP buffer.

USB to Virtual COM on LPC54018 and LPC5500, Rev. 0, June 2019

Application Note

3/20

NXP Semiconductors

USB SRAM usage

Table 3. Memory usage and details (mass market)

Address range General Use Address range details and description
0x0000 0000 to 0x1FFF FFFF | SRAMX 0x0000 0000 - 0x0002 FFFF |1&D SRAM bank (192 kB).
Boot ROM 0x0300 0000 - 0x0300 FFFF |Boot ROM with APl services in a 64 kB
space.
SPI Flash 0x1000 0000 - 0x17FF FFFF |SPIFI memory mapped access space
Interface (SPIF1) (128 MB).
0x2000 0000 to 0x3FFF FFFF | Main SRAM 0x2000 0000 - 0x2002 TFFF | SRAMO, SRAM1, SRAM2, SRAM3 (total
Banks 160 kB).
SRAM bit band |0x2200 0000 - 0x23FF FFFF |SRAM bit band alias addressing
alias addressing (32 MB).
SRAM Bank 0x4010 0000 0x4010 2000 |USB SRAM (8 kB). |

Figure 2. Distribution of USB SRAM

The configuration of the USB endpoint buffer is done by EPLISTSTART register and DATABUFSTART register. The
EPLISTSTART register indicates the start address of the USB EP Command/Status List (EPLIST). In the SDK code, the
EPLISTSTART register is configured in the usB_DeviceLpc3511IpSetDefaultState () function, pointing to the
s_EpCommandStatusList1 global array.

lpc3511IpState-> registerBase -> EPLISTSTART = (uint32 t)lpc3511IpState-> epCommandStatusList;
The definition of the s_EpcommandstatusList1 array is as follows:

USB_CONTROLLER DATA USB_RAM ADDRESS ALIGNMENT (256) static uint32 t
s_EpCommandStatusListl[((USB DEVICE IP3511 ENDPOINTS NUM)) * 4] ;

It is a 256-byte aligned global data stored in a 256-byte space in the USB RAM. When using an endpoint for data transfer,
the buffer used by each endpoint is as shown in Figure 3 on page 4.

EPLISTSTART
USB EP Command'Status FIFO start

s_EpCommandStatusListl

EIEEEE 25|:u[23!'22[2|im|m|1s|1r|m:15]u?13|12|t1|m[9[s[?|6|5|4 |3 [21 1]o] o | s ControlTransferDataf0](64]
a7l s=lnlA £P0 OUT Bufler Nyos : £P0 OUT Bl Ackinss Ot | o0 or s ZeroTransactionData[0][64]
R|R|R|R|R|R Resered | [SETUP byes Buffor Address Ot | | 04— s SetupData[0][64]

ol - o o il ibiiacbinie - oiasudiccissini | ¥~ ['s controlTransferatalo)isa]
R|R|R|R|R|R Risernd | Reserved | OOC |urs_ZeroTransaclionData{O][M]
Alo|s|m|F|T EP1 OUT Buffer ONBytes | EP1 OUT Bufier Address Offsot | odo

AlD|S|m f'r EP1 QUT Buffler 1 NBylas | EP1OUT Bufler 1 Address Offset ': 04

Alo|s|m|®[r EP1 IN Buflor 0 NEyies | EP1IN Buffer 0 Address Offsel | oads

alo|s|m|5|T EP1 N Buflr | NBylis . EP1 N Bl 1 Address Ofsa | odc

alols|m ?;f EP2 OUT Buffer O NBytos EP2OUT BuflorD Address Cffset 000

AlD|S|m ;”r EP2 OUT Buffer 1 NByles EP2OUT Bufler 1 Address Offset | o4

Alo|s|m Tl EP2 IN Buflr) NByes | EP2IN Bl 0 Aess Ofst | @5 | s EpReservedBuffer[0J[1024]
alo|s|w|¥lT EP2INBufler | NBytes EP2IN Buffer | Address Ofist | o ;

alo|s|w[F| EP4 OUT Buffer ONBytes | EP4 OUT BufferD Adress Offset | om0

alo|s|m(Z[r EP4 OUT Buffer 1 NBytes | EP4 OUT Bufer 1 Address Dffsal | e

alo|s|m|F|T EPY N Bufier 0 NBytes | EP4 INBufler) Address Ofsat | oms

AlD|s|m|F[T EPY N Bufler 1 NBytes | EP4 INBufler 1 Address Ofcet | odc

Figure 3. Content in the USB EPLIST

USB to Virtual COM on LPC54018 and LPC5500, Rev. 0, June 2019

Application Note

4/20

NXP Semiconductors

USB SRAM usage

NOTE
The content in the Figure 3 on page 4 is based on FS USB device and all OUT/IN mentioned in this application
note is relative to the USB host.

The EP OUT/IN buffer address offset field in the EPLIST stores bits 6-21 of the corresponding buffer array. s_setupbata,
s_ControlTransferData, s_ZeroTransactionData, and s EpReservedBuffer are global arrays

* The s_setupbData array is used to receive setup packet data.

* The s_controlTransferData array is used as the buffer for control endpoints: EPO OUT and EPO IN. For example, when
processing standard request, before using EPO IN buffer to send data or EPO OUT buffer to receive data, the bits 6-21 of
the address of s_controlTransferData [0] needs to be written to the EP IN/OUT Buffer Address Offset field.

* The s_zeroTransactionData array is used to send a 0-length packet to the host.

* The s_EpReservedBuffer array is the input and output buffer of the non-control endpoint, each physical endpoint uses
512 bytes in the array.

Before using the OUT EP buffer to receive data or using the IN EP buffer to send data to the USB host, the corresponding EP
OUT/IN buffer address offset field in the EPLIST needs to be updated, writing the bits 6-21 of the address of the array to be used
to corresponding address offset field. Then set the ACTIVE bit in the EPLIST of the corresponding endpoint to trigger the
hardware to receive or send data.

The method of updating the EPLIST in the SDK code is as follows:

USB_LPC3511IP ENDPOINT SET ENDPOINT (
lpc3511IpState, endpointIndex, odd,
(epState->stateUnion.stateBitField.epControlDefault <<
USB_LPC3511IP ENDPOINT CONFIGURE BITS_ SHIFT) |
USB_LPC3511IP ENDPOINT ACTIVE MASK, length, (uint32 t)buffer);

Figure 4 on page 5 shows the contents of the UsB_LPC3511IP ENDPOINT SET ENDPOINT macro definition.

122 #define USB_LPC3511IP_ENDPOINT_SET_ENDPOINT(lpcState, index, odd, value, NBytes, address)

125 (((uint32_t)(odd & 1U)) << 2U))) =
2 ((uint32_t)(value) | ((uint32_t)(NBytes) << USB_LPC3511IPFS_ENDPOINT_BUFFER_NBYTES_SHIFT) |

\

\

*((volatile uint32_t *)(((uint32_t)(lpcState->epCommandStatusList)) | ((uint32_t)(index) << 3) | \

\

126 \
127 (((uint32_t)(address) »> 6) & USB_LPC3511IPFS_ENDPOINT_BUFFER_ADDRESS_OFFSET_MASK))

Figure 4. Contents of usB_1L.Pc3511IP ENDPOINT SET ENDPOINT macro definition

When the USB host and the USB device transmit data through the endpoint, only the address offset is insufficient, and the base
address of these buffer arrays is also required. The base address is set in the DATABUFSTART register. The lower 22 bits of
the DATABUFSTART register are 0, which points to a 4 M-aligned memory space. Since these EP buffer arrays are stored in the
USB RAM (0x40100000-0x401020000) and the USB RAM is contained in a 4 M space starting at 0x40000000, the value of the
DATABUFSTART register should be ox40000000. The configuration method of DATABUFSTART register is as follows:

((USB_Type *) (lpc3511IpState-> registerBase))-> DATABUFSTART = (uint32_ t)lpc3511IpState->
setupData ;

The s_setupData, s_ControlTransferData, s_ZeroTransactionData, and s_EpReservedBuffer arrays are all stored in a 4 M-
aligned memory pointed to by DATABUFSTART with a base address of 0x40000000. Using the USB_GLOBAL attribute to define
the s_SetupData, s_ControlTransferData, s ZeroTransactionData, s _EpReservedBuffer arrays, placing these arrays in the
m_usb_global section and placing the m_usb_global section in the USB RAM space. When using HS or FS USB device
alone, the USB RAM usage is as shown in Figure 5 on page 6.

USB to Virtual COM on LPC54018 and LPC5500, Rev. 0, June 2019
Application Note 5/20

NXP Semiconductors

USB SRAM usage

DATABUFSTART +—— ()x40000000

0x40100000

0x40100a00

0x40100a80

s_ZeroTransactionDatal0]

0x40102000 /

Figure 5. USB RAM usage when using a USB device

When using both HS and FS USB device, the USB RAM usage is as shown in Figure 6 on page 7.

USB to Virtual COM on LPC54018 and LPC5500, Rev. 0, June 2019
Application Note 6/20

NXP Semiconductors

Software work flow chart

0x40000000

0x10100000

0x40100a00

0x10101400
s ControlTranslerDatal0]
0x10101440
s ControlTranslerDatall] — USB RAM
0x40101480 -
0x4101014c¢0
0x40101500
s ZeroTransaclionDatal0]
0x40101540
s ZeroTransactionDatall]
0x10102000

Figure 6. USB RAM usage when using both FS and HS USB

NOTE
In order to allow FS and HS USB devices to use USB RAM together, do not exceed the 8 K space of the USB
RAM. In this application note, the size of the macro definition,
USB_DEVICE_IP3511_ENDPOINT_RESERVED_BUFFER_SIZE, is modified from (5 x 1024) to (5 x 512).

5 Software work flow chart

The code used in this application note is based on the usb_device composite cdc_vcom cdc_vcom lite example in the SDK.
The basic workflow of the Device stack depends on callback functions and function calls. The callback functions notify all state
changes and data requests of the device stack to application.

There are two types of callback functions in the device stack:
* Device callback function - It notifies the state of device stack to the application.

* Endpoint callback function - It notifies the data transfer result of the corresponding endpoint to application. The control
endpoint callback function handles all USB standard requests and class requests.

The callback function in this Lite version code is implemented by the application. Figure 7on page 8 describes the processing
of the callback function.

USB to Virtual COM on LPC54018 and LPC5500, Rev. 0, June 2019
Application Note 7120

NXP Semiconductors

Software work flow chart

Application

kUSB_DeviceB

Application
(Handle standard request)

ventBus Reset

Device Stack

_ IJSB Bus Reset

'y

Initialize control

‘endpoint

L 4

Get Device descriptor

+

Get Configuration descriptor

Control endpoint callback

Control endpoint callback

Set Configuration

Control endpoint callback

ik

Initialize the endpqg

Call the send/received fun

int of the class

iction for USB transfer

L 4

Figure 7. Callback function processing

When the USB host recognizes that a USB device is plugged into the USB interface, it will start an enumeration process. The
essence of USB enumeration is the process in which the USB host obtains the parameter information of the USB device and
configures the configurable parameters. The USB enumeration process is mainly done in the USB interrupt service function. The
workflow of the FS and HS USB interrupt service functions in this application note is the same. Here, FS USB is taken as an
example, and the processing flow of the USBO interrupt service function is shown in Figure 8 on page 9.

USB to Virtual COM on LPC54018 and LPC5500, Rev. 0, June 2019

Application Note

8/20

NXP Semiconductors

Software work flow chart

5.1 USB interrupt service function flow chart

USBO_TRQHandler

Iz status change
Interrupt?

Is EP transfer

Interrupt? A
Is Reset interrupt?
v
Is EP0O OUT
Interrupt?
Y
\ Reset interrupt
Is Setup) v processing
Interrupt?
A4
Setup interrupt EP OUT/IN interrupt
processing processing
v
» END < <

Figure 8. Flowchart of FS USB interrupt service function

After the USBO interrupt occurs and the USBO_IRQHandler interrupt service function is called, the program first determines
whether the interrupt is caused by USB status change (Reset/Suspend/Resume) or the endpoint transfer interrupt (EP IN/OUT
interrupt). If it is an EPO OUT interrupt, there are two cases: Setup interrupt and normal EPO OUT interrupt.

5.1.1 Reset interrupt process

If the interrupt is caused by the status change and it is a reset interrupt, the program will execute the flow shown in Figure 9 on
page 10.

USB to Virtual COM on LPC54018 and LPC5500, Rev. 0, June 2019
Application Note 9/20

NXP Semiconductors

Software work flow chart

Reset interrupt
processing

Y

Set USB device to
default state

A 4

Initialize control
endpoint EPO IN

Y

Initialize control
endpoint EPO OUT

END

Figure 9. USB device reset process

\ USE Devicelontrold

| USB Devicelpc3silinControl

USE Devicelpcl511pSerlefauitSrare
Clear EPLIST, disahle all EP buffer,
set device address to 0, configurate

interrupt and enable interruprt.

R N

| USE DevicelnitEndpoint

| USE Devicelontrold

| USB DevicelpedsiiioControl

USSR Devicelpel511 pEndpointinit
Set control EP address, configurate
. callback

USR Devicelni tFndpoint

| USE DeviceControl

| USB Devicelpcd5iiipControl

| USB DevicelpcdsllipFadpointinit

! Set control EP address, configurate
| callback; set EPO OUT setup buffer
. address offset field(S_SetupData)

In the reset interrupt, be sure to set the USB device to the default state and initialize the control endpoints, EPO OUT and EPO

IN.

5.1.2 Setup interrupt processing

If it is an EP transfer interrupt and it is a setup interrupt, the program will execute the process shown in Figure 10 on page 11.

USB to Virtual COM on LPC54018 and LPC5500, Rev. 0, June 2019

Application Note

10/20

NXP Semiconductors

Software work flow chart

Setup interrupt

processing
Clear th9 ACTIFE and | USB Devicelpclp3511fsrFunction
Stall blt? of EPO | USB Devicelpe3511ipinterrupt Token
OUT/IN]
¥

Clear Setup interrupt

flag
Call control EP P _,fVIC({?LI{Ifﬁffon_risgzrf
callback 5 USE DeviceNotification !
i USB DeviceControlCallback

Is standard
request?

Y

Standard request

; Class request
processing

processing

END

F

Figure 10. Setup interrupt processing flow chart

When the USB host sends a standard request or a class request to a USB device, it first sends a setup transaction. After receiving
the setup transaction and successfully responding, the USB device generates a setup interrupt. The USB device determines what
request is in the setup interrupt. Actions differ with the type of request.

5.1.2.1 Standard request processing

If the USB device determines that it is a standard request from the USB host according to the contents of the setup package, it
will execute the process shown in Figure 11 on page 12.

USB to Virtual COM on LPC54018 and LPC5500, Rev. 0, June 2019
Application Note 11/20

NXP Semiconductors

Software work flow chart

Standard request
processing

Is a standard request

s_UsbDeviceStandardRequest |

for the IN direction?

4

GetDescriptor
(device/configuration...)
Get the address and length of
the data to send to the host

A 4
USB DeviceSendRequest
Enable EPO IN

transaction

A 4

USB DeviceRecvRequest
Enable the EPO OUT
transaction and wait for
the host to send a 0-length
packet.

Y

SetAddress or SetConfiguration
USE DeviceSetStatus

USE DeviceSetConfigure

USE DeviceCdeVeomSetConfigure

4

Enable EPO OUT transaction,
return a O-length packet to
the USB host.

END

A

Figure 11. Standard request processing

The program will judge whether this standard request is in the OUT direction or the IN direction based on the data in the setup

package.

* If it is a request in the OUT direction, the USB device will ready to receive the next OUT transaction.

e [f it is a request in the IN direction, the USB device will return an IN transaction to the USB host.

Table 3. Common Standard requests on page 12 described common standard requests.

Table 3. Common Standard requests

Standard request Direction
SetAddress ouT
SetConfiguration ouT
GetDescriptor (Device/Configuration/String) IN

USB to Virtual COM on LPC54018 and LPC5500, Rev. 0, June 2019

Application Note

12/20

NXP Semiconductors

Software work flow chart

5.1.2.2 Class request processing

CDC class devices also support some class requests in addition to the standard requests in Standard request processing on
page 11. After the USB host obtains various descriptor information of the CDC class device, it sends some class requests to the
USB device. Table 4. Common class requests on page 13 describes common class requests.

Table 4. Common class requests

Class request Direction
SetLineCoding ouT
SetControlLineState ouT
GetLineCoding IN

The cetLineCoding request is a request for the host to obtain the serial port attribute, including the baud rate, the stop bit, the
check type, and the number of data bits. Table 5. GetLineCoding request structure on page 13 describes the structure of the
GetLineCoding request.

Table 5. GetLinecoding request structure

bmRequestType |bRequestCode wValue windex wLength Data
10100001B GET_LINE_CODING |Zero Interface Size of structure Line coding
structure

Table 6. Line coding structure on page 13 describes the contents of line coding structure.

Table 6. Line coding structure

Offset Field Size/byte Description
0 dwDTERate 4 Data terminal rate, in bits per second
4 bCharFormat 1 Stop bits
0: 1 Stop bit
1: 1.5 Stop bit
2: 2 Stop
5 bParityType 1 Parity
0: None 3: Mark
1: Odd 4: Space
2: Even
6 bDataBits 1 Data bits (5, 6, 7, 8, or 16)

Figure 12. on page 14 shows the contents of the line coding structure in this example.

USB to Virtual COM on LPC54018 and LPC5500, Rev. 0, June 2019

Application Note 13/20

NXP Semiconductors

Software work flow chart

£ Untitled - Elisys Visual USE
Fle Gew Sewch Becord Help

sa® SR <F oaEE AL $E.

tern Device

Entes bt hese | Erter.

Endipcant

i Eniert

A% Reset (57.0ms)
Je. High speed Detection Handshake

267 GetDescriptor (Device) LTiE]
i Reset (57.0ms)
T High speed Detection Handshake
W Sethddress (13) LTiE]
@ GetDescriptor (Device) 3
] E GetDeseriptor (Configuration] 13
F{R GetDescriptor (String iSesialNumbed) 13
EEa GetDescriptor (String lang 10s) 3
EER GetDescriptor {String iProduct) 1
EER GetDescriptor (Device qualifier 1
@ GetDescriptor Device] iF]
@(E§ GetDescriptor (Configuration) 3
(8 GetDescriptor (Configuration] 13
& SetConfiguration (1) 13
1§ GetDescriptor (String iProduct) 13
EiER GetDescriptor (String iProduct) 13
miEd GetDescriptor (String iProduct) 13
EER GetDescriptor (String iProduct) 13
SetlineC oding |13
& SETUP tramsaction 13
e N transaction (£
& MNtansaction 13
& 4 OUT transaction (F]
#ay SetControllineState (Deactivate car., 13
SetlineCoding 13
GetlineCeding B

€

Figure 12. Data of GetLineCoding

L]

Intesf A

T| Ente

-

nt

»

- =]
‘.u.‘
Details 1
GetLineCoding
dwDTERAte 115,200
bCharForrmat 1 stop bt
bFarityType Mo
bDataBits [
T Details | 42 Search | @ Export | € Sumenary
Data i
0123 4567289 ABCDETEO0 01234567390BCDRF0
0: 20 C2 01 00 00 00 02

@ Beokmarks | 1 | Devices | & Setup | &8 Data

As shown in Figure 12 on page 14, the configuration of VCOM: baud rate is 115200, 1 stop bit, no parity bit, 8 data bits.

If the USB device determines that it is a class request from the USB host according to the data in the setup package, execute

the process shown in Figure 13 on page 15.

USB to Virtual COM on LPC54018 and LPC5500, Rev. 0, June 2019

Application Note

14/20

NXP Semiconductors

Software work flow chart

Class request
processing

Iz a class request for
the IN direction?

o SetLineCoding |
SetControlLineState |

GetLineCoding |

Get data buffer to response

Prime an OUT transfer
the host

] USB DeviceRecvRequest
USB DeviceProcessVendorKRequest
USB DeviceProcessClassKRequest
Y
USB DeviceSendRequest v

Enable EPO IN

- Enable EPO IN
transaction

transaction, return a 0-length
v packet to the USB host.
USB DeviceRecvRequest
Enable EPO OUT
transaction and wait for
the host to send a 0-
length packet.

Y

END

A

Figure 13. Class request processing

The program will judge whether this class request is in the OUT direction or the IN direction based on the data in the setup
package.

e Ifitis a request in the OUT direction, the USB device will ready to receive the next OUT transaction.

* If it is a request in the IN direction, the USB device will return an IN transaction to the USB host.

5.1.3 Endpoint interrupt processing

If it is an EP transfer interrupt, execute the process shown in Figure 14 on page 16 to receive and transmit the endpoint
data.

USB to Virtual COM on LPC54018 and LPC5500, Rev. 0, June 2019

Application Note 15/20

NXP Semiconductors

Software work flow chart

EP OUT/IN interrupt
processing
USB Devicelpc3bllIpinterr
uptloken

Y
Calculate the length of
the data that has been
transferred and get the
remaininglength

Data Transfer is not
completed

Data transfer completion condition:
1. The remaining length is zerc

2. The length of current tansaction is
not the multiple of max packet size

[5B Devicelpc35ilIpTransaction
Continue the same transaction
transfer

Flether the data transfer Is
completed?
Data transfer

campleted

"IN &% length»0 &% (!length™%
maxPacketSize) ?

Send a 0 length
packet to USB host

Y

EP callback
(control EP/noncontrol EP}
[5B Devicelontrellal Iback -

[58 DeviceCdcAcmBulkin
USB DeviceCdcAcmBulkOut

END

Figure 14. Endpoint interrupt processing

When processing the endpoint transmission interrupt, the length of the data that has been transmitted and the remaining data
length to be transmitted are first calculated to determine whether the data transmission is completed.

Transfer completed flag:
¢ Length > 0 and is not an integer multiple of the maximum packet length.
* RemainLength = = 0.

If the data transmission has not been completed, continue to transfer the same transaction. If the data transmission is completed
and is an EP interrupt in the IN direction, and the last packet length is equal to the maximum packet length, then a 0-length data
packet needs to be sent to inform the host that the transmission is complete. When the transmission is completed, the
corresponding endpoint callback function is called. In this example, the endpoint callback functions provided by the SDK are as
shown in Table 7. Endpoint callback on page 17.

USB to Virtual COM on LPC54018 and LPC5500, Rev. 0, June 2019
Application Note 16/20

NXP Semiconductors

Table 7. Endpoint callback

FS and HS USB configuration and verification

Endpoints Endpoint callback

EPO OUT USB_DeviceControlCallback ()
EPO IN USB_DeviceControlCallback ()
EP1IN USB_DeviceCdcAcmBulkIn ()
EP2 IN USB_DeviceCdcAcmBulkIn2 ()
EP3 OUT USB_DeviceCdcAcmBulkout ()
EP3IN USB_DeviceCdcAcmBulkIn ()
EP4 OUT USB_DeviceCdcAcmBulkout?2 ()
EP4 IN USB_DeviceCdcAcmBulkIn2 ()

In this example, the function implemented by the callback function of four non-control endpoints is the same: update the length
of data received and copy the data from EP buffer (s_EprReserveBuffer) to the global receive array (s_currrRecvBuf). Thenin

the while loop, the data in the s_currRecvBuf array is returned to the host.

6 FS and HS USB configuration and verification

In this application note, the configuration of the FS USB and HS USB descriptors is identical, that is, they share the same descriptor
array. The functions of the endpoint callback functions of FS and HS USB are the same: return the data received to the USB host.
You can use one USB device or two USB devices by setting different macro definitions.

1. Use only FS USB device.

/*! @brief LPC USB IP3511 FS instance
#define USB_DEVICE_CONFIG LPCIP3511FS
/*! @brief LPC USB IP3511 HS instance
#define USB DEVICE CONFIG LPCIP3511HS

2. Use only HS USB device.

/*! @brief LPC USB IP3511 FS instance
#define USB DEVICE CONFIG LPCIP3511FS
/*! @brief LPC USB IP3511 HS instance
#define USB_DEVICE_CONFIG_LPCIP3511HS

3. Use both FS USB device and HS USB device.

/*! @brief LPC USB IP3511 FS instance
#define USB DEVICE CONFIG LPCIP3511FS
/*! @brief LPC USB IP3511 HS instance
#define USB DEVICE CONFIG LPCIP3511HS

count
(11)
count
(ou)

count
(ouU)
count
(10)

count
(1U)
count
(1U)

=4

*/

“f

=4

*/

“f

If both FS and HS USB are used, the USB host will recognize four VCOMs after the enumeration process is completed, as

shown in Figure 15 on page 18.

USB to Virtual COM on LPC54018 and LPC5500, Rev. 0, June 2019

Application Note

171720

NXP Semiconductors

FS and HS USB configuration and verification

v @@ Ports (COM & LPT)

B LPC-Linkll UCom Port (COM89)

Standard Serial over Bluetooth link (COMS55)
Standard Serial over Bluetooth link (COM56)
USB Serial Device (COM60)

USB Serial Device (COM®61)

USB Serial Device (COMB80)

CIEE I EE

i

444

USB Serial Device (COM81)

Figure 15. USB host recognition result

For the PC using the Windows, a CDC driver is required to be installed. For the driver installation, please refer to

the readme . pdf file in the software.

NOTE

Figure 16 on page 18 shows the enumeration process of the USB host captured by the USB analyzer.

File View 3Search Record Help

na Reset(ms)

7| Enter.. | Entert..

Figure 16. USB enumeration process

7| Ente...

| Enter text ..

7| ent.

e DEEHHE «F o 2| 5 |8 % [Insent Search Q.
Item Device Endpoint Interface Status Speed Payload

| Entertest here

T, High speed Detection Handshake TIMEGUT 0.422 766 550

B2 Suspended (102.9 ms) 0,652 986 633

&% Reset (150 ms) 0.755 883 517

e, High speed Detection Handshake TIMEQUT 0,765 896 200
B @ GetDescriptor (Device) 020 0 Ok F5 1B bytes (12010002 EF020140C9 ... 0.803 976 583

B Reset (150 ms) 0.804 248 067

.. High speed Detection Handshake TIMECUT 0.814 260 750
WEG Sethddress (20) 020 0 aK Fs No data 0,855 686 233
BE@ GetDescriptor (Device) 20 0 OK Fs 18 bytes (1201 0002 EFO20140C9 ... 0.865178 350
= GetDescriptor (Configuraticn) 20 0 Ok Fs 141 bytes (0902 8D 00040100 CO ... 0,867 464 833
B ﬁ GetDescriptor (String iSerialNumber) 20 0 OK F5 Mbytes (220330003100320033 .. 0,867 861 683
®ER GetDescriptor (String lang IDs) 20 0 oK s 4 bytes (040309 04) 0.868 083 983
=B E GetDescriptor (String iProduct) 20 0 QK F5 3B bytes (260355005300420020... 0.858 266 150
®B ﬁ GetDescriptor (Device qualifier) 20 [1] STALLED 133 No data 0.858 456 800
B GetDescriptor (Device) 20 0 oK s 18 bytes (12010002 EF 0201409 .. 5,874 713 600
®EY GetDescriptor (Configuration) 0 0 ok [Qbytes (00028D00040100C032) 5874870683
B E GetDescriptor (Configuration) 20 0 QK F5 141 bytes (0902 8D 00040100C0 3. 5.875035650
=} SetConfiguration (1) 20 0 oK F5 Ne data 5.876545 833
= GetDescriptor (String iProduct) 0 0 0K Fs 4 bytes (2603 55 00) 5878198817
i:} @ GetDescriptor (String iProduct) 20 0 oK F5 3Bbytes (260355005300420020... 5.878381250
By GetDescriptor (String iProduct) 20 0 oK S 4 bytes (26 03 55 00) 5880 315 900
i:} ﬁ GetDescriptor (String iProduct) 20 0 QK F5 3Bbytes (2603550053 00420020... 5,880 501 283
H & GetlineCoding 20 0 0 oK Fs 7 bytes (00 C2 0100 00 00 0d) 5.883 746 867
B &y SetControllineState (Deactivate car... 20 0 0 QK 13 Mo data 5.883 918 067
Hdg SetlineCoding 20 1] 0 oK F5 7 bytes (00 C2 01 00 00 00 (&) 5,884 059 567
B&y GetlineCeding 0 0 0 QK F5 7 bytes (00 C2 01 0000 00 08) 5.884 264 383
Mm& GetlineCoding 20 1] 2 oK Fs 7 bytes {00 C2 01 00 00 00 08) 5.835534 350
@&y SetControllineState (Deactivate car... 20 0 2 QK [33 No data 5886111 817
®ig SetlineCoding 20 0 2 Ok F5 7 bytes (D0 C2 01 00 00 00 (&) 5.886 248 583
® &g GetlineCoding 20 0 2 K 23 7 bytes {00 C2 01 00 00 00 0} 5896450 933

The four virtual serial ports are implemented to return the data received to the USB host. Figure 170on page 19 shows the test

results.

USB to Virtual COM on LPC54018 and LPC5500, Rev. 0, June 2019

Application Note

18/20

NXP Semiconductors

Conclusion

L COME1:9600baud - Tera Term .. — O X

File Edit Setup Control Window Help

Figure 17. Test results of four VCOMs

7 Conclusion

This application note implements:
¢ the function of a USB device to two VCOM by using a USB composite class containing two CDC subclasses.
¢ the function of two USB devices to four VCOMs by using FS and HS USB device together.
* verifications on the LPC54018 EVK and LPC55S69 EVK board are feasible.

8 References

1. AN10420 USB virtual COM port on LPC214x.
2. USB 2.0 Specification

3. USB in MCU-Signal and Protocol.

4

. Access USB Technology and Application based on Microcontrollers.

USB to Virtual COM on LPC54018 and LPC5500, Rev. 0, June 2019
Application Note 19/20

https://www.nxp.com/downloads/en/software/AN10420.zip
https://www.usb.org/document-library/usb-20-specification

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, 12C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,
big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,
ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, uVision, Versatile are trademarks or registered
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related
technology may be protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2019. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses @ nxp.com

Date of release: June 2019
Document identifier: AN12458

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 USB descriptor configuration
	3 Physical interface usage
	4 USB SRAM usage
	5 Software work flow chart
	5.1 USB interrupt service function flow chart
	5.1.1 Reset interrupt process
	5.1.2 Setup interrupt processing
	5.1.2.1 Standard request processing
	5.1.2.2 Class request processing

	5.1.3 Endpoint interrupt processing

	6 FS and HS USB configuration and verification
	7 Conclusion
	8 References

