
1 Introduction
We can find customized Segment Liquid Crystal Displays (SLCD) technologies
everywhere. For example:

• in products that measure the PH level of swimming pools.

• monitors used to measure specific gases in a mine.

• in thermometers used to see if a child is running a fever.

SLCD is one of the oldest display technologies. It is still one of the most popular
technologies, due to the lowest price and power consumption.

Segment LCD displays, also called static displays or glass-only displays, consist of two pieces of Indium Tin Oxide (ITO) glass
with a twisted nematic fluid sandwiched in between. A static display is a segment display with one pin for each segment. A
segment is any line, dot, or symbol that can be turned on and off independently.

NXP K32L2B3 MCU integrates an SLCD controller module with up to eight backplanes and 47 frontplanes, such as, 8 × 47 or 4
× 51. This document describes the usage of on-chip SLCD controller by enabling an SLCD device, S401M16KR, which is a four-
digit 0.17" seven segment custom LCD panel.

2 Hardware

2.1 S401M16KR SLCD device

S401M16KR SLCD device contains four digits displayed on the panel. Each digit is shown with seven segments and one dot or
colon, as shown in Figure 1.

Figure 1. S401M16KR SLCD device

S401M16KR SLCD device contains four COM pins and eight DATA pins as the control signals. COM pins and data pins control
a matrix indicating which segments is ON and others are OFF at a specific time, as shown in Figure 2.

Contents

1 Introduction.. 1

2 Hardware... 1

3 Basic usgae... 5

4 Usage in low power mode..................... 8

5 Conclusion... 10

6 References.. 10

AN12579
Using SLCD controller on K32L2B3 MCU
Rev. 0 — 12/2019 Application Note

Figure 2. S401M16KR SLCD device

COM pins are enabled one by one for each step. In each step, activated by their own COM pin, the eight data pins are outputting
the control level signals to turn on and off the segments. The segments for each COM are ON and OFF line by line. Once the
cycle with the four steps runs quickly, some segments are seen ON together, as a whole displaying view (even they are not in
the same line in the matrix).

Considering the controlling signals as an activating matrix, see Table 1.

Table 1. Activating metrix for controlling signals

nCS D0 D1 D2 D3 D4 D5 D6 D7

COM0 1D 1DP 2D 2DP 3D 3DP 4D 4DP

COM1 1E 1C 2E 2C 3E 3C 4E 4C

COM2 1G 1B 2G 2B 3G 3B 4G 4B

COM3 1F 1A 2F 2A 3F 3A 4F 4A

For each digit position, different numbers are assembled by various segments. Figure 3 shows 0-9 numbers in the direct segment
way.

Figure 3. SLCD digits

Table 2 described the related information.

Table 2. SLCD digit information

Number Segment COM0 (.D) COM1 (CE) COM2 (BG) COM3 (AF)

0 ABCDEF *D (0 × 1) CE (0 × 3) B* (0 × 2) AF (0 × 3)

1 BC *D (0 × 1) CE (0 × 3) B* (0 × 2) AF (0 × 3)

2 ABDEG *D (0 × 1) CE (0 × 3) B* (0 × 2) AF (0 × 3)

3 ABCDG *D (0 × 1) CE (0 × 3) B* (0 × 2) AF (0 × 3)

4 BCFG *D (0 × 1) CE (0 × 3) B* (0 × 2) AF (0 × 3)

Table continues on the next page...

NXP Semiconductors
Hardware

Using SLCD controller on K32L2B3 MCU, Rev. 0, 12/2019
Application Note 2 / 11

Table 2. SLCD digit information (continued)

Number Segment COM0 (.D) COM1 (CE) COM2 (BG) COM3 (AF)

5 ACDFG *D (0 × 1) CE (0 × 3) B* (0 × 2) AF (0 × 3)

6 ACDEFG *D (0 × 1) CE (0 × 3) B* (0 × 2) AF (0 × 3)

7 ABC *D (0 × 1) CE (0 × 3) B* (0 × 2) AF (0 × 3)

8 ABCDEFG *D (0 × 1) CE (0 × 3) B* (0 × 2) AF (0 × 3)

9 ABCDFG *D (0 × 1) CE (0 × 3) B* (0 × 2) AF (0 × 3)

None — *D (0 × 1) CE (0 × 3) B* (0 × 2) AF (0 × 3)

Dot DP *D (0 × 1) CE (0 × 3) B* (0 × 2) AF (0 × 3)

As shown in Table 2, we can get the code to show different numbers for each period activated by indicated COMx pin.

We have the code array in source file:

#define SLCD_ON_SHOW_COUNT 11u

const uint8_t SLCD_NUMBER_TABLE[][SLCD_COMx_COUNT] =
{
 /* COM0, COM1, COM2, COM3 */
 { 0x1, 0x3, 0x2, 0x3 }, /* SLCD_ON_SHOW_NUMBER_0 */
 { 0x0, 0x2, 0x2, 0x0 }, /* SLCD_ON_SHOW_NUMBER_1 */
 { 0x1, 0x1, 0x3, 0x2 }, /* SLCD_ON_SHOW_NUMBER_2 */
 { 0x1, 0x2, 0x3, 0x2 }, /* SLCD_ON_SHOW_NUMBER_3 */
 { 0x0, 0x2, 0x3, 0x1 }, /* SLCD_ON_SHOW_NUMBER_4 */
 { 0x1, 0x2, 0x1, 0x3 }, /* SLCD_ON_SHOW_NUMBER_5 */
 { 0x1, 0x3, 0x1, 0x3 }, /* SLCD_ON_SHOW_NUMBER_6 */
 { 0x0, 0x2, 0x2, 0x2 }, /* SLCD_ON_SHOW_NUMBER_7 */
 { 0x1, 0x3, 0x3, 0x3 }, /* SLCD_ON_SHOW_NUMBER_8 */
 { 0x1, 0x2, 0x3, 0x3 }, /* SLCD_ON_SHOW_NUMBER_9 */
 { 0x0, 0x0, 0x0, 0x0 }, /* SLCD_ON_SHOW_NONE */
 { 0x2, 0x0, 0x0, 0x0 }, /* SLCD_ON_SHOW_DP */
};

The array only contains two pins for each digit. A four-digit parallel can be extended duplicately with eight pins.
The following section describes the usage of four digits.

 NOTE

2.2 FRDM-K32L2B3 board

On the FRDM-K32L2B3 board, the SLCD device is connected to the MCU with the pins. The schematic is as shown in Figure 4.

NXP Semiconductors
Hardware

Using SLCD controller on K32L2B3 MCU, Rev. 0, 12/2019
Application Note 3 / 11

Figure 4. SLCD connections

Table 3 shows the functional information about pin settings.

Table 3. Functional information about pin settings

Functional ID SLCD pin MCU pin ALT Comments

LCD-01 P59 PTE20 ALT0 COM0

LCD-02 P60 PTE21 ALT0 COM1

LCD-03 P14 PTB18 ALT0 COM2

LCD-04 P15 PTB19 ALT0 COM3

LCD-05 P20 PTC0 ALT0 D0

LCD-06 P24 PTC4 ALT0 D1

LCD-07 P26 PTC5 ALT0 D2

LCD-08 P27 PTC6 ALT0 D3

LCD-09 P40 PTD0 ALT0 D4

LCD-10 P42 PTD2 ALT0 D5

LCD-11 P43 PTD3 ALT0 D6

LCD-12 P44 PTD4 ALT0 D7

Considered as a bus, the data signals are assembled by eight separated pins, named from D0 to D7. The coding is performed
to control these signals and the signals from each pin are seen as a whole data through the bus.

To operate all the control signals like a bus, the signal indexes are arranged into two arrays in the source code:

/* Define the sync bus and the data bus. */
#define SLCD_COMx_COUNT 4u
#define SLCD_DATA_BUS_WIDTH 8u
 /* Define the pins for sync bus and data bus. */

NXP Semiconductors
Hardware

Using SLCD controller on K32L2B3 MCU, Rev. 0, 12/2019
Application Note 4 / 11

const uint8_t SLCD_PIN_COMx[SLCD_COMx_COUNT] =
{
 59, /* COM0. */
 60, /* COM1. */
 14, /* COM2. */
 15 /* COM3. */
};
const uint8_t SLCD_PIN_DATA[SLCD_DATA_BUS_WIDTH] =
{
 20, /* D0. */
 24, /* D1. */
 26, /* D2. */
 27, /* D3. */
 40, /* D4. */
 42, /* D5. */
 43, /* D6. */
 44 /* D7. */
 };

3 Basic usgae
The SLCD controller on K32L2B is easy to use. After enabling clock and setting up pin mux functions, for the basic usage without
the blink and fault detection feature, only one control register, LCD General Control Register (LCD_GCR), is necessary for initializing
the controller. The following provides a group of typical settings:

 /* Setup slcd controller. */
LCD->GCR = LCD_GCR_DUTY(3) /* Selects the duty cycle of the LCD controller driver. 3: 4 COMx
lines. */
 | LCD_GCR_LCLK(2) /* Clock divider for clock source. 0-7 */
 | LCD_GCR_SOURCE(0) /* LCD clock source. 1:use MCGIRCLK. 0:OSC32K */
 | LCD_GCR_LCDEN(0) /* Disable the controller during setting. */
 | LCD_GCR_LCDSTP(0) /* Keep LCD module alive in STOP modes. */
 | LCD_GCR_LCDDOZE(1) /* Keep LCD module alive in DOZE mode. */
 | LCD_GCR_FFR(0) /* Select the frame rate mode. 0:standard frame rate. */
 | LCD_GCR_ALTSOURCE(0) /* Select the alternate clock source. no available when using default
clock source.*/
 | LCD_GCR_ALTDIV(0) /* Clock divider for alternate clock source. no available when using
default clock.*/
 | LCD_GCR_FDCIEN(0) /* Enables an LCD interrupt event when fault detection is completed.
*/
 | LCD_GCR_PADSAFE(0) /* Force safe state on LCD pad control, locking all LCD control bits.
*/
 | LCD_GCR_VSUPPLY(0) /* Select the power voltage supply. 0: from internal Vdd. */
 | LCD_GCR_LADJ(1) /* Configures SLCD to handle different LCD glass capacitance.*/
 | LCD_GCR_CPSEL(1) /* Selects the LCD controller charge pump or a resistor network to
supply the LCD voltages V_LLx. */
 | LCD_GCR_RVTRIM(8) /* Regulated Voltage Trim. no available when disabled.*/
 | LCD_GCR_RVEN(0) /* Regulated Voltage Enable. disabled. */
 ;

The pins on the MCU are required to be mapped to the SLCD control bus for COMx signals and Dx signals.

• The mappings of the COMx signals are configured as the back panel pins.

• The mappings of the Dx signals are configured as the front panel pins.

• The used pins are initialized with the LCD Pin Enable registers (LCD_PEN0, LCD_PEN1), LCD Back Plane Enable registers
(LCD_BPEN0, LCD_BPEN1), while LCD_PENx enables all the pins in use and LCD_BPENx selects them as front panel or back
panel.

NXP Semiconductors
Basic usgae

Using SLCD controller on K32L2B3 MCU, Rev. 0, 12/2019
Application Note 5 / 11

• LCD_WF8Bx registers are for signal timing sequence of each pin.

The following describes the usage of LCD_WF8Bx registers:

• Each register in the LCD_WF8Bx array is for one LCD signal pin. The index of the array is also for the functional pin of the
SLCD module. For example, LCD_WF8B[59] is for the signal pin of the SLCD module, LCD_P59.

• Each bit in the LCD_WF8Bx register is for Step 1, while the index of bit is also for Step 1. For example, the bit 2 in
LCD_WF8B[59] responds to the believer of LCD_P59 when in Step 2 of the whole cycle (including four steps or eight steps).

In the software, controlling the data signals is a little different from the hardware. The software searches the data for the parallel
pins first, and then arrange the data timing sequence. However, the hardware searches the data timing for each pin first, and
then assemble the parallel pins into bus with 8-bit width. Therefore, a converting function is designed in the source code project.

/**
* @brief Set the data on SLCD control bus
* @param com_idx The index of step (COMx), 0-3.
* @param show_dat The display code to the bus for current step.
*/
void slcd_set_bus_data(uint8_t com_idx, uint8_t show_dat)
{
 uint8_t bit_mask = (1u << com_idx);
 for (uint8_t i = 0u; i < SLCD_DATA_BUS_WIDTH; i++)
 {
 if (show_dat & 0x1)
 {
 LCD->WF8B[SLCD_PIN_DATA[i]] |= bit_mask;
 }
 else
 {
 LCD->WF8B[SLCD_PIN_DATA[i]] = ~bit_mask;
 }
 show_dat >>= 1u;
 }
 }

An API function is created to assemble the segment codes into the displaying matrix for the four digits. With this API, the complex
matrix conversion is not required. You just need to tell the MCU which number you want to show and in which position you want
it to be, as the software handles all the conversion automatically.

/* keep the unchanged displaying code in the matrix. */
static uint8_t slcd_on_show_numbers[SLCD_COMx_COUNT];

/**
* @brief Set the displaying number in the digital position of SLCD device.
* @param index The index of digital position, 0-3.
* @param number The value of showing number, 0-10, while 10 is "none".
* @param en_dp Enable showing the dop in current digital positon, true or false.
*/
void slcd_set_number(uint8_t index, uint8_t number, bool en_dp)
{
 uint8_t tmp8 = 0u;
 for (uint8_t i = 0u; i < SLCD_COMx_COUNT; i++)
 {
 tmp8 = slcd_on_show_numbers[i] & (~(0x3 << (2 * index))); /* clear old setting code.*/
 tmp8 |= (SLCD_NUMBER_TABLE[number][i] << (2 * index)); /* add new setting code. */
 if (en_dp)
 {
 tmp8 |= SLCD_NUMBER_TABLE[SLCD_ON_SHOW_NUMBER_DP][i] << (2 * index); /* add new setting

NXP Semiconductors
Basic usgae

Using SLCD controller on K32L2B3 MCU, Rev. 0, 12/2019
Application Note 6 / 11

for dot point. */
 }
 slcd_on_show_numbers[i] = tmp8;
 slcd_set_bus_data(i, slcd_on_show_numbers[i]);
 }
}

In the application main() function, the source code to show the changing numbers on the target SLCD is as below:

int main(void)
{
 bool en_dp;

 /* init board hardware. */
 BOARD_InitPins();
 BOARD_BootClockRUN();
 BOARD_InitDebugConsole();

 PRINTF("slcd basic example.\r\n");
 /* init the clock and pins for slcd, setup the controller for slcd. */
 slcd_init();

 en_dp = false;
 while (1)
 {
 for (uint8_t i = 0u; i < SLCD_ON_SHOW_COUNT; i++)
 {
 GETCHAR();

 slcd_stop(); /* stop the slcd controller before updating displaying. */
 slcd_set_number(0, i , en_dp);
 slcd_set_number(1, (i+1)%SLCD_ON_SHOW_COUNT, en_dp);
 slcd_set_number(2, (i+2)%SLCD_ON_SHOW_COUNT, en_dp);
 slcd_set_number(3, (i+3)%SLCD_ON_SHOW_COUNT, en_dp);
 slcd_start();
 }
 en_dp = !en_dp;
 }
}

Download the project and run it on the FRDM-K32L2B board. The numbers are displayed on the SLCD, as shown in Figure 5.

Figure 5. SLCD connections

For the whole runnable source code project, slcd_basic, see to the attached code package

NXP Semiconductors
Basic usgae

Using SLCD controller on K32L2B3 MCU, Rev. 0, 12/2019
Application Note 7 / 11

4 Usage in low power mode
On the MCU with SLCD controller, the SLCD controller is specially supported by some extra low power STOP modes. In these
modes, almost all the hardware are powered off to same energy. The SLCD controller controls its pins to refresh the SLCD device,
to keep it displaying on the panel.

The SLCD can work in almost all the power mode except the VLLS0 mode. For details, refer to the Power Management chapter
in User Manual.

Table 4. SLCD in low power mode

Modules VLPR VLPW Stop VLPS LLS VLLSx

Segment LCD FF Async
operation in
CPO

FF Async operation
FF in PSTOP2

Async operation Async operation Async
operation, OFF
in VLLS0

The critical settings to keep the SLCD working in low power modes are:

• Clock source: Make sure that the clock source for SLCD controller is still alive in the target low power mode. For example,
if the clock source of the SLCD controller is 32 K OSC, this clock source is enabled in every mode, even low in the VLLSx
mode.

• Pin mux: Make sure that the used pins for SLCD controller are configured as analog function (ALT0) and the pins of the
other (digital) functions are locked (the voltage level can not be changed) in VLLSx mode. Only when the pins of the SLCD
controller are active, the SLCD controller outpus the waves and the SLCD panel keeps displaying the digits.

• The low power mode of the SLCD controller: Enable the lower power support of the SLCD controller by setting
LCD_GCR[LCDSTP] bit and LCD_GCR[LCDDOZE] bit as 0s, to keep the SLCD controller still working in STOP and WAIT
modes.

After completing the parameters above, set the SLCD controller for displaying and then enter the lower power STOP mode. In
the lower power STOP modes, the displaying on the SLCD panel is ON, as the SLCD controller is still outputting the refresh waves.

In the example project shown in Figure 6, in the VLLS3 mode, with RTC and SLCD controller running, the measuring current on
FRDM-K32L2B board is as low as about 7 uA.

NXP Semiconductors
Usage in low power mode

Using SLCD controller on K32L2B3 MCU, Rev. 0, 12/2019
Application Note 8 / 11

Figure 6. SLCD low power display

NXP Semiconductors
Usage in low power mode

Using SLCD controller on K32L2B3 MCU, Rev. 0, 12/2019
Application Note 9 / 11

For the whole runnable source code project, slcd_low_power, see the attached code package.

5 Conclusion
This document descibes basic usages of on-chip SLCD controller on K32L2B MCU, with the example projects based on the
FRDM-K32L2B board. The SLCD controller can control the SLCD device to display the contents on its panel automatically with
suitable configurations on the hardware. Even in the low power modes, the SLCD controller can still work with very low energy.
It indicates that the K32L2B with on-chip SLCD controller can be used in the energy-sensitive application field.

6 References
• https://focuslcds.com/segment-lcd/

NXP Semiconductors
Conclusion

Using SLCD controller on K32L2B3 MCU, Rev. 0, 12/2019
Application Note 10 / 11

https://focuslcds.com/segment-lcd/

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,
big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,
ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related
technology may be protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 12/2019
Document identifier: AN12579

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Hardware
	2.1 S401M16KR SLCD device
	2.2 FRDM-K32L2B3 board

	3 Basic usgae
	4 Usage in low power mode
	5 Conclusion
	6 References

