
1 Introduction

1.1 Overview

The Dongle has a USB interface that connects to a PC. It is responsible for
creating a wireless audio link with Headset. The functions include:

• Send: Transmit audio stream from PC to Headset.

• Receive: Receive control signal and voice audio from Headset to PC.

• Over The Air (OTA): Transfer firmware files, as a VCOM device, from PC to Headset that run the OTA_Headset firmware at
the same time.

To give the audience a systematic view of Dongle in the K32L2B Bluetooth Low Energy (Bluetooth LE) Audio System, this
document describes the hardware design and software architecture (top-level design).

1.2 Reference documents

Table 1. References

Reference Definition

K32L2B Bluetooth LE Audio System Introduction to K32L2B Bluetooth LE audio system

K32L2B Headset K32L2B Headset with NXH3670

K32L2B OTA K32L2B Bluetooth LE Audio System OTA operation steps

K32L2B Emulating the I2S Bus Emulating the I2S bus master with the FlexIO module

2 System overview

2.1 Block diagram

The demo board is designed to support the Dongle and the Headset configurations.

Contents

1 Introduction.. 1

2 System overview....................................1

3 Components of USB Dongle..................6

4 Conclusion... 22

AN12647
K32L2B USB Dongle with NxH3670
Rev. 0 — 01/2020 Application Note

Figure 1. K32L2B + NxH3670 SDK board block diagram

As shown in Figure 1, SPI CONFIG, I2C CONFIG, and I2S CONFIG indicate the master selection of the communication interface.
For example, for I2S CONFIG, choose K32L2B as I2S master in the Dongle design section while WM8904 as I2S master in the
Headset design.

Considering that the K32L2B contains no I2S peripheral, users can configure FlexIO peripheral to generate all
required I2S bus signals.

 NOTE

Figure 2 shows the block diagram of K32L2B_Dongle.

NXP Semiconductors
System overview

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 2 / 23

Figure 2. Block diagram of Dongle configurations

As shown in Figure 2, the system consists of:

• A Host controller (K32L2B) to run Dongle and OTA_Dongle demos.

• An NXH3670 to communicate with K32L2B through the SPI interface and transfer audio stream via the I2S bus signals
emulated by FlexIO peripheral.

2.2 USB Dongle software architecture

Figure 3 and Figure 4 show the software structure.

NXP Semiconductors
System overview

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 3 / 23

Figure 3. Application framework architecture

Figure 4. Dongle application architecture

NXP Semiconductors
System overview

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 4 / 23

The architecture contains NVM service, USB service, Audio service, NXH service, and User Interfaces (UI) service. This document
lists the following functions:

1. NVM service: To read Partition Table.

2. NxH Control: To boot, start and transfer data with K32L2B using the SPI interface.

3. UI: Buttons used to control the volume, play and pause.

4. Audio service: To transmit audio data to SHIFTBUF0 of FlexIO.

Audio data is moved from the ring buffer directly to the SHIFTBUF0 of FlexIO using DMA channel without software
intervention.

 NOTE

5. USB controller: USB is configured as User Audio Interface (UAC).

Figure 5 shows the audio transfer process.

Figure 5. Audio path

• : Playback (forward channel): The audio path is from the PC to the Headset.

— The USB stack of the host controller will create an interrupt once a transfer is completed.

— The software will copy the transfer data from the USB stack into a circular buffer, the input-buffer. This buffer will
queue audio data until a fraction of its buffer capacity is filled, for example, 50%.

— The software will enable a DMA channel to transfer audio data from the circular buffer to the SHIFTBUF0 of FlexIO
without software intervention.

— The Bluetooth LE controller of Dongle is connected with Host Controller via I2S bus signals emulated by FlexIO
peripheral. In turn, the I2S data OTA will be transferred to the Bluetooth LE controller of Headset.

— The Bluetooth LE controller is connected with CODEC via I2S. In turn, the received I2S data will be transferred to
CODEC without software intervention.

• : Record (backward channel): The audio path is from the Headset to the PC.

— The audio is entered through LINE IN or DMIC to CODEC connected with the Bluetooth controller of Headset via I2S.
In turn, the received audio data will be transferred to the Bluetooth LE controller of Dongle without software
intervention (currently, CODEC is the master of I2S).

— DMA channel will transfer received audio data from SHIFTBUF1 of FlexIO peripheral to a circular buffer.

NXP Semiconductors
System overview

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 5 / 23

— The software will copy the transfer data from a circular buffer to the USB stack.

This document introduces only the audio transfer process of the Dongle section. For more information of the Headset section,
refer to K32L2B USB Headset with NXH3670.

3 Components of USB Dongle

3.1 K32L2B

3.1.1 Host controller (K32L2B)

The device is highly-integrated, market leading ultra low-power 32-bit microcontroller based on the enhanced Cortex-M0+ (CM0+)
core platform. K32L2B USB Headset with NXH3670 contains the following features:

• Core platform clock is up to 48 MHz and bus clock is up to 24 MHz.

• Memory option is up to 256 KB flash and 32 KB RAM.

• Wide operating voltage ranges from 1.71 to 3.6 V with fully functional flash program/erase/read operations.

• Two SPI modules that support 16-bit data length.

• Two inter-integrated circuit (I2C) modules.

• One FlexIO module.

3.1.2 Clock

1. One reference clocks used on the board.

• 32 MHz crystal connected with the NxH3670.

2. The FlexIO module acts as the I2S bus master producing all required signals.

• BCLK is 1.536 MHz.

• Word Select (WS)/Left-Right Clock (LRCK) is 48 KHz.

Figure 6 shows the clock information after FlexIO peripheral is configured correctly.

Figure 6. Clock information in audio transfer process

3.1.3 Pin connections

Table 2 lists the pin connection of K32L2B and other components.

Table 2. Pin connections

Function Jumper Name Jumper Name

K32L2B Dongle KL2X_I2S_MASTER NXH3670 BLE_I2S_SLAVE

FlexIO emulating I2S
(connected with MCU)

J2-8 (PIN PTD6) KL2X_SDI J12_1 (I2S_CONFIG) BLE_SDO

Table continues on the next page...

NXP Semiconductors
Components of USB Dongle

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 6 / 23

Table 2. Pin connections (continued)

Function Jumper Name Jumper Name

K32L2B Dongle KL2X_I2S_MASTER NXH3670 BLE_I2S_SLAVE

J1-6 (PIN PTD3) KL2X_SDO J12_3 (I2S_CONFIG) BLE_SDI

J2-12 (PIN PTD5) KL2X_WS J12_5 (I2S_CONFIG) BLE_WS

J2-6 (PIN PTD4) KL2X_SCK J12_7 (I2S_CONFIG) BLE_SCK

NXH handshake J1_2 (PIN PTA1) BLE_SPIS_INTN J16_9 (BLE_SPI) SWM4 (-INTN)

J1_8 (PIN PTA12) BLE_SPIS_SRQ J16_11 (BLE_SPI) SRQ

SPI (SPI0) J1-11 (PIN PTC7) BLE_SPIS_MISO J16_1 (BLE_SPI) SW0

J1-9 (PIN PTC6) BLE_SPIS_MOSI J16_3 (BLE_SPI) SW1

J1-15 (PIN PTC5) BLE_SPIS_SCLK J16_5 (BLE_SPI) SW2

J1-7 (PIN PTC4) BLE_SPIS_SSN J16_7 (BLE_SPI) SW3

NXH reset J1_4 (PIN PTA2) BLE_RESETN J20_5 (BLE_SWD) POR_RESETN

3.1.4 Schematic

1. Audio transfer

• I2S

Figure 7. I2S interface connection

In the Dongle section, the host controller (K32L2B) transfers data directly to the NXH3670 via I2S bus signals emulated
by FlexIO peripheral.

2. NXH3670

• NXH handshake

NXP Semiconductors
Components of USB Dongle

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 7 / 23

Figure 8. Handshake pins (SRQ and INTN) connection

• SPI

Figure 9. SPI interface connection

• Power On Reset (POR)

Figure 10. POR pin connection

3.1.5 Pin configurations

• SPI

NXP Semiconductors
Components of USB Dongle

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 8 / 23

— Interface: SPI0.

— Pins: CS (PTC4), SCK (PTC5), MISO (PTC7), MOSI (PTC6)

— Polarity: Active-high SPI clock (idles low).

— Phase: First edge on SPSCK occurs at the middle of the first cycle of a data transfer.

— Baud Rate: The value of Baud Rate for SPI is configured to 8000000 u.

• FlexIO pin used to emulate I2S

— TXD: PTD3

— RXD: PTD6

— BCLK: PTD4

— FS: PTD5

• NxH3670 pin

— INIT (PTA1), configured as digital input.

— SRQ (PTA12), configured as digital output.

— POR (PTA2), conigured as digital output.

3.2 NXH3670

3.2.1 Bluetooth Low Energy

The NxH3670 is the Bleutooth Low Energy (Bluetooth LE) device. It is a single chip, ultra-low power 2.4 GHz transceiver with
embedded MCU, targeted at wireless audio streaming for Headsets, wireless Headsets, and headphones.

The features include:

1. KEY FEATURES

• Support for high-quality, low-latency (<20 ms) wireless audio streaming.

• Integral wireless audio streaming solution

— Integrated Arm® Cortex®-M0 processor

— Integrated CoolFlux DSP and HW accelerators for audio processing

• Ultra-low-power operation:

— Stereo audio streaming with mono reverse channel at 7.5 mW

• Packaged as bumped die <7.25 mm2

• Typical supply voltage: 1.2 V

2. PROPRIETARY AUDIO STREAMING PROTOCOL

The NxH3670 device simultaneously runs the standard Bluetooth LE protocol and NXP’s proprietary audio protocol. This
audio streaming protocol is configured to support audio streaming between a Dongle device and a headphone with the
following audio configurations:

• Forward audio path

— Stereo

— 48 KHz sampling rate, 16 bit resolution

— Audio BW > 20 KHz

— SBC HQ codec

NXP Semiconductors
Components of USB Dongle

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 9 / 23

— Latency < 20 ms

• Simultaneous return audio path

— Mono

— 16 KHz sampling rate, 16 bit resolution

— Audio BW > 6 KHz

— G.722 codec

Power consumption at the headphone side during audio streaming is an industry-record of only 7.2mW, enabling extended play
time and reduced battery size. During audio streaming, a simultaneous, bi-directional data connection between audio source and
audio sink is available as well with up to 8kbps of throughput.

Figure 11 shows the connection process between Dongle and Headset of NXH3670.

1. Download and start NxH3670 images.

• In the Boot step, the host controller Load images from flash/eeprom to NXH3670 through the SPI interface.

• In the Starting step, the host controller need handshake with NXH3670. Then the software will register an event
table with the HCI layer used to handle event sent from NXH3670.

2. Pair.

The NXH3670 on Dongle and Headset board will pair with each other. For example, Dongle will retrieve PD from Headset.

3. Connect.

The NXH3670 on Dongle and Headset board will connect with each other, and then transfer data between each other if
connected successfully. For example, Dongle can send audio stream to Headset.

NXP Semiconductors
Components of USB Dongle

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 10 / 23

Figure 11. Connection process between Dongle and Headset

3.2.2 Boot

3.2.2.1 NXH3670UK bootloader

The most important task of the bootloader is to prepare the NXH3670UK to start a user application. To achieve this, the typical
bootloader lifecycle is:

1. Configure the device.

2. Load the memories. By default, the NXH3670UK starts up in the host-assisted mode: the SPI slave interface.

3. Enter the active mode.

3.2.2.2 Partition table

Since the NxH3670 Bluetooth LE radio has no means to store data persistent, the Flash memory of the Host Controller is used
for storage.

NXP Semiconductors
Components of USB Dongle

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 11 / 23

The reference application has functionality to split up this memory into logical partitions.

The data, either firmware binary data or application configuration data within such a partition, can be read or written.

Figure 12. Partition table/layout of release mode of Dongle

As shown in Figure 12, partition_id 0 contains four images, kl_app, nxh_app, rfmac, and cf. For example, the offset of
nxh_app is 0x20810, which indicates that this image will be downloaded to 0x21400 (0xbf0 + 0x20810).

NXP Semiconductors
Components of USB Dongle

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 12 / 23

Users can design their own partition tables and the following two notes are important to keep:

1. If users want Partition1: app_data to be the first partition in memory, in the layout_release_sdk.yml file, keep the order
as: app_data, app,….

If users do not follow the rule, the tool will not output a Partition Table.bin or be used as correct Partition Table.

2. Users must make sure that base_address of Partition + size of partition0 is smaller than base_address of the Partition1.

3.2.2.3 NVM

Non-Volatile Memory (NVM) is a memory technology that maintains stored data during power-off. The flash array is an NVM
using NOR-type flash memory technology.

The NVM of K32L2B can be used to save firmware of NXH3670. Taking Dongle as an example, users need to store
phGamingTx.ihex.eep, phStereoInterleavedAsrcTx.eep, and rfmac.eep in advance in the NVM, which will take up about
120 k.

3.2.2.4 EEP

1. Definition

For safety reasons, the NVM-image contains CRCs and signatures at different levels (i.e. block level and overall). The
function helps to detect the corrupted images and abort the loading and the execution of potentially harmful instructions.

Table 3. Format of EEP file - Single image (LSB first)

1 byte 1 byte 1 byte 1 byte

SIGNATURE 0xCA 0xFE 0xBA 0xBE

HEADER Image Length Type

Destination Address

CheckSum

Image Length Size Program Image

HEADER Image Length = 0 Type

Destination Address

CheckSum

Table 4. Format of EEP file - Multiple image (LSB first)

1 byte 1 byte 1 byte 1 byte

SIGNATURE 0xCA 0xFE 0xBA 0xBE

HEADER Image Length Type

Destination Address

CheckSum

Image Length Size Program Image

HEADER Image Length = 0 Type

Destination Address

Table continues on the next page...

NXP Semiconductors
Components of USB Dongle

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 13 / 23

Table 4. Format of EEP file - Multiple image (LSB first) (continued)

1 byte 1 byte 1 byte 1 byte

CheckSum

Image Length Size Program Image

HEADER Image Length = 0 Type

Destination Address

CheckSum

All fields listed in Table 3 and Table 4 are stored in little-endian format. A valid image must start with a 32-bit signature,
0xBEBAFECA. After this signature, one or more images can be present. Each image starts with a header.

Figure 13. Analysis of phGamingTx.ihex.eep part – first image

As shown in Figure 13, the Image Length is 16287 and Type ID is 0. It indicates that host controller will send 65148
(16287*4) bytes to NXH3670 through SPI.

Figure 14. Analysis of phGamingTx.ihex.eep part – second image

As shown in Figure 14, the Image Length is 284 and Type ID is 0. It indicates that the host controller will send 1136 (284*4)
bytes to NXH3670 through SPI.

2. Downloading an .EEF file to K32L2B3

NXP Semiconductors
Components of USB Dongle

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 14 / 23

This document provides two methods to download an .EEF file to K32L2B3.

a. Transform an .EEF file to the HEX buffer.

• Winhex

• __attribute__ ((section (.ARM.__at_address)))

This method helps to store NXH3670 relevant firmware as a buffer, as the OTA process only re-writes the application
of host controller instead of NXH3670.

b. Transform an .BIN file to an .EEP file.

• SDK packet haa a tool called to_eep.cmd in release.

Figure 15. to_eep.cmd in packet

• Input:

to_eep.cmd -i spi_dma_b2b_transfer_master.bin -o spi_dma_b2b_transfer_master.eep

Figure 16. Command string in to_eep.cmd in packet

• As shown in Figure 17, the bin file was packet with SIGNATURE and HEADER.

Figure 17. .BIN and .EEP files

This method helps to store the application of host controller instead of NXH3670 firmware. For example, users
can transfer the .BIN file of the application to .EEP.BIN file with CRCs and signatures that will be useful in
OTA process.

3.2.2.5 NXH3670 host interface: SPI

1. SPI bus

For NXH3670, the boot loader configures the SPI slave interface and assumes the host to be SPI master. The SPI slave
operation mode is configured as follows:

• SPI slave 4-wire mode connection: MOSI, MISO, SCK, SSEL

NXP Semiconductors
Components of USB Dongle

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 15 / 23

• SPI slave max speed communication: 8 MHz

• SPI slave mode : mode0 (CPHA=0, CPOL=0)

Operating modes: clock and phase selection.

SPI interfaces typically allow configuration of clock phase and polarity. These are sometimes referred to as numbered SPI
modes, as described in Table 5 and shown in Figure 18. CPOL and CPHA are configured by bits in the SPI Control
Register 1 (SPIx_C1).

Table 5. SPI mode summary

CPOL CPHA SPI mode Description SCK rest state SCK data
change edge

SCK data
sample edge

0 0 0 The SPI captures serial data on
the first clock transition of the
transfer (when the clock changes
away from the rest state). Data is
changed on the following edge.

low falling rising

0 1 1 The SPI changes serial data on
the first clock transition of the
transfer (when the clock changes
away from the rest state). Data is
captured on the following edge.

low rising falling

1 0 2 Same as mode 0 with SCK
inverted.

high rising falling

1 1 3 Same as mode 1 with SCK
inverted.

high falling rising

Figure 18. Basic SPI operating mode: mode0

Figure 19. mode0 example of Logic analyzer

2. SPI flow control

NXP Semiconductors
Components of USB Dongle

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 16 / 23

In the Bluetooth LE Audio System, SPI transfer must comply with the format shown in Figure 20.

Figure 20. SPI slave – Transfer format

Table 6. SPI slave – Supported command

Command Opcode Description

Write command 0b010xxxxx Write payload to NxH3670 SPI slave.

Read command 0b110xxxxx Read pending data from NxH3670 SPI
slave.

Read status 0b101xxxxx Read status byte.

Read extended status 0b111xxxxx Read extended status byte.

For example, the Write command was defined by #define SPI_WRITE_CMD (0x40u) in the software design. To make user
understand SPI transfer easily, this document will analyze the signal of Logic analyzer as shown in Figure 21.

Figure 21. Transfer mode

3.2.2.6 HCI command format

1. HCI command format

The HCI command is embedded in the SPI payload field of the SPI write command (see SPI flow control). The beginning
of the HCI command must be aligned to the beginning of the SPI transfer.

All commands and events are formatted as Bluetooth HCI Vendor Specific commands, as shown in Figure 22.

NXP Semiconductors
Components of USB Dongle

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 17 / 23

Figure 22. HCI command format

A command starts with:

• The command packet byte with fixed value 0x01.

• A unique 16-bit opcode which identifies the HCI command.

• Parameter Length holds the length of the parameters that follow (in bytes). Zero value is also allowed.

• The actual parameters (optional). These actual parameters can exist 8-bit, 16- bit, 24-bit, and other parameters. It is
the command processor that must interpret the byte sequence correctly.

HCI opcodes and optional parameters bytes in the commands are always LSB first.

An SPI slave – Transfer format of Logic analyzer is as shown in Figure 23.

Figure 23. An SPI slave – Transfer format of Logic analyzer

2. HCI event format

Results of commands are sent back as HCI formatted events. Whenever the HCI controller sends something back to the
host, it queues this event and the host retrieves this queued event.

The HCI event is embedded in the SPI payload field of the SPI read command.

Figure 24. HCI Event format

Figure 25 shows an HCI event format of logic analyzer.

NXP Semiconductors
Components of USB Dongle

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 18 / 23

Figure 25. An HCI Event format of Logic analyzer

3. HCI command transfer

Figure 26 shows a sequence of how an HCI command to be sent to the NxH3670.

Figure 26. HCI command transfer – Read status

Before an SPI transfer can be started, it must check the NxH3670 is awake and the SPI bus is available. This is done by
asserting the SRQ line and waiting for the confirmation on the awake/int signal.

The host knows the NxH3670 is awake but must still check if the NxH3670 is ready to accept new SPI data. This information
can be retrieved with the SPI read-status-command.

Figure 27. HCI command transfer – Write command

Users can see the change of signals, including CS, MOSI, and MISO, as shown in Figure 28.

NXP Semiconductors
Components of USB Dongle

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 19 / 23

Figure 28. Boot process of NXH3670

4. HCI event transfer

The NxH3670 uses a software queue to store multiple HCI events. If the SPI read buffer is empty, the oldest event is
moved to the SPI read buffer and the SPI pending data signal is asserted.

Figure 29. HCI event transfer – Read extended status

The NxH3670 indicates pending data by asserting the awake/int signal. The host can retrieve the extended status to check
how many data is pending. The SRQ signal is de-asserted and the awake/int is deasserted soon after. Since the actual
pending data has not been read, the awake/int signal is asserted again.

Figure 30. HCI event transfer – Read

The host knows how many bytes are pending and can now initiate a SPI read command. The NxH3670 sends the serialized
HCI event back to the host.

The NxH3670 only transfers one HCI event at a time. If more HCI events are pending in the software queue, it moves the
oldest HCI event to the SPI buffer again and the sequence as described above restarts.

If the host does not read fast enough, HCI events may get lost due to buffer overflow.

NXP Semiconductors
Components of USB Dongle

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 20 / 23

3.3 Handshake

The SPI handshake protocol implements three logical signals using two physical hardware signals.

3.3.1 Logical signals

1. Service request signal

This signal is used by the host to request service by the NxH3670. When the NxH3670 detects the signal, it indicates it is
ready to handle the service request by asserting the awake signal.

2. Awake signal

This signal is used by the NxH3670 to indicate it is awake. The NxH3670 only asserts this when the SRQ signal is asserted
and not every time it wakes up.

3. Pending data signal

When the NxH3670 has pending data, it asserts this signal toward the host.

3.3.2 Physical signals

These three logical signals are mapped onto two physical signals to reduce required pin count.

Figure 31. SPI handshake physical signals

Table 7. Physical to logical signal mapping

Logical signal SRQ physical signal AWAKE/INT physical signal

service request signal asserted don’t care

wake signal asserted asserted

pending data signal deasserted asserted

The pending data signal maps to the INT physical signal.

 NOTE

The following scenarios may occur:

1. The host initiates an SPI transfer.

2. The NxH3670 requests an SPI transfer.

3. The host initiates and the NxH3670 requests an SPI transfer simultaneously.

To make user understand the process of handshake easily, this document introduces the signal of Logic analyzer about scenario
2.

When the NxH3670 has pending data, it generates the sequence to report pending data.

NXP Semiconductors
Components of USB Dongle

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 21 / 23

Figure 32. NxH3670 requested SPI transfer

1. The NxH3670 asserts the AWAKE/INT signal to indicate that it has pending data.

2. To retrieve the pending data, the host initiates an SPI transfer.

The NxH3670 stays awake as long as data is pending. The host must read the pending data as soon as possible to save power.

Figure 33. NxH3670 requested SPI transfer

3.4 Start

Users can use a USB cable to connect J13 (FRDM-K32L2B) with PC to power or download firmware.

4 Conclusion
This document describes the hardware design and software architecture (top-level design) of K32L2B_Dongle in the Bluetooth
LE Audio System. It can be a reference for users to build their own demo.

NXP Semiconductors
Conclusion

K32L2B USB Dongle with NxH3670, Rev. 0, 01/2020
Application Note 22 / 23

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,
big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,
ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related
technology may be protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 01/2020
Document identifier: AN12647

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Overview
	1.2 Reference documents

	2 System overview
	2.1 Block diagram
	2.2 USB Dongle software architecture

	3 Components of USB Dongle
	3.1 K32L2B
	3.1.1 Host controller (K32L2B)
	3.1.2 Clock
	3.1.3 Pin connections
	3.1.4 Schematic
	3.1.5 Pin configurations

	3.2 NXH3670
	3.2.1 Bluetooth Low Energy
	3.2.2 Boot
	3.2.2.1 NXH3670UK bootloader
	3.2.2.2 Partition table
	3.2.2.3 NVM
	3.2.2.4 EEP
	3.2.2.5 NXH3670 host interface: SPI
	3.2.2.6 HCI command format

	3.3 Handshake
	3.3.1 Logical signals
	3.3.2 Physical signals

	3.4 Start

	4 Conclusion

