AN12673

Dual-core Project Creation and Conversion for K32L3A6 Devices

Rev. 0 — 01/2020

1 Introduction

The introduction of the K32 L3 device brings to the Kinetis family the power
and multitasking capabilities of a dual-core device. Dual-core devices, while
powerful, can add complexity to your development. The goal of this application
note is to simplify the process of starting a new multi-core project or convert
an existing single core project to a dual-core project.

NOTE
Different IDEs handle dual-core applications differently. This
application note will cover IAR IDE and MCUXpresso IDEs.

2 Overview

Application Note

Contents

1 Introduction.........ccoeeeenriiineeceen e 1
2 OVEIVIBW.......oeeeiceree e e 1
3 Multi-core projects in IAR.............cccc...... 3
4 Multicore debug in IAR.......ccc.ccceeverenn. 8

5 Multicore projects in MCUXpresso...... 21
6 Multicore debug in MCUXpresso......... 34
7 Multicore code.........cccceeeeieirecieniieennns 41

8 COoNCIUSION.........cccerieir e 46

Before creating a dual-core project (or converting a single-core project to a dual-core project), it is necessary to discuss the
structure of the K32L3A6 device. The K32L3A6 is an asymmetric dual-core device (with two different cores as opposed to
symmetric dual-core devices which have identical cores that operate in lockstep) containing an Arm® Cortex"-M4 core and an
Arm Cortex-MO0+ core. Like other dual-core devices, one core acts as the primary core or boot core, while the other core acts as
the secondary core. In the K32L3A6, the Arm Cortex-M4 device acts as the boot core by default (the boot core can be changed).

The block diagram of the K32L3A6 device is as shown in Figure 1.

h
P

NXP Semiconductors

Overview

1] | 111 111 111 111
LPCME1 TRGMUX1 LPSPI3 LA LPTMRZ
PORTE W B0 DA 4CH
| I | | I | | I | | I |
| LLWLH LPt2C3 LPTPM3 WDOGH
GPIO | | | | | |
C | AIPS1 I PCCA LPUARTS TSTMAY TRNG
o0 81 a2
DMAT
e oxn o
5CB || MPU || rlwc| AN Wagﬂcldx‘
[e I ot Hon
G
4 K3 o
Muiti_Core Unit
[=]
Cortex M4F + FPU
e o e =
Coms Lo Lo | EREA
o I e —
ElE 64 CH
| |
DMAD 18CH SDHC
[11 [
MB&] ne M3 NS 8
FCCO FlexlO ILPUARTT-2 LPTMAO-1 CAC s
=]
= = = . I 11
LPITO
mai | [[D] [[F oo
- - | B | | B | I |
LLWUD VBAT Register LPSPID-2 NDOGD VRAEF
| .. -%BEB LTS 1221V
e S,mm = | B B | | B] |
wi! Tamper Pin| Fila 528 EMVEIM TSTMAZ n‘m
LI T T W TTIT 111

Figure 1. K32L3A6 block diagram

As shown in Figure 1:

» Each core has its own cache, RAM memory, Flash memory, interrupt controllers, and so on. The two cores can operate
completely independently of each other.

» Besides the two separate cores, there are two separate crossbars, AXBS0O and AXBS1. This effectively creates a logical
divide such that each core also has their own set of peripherals. Those peripherals attached to AXBSO are the Arm
Cortex-M4 peripherals, and those attached to AXBS1 are Arm Cortex-M0+ peripherals. However, the crossbars are also
connected to each other through AXBSO master port 5 (M5) connected to AXBS1 slave port 3 (S3) and AXBSO slave port
4 (S4) connected to AXBS1 master port 3 (M3). This allows the Arm Cortex-M4 to access Arm Cortex-MO+ peripherals
and memory and vice versa.

« Utilities common to both cores include the debug unit, Multi-core units (SEMA42, MU, resource domain controller, and

miscellaneous system control module), clock controls (SCG and RTC), and power controls (SPM).

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

2/47

NXP Semiconductors

Multi-core projects in IAR

Now that you have a better understanding of how the K32L3A6 device is architected, let's discuss how the IDEs handle this
architecture. First, the IAR IDE will be discussed, and then MCUXpresso will be discussed.

3 Multi-core projects in IAR

IAR IDE essentially treats multi-core projects as two independent projects. Thus you need two independent projects (one for
each core) when creating a dual-core project. If you are starting from a single-core project, you will need to create (or incorporate)
a project for the second core. You will need to modify your code to ensure that the second core is started correctly. You may also
need to consider the interaction between the two cores (beyond what is described in this application note) and make more
modifications than are described in this application note. The possibilities and options here are limitless and thus, all situations
cannot be discussed in this application note.

In the IAR projects, there are internal options that will need to be selected to link the two separate projects together. It is important
at this point to note that a multi-core project creation does not necessarily mean that the debugger will establish a debug
connection with both cores. This is another independent setting. So this section will be broken up into multi-core project creation
and multi-core debug.

3.1 Multi-core project creation

As mentioned in Multi-core projects in IAR, IAR IDE treats multi-core project creation as two independent projects just linked by
different settings in the projects. Therefore, the first step to multi-core project creation is to create two independent projects for
the different cores. The hello world example from the multicore examples folder from the K32L3A6 MCUXpresso SDK
package will be used as an example to explain these concepts.

3.1.1 Primary core project

1. Examine the boot core project. In this case, this is the Arm Cortex-M4 project and this project simply configures a terminal
and prints hello_world to the terminal and notifies the user (via the terminal) that the secondary core is starting. Then
the secondary core is started. In dual-core devices, it is generally the responsibility of the boot core to start the secondary
core. Figure 2 shows the source code for this (for more details about the source code, see the following chapters in this
document).

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 3/47

NXP Semiconductors

Multi-core projects in IAR

hello_world_corel.c

44 FAE
a5 * @brief Main function

L1 ks

47 int main{woid)

g1

45 A% Initialize MCMGER, install generic event handlsrs &/

50 MCMGR_Init():

51

52 /% Init board hardware.*/

53 BORRD InitPins_Corel():

54 BORRD BootClockRUN() ;

55 BORRD InitDebugConscle():

56

57 /% Print the initial banner from Primary core *+/

g PRINTF({"“r\nHello World from the Primary Cors!\r\n\n");

54

60 [] #ifdef CORE1l_IMRGE COFY TC RREM

Elg /% Calculate size of the image - not required on MCUKpresso IDE. MCUXpresso copies the secondary core
62 image to the target memory during startup sutomatically #/

63 uint32_t corel_image size;

64 corel_image size = get_corel_image_size();

83 ERINTF("Copy Secondary core image to address: Ox3x, size: %d\n", COREl_BOOT_ADDRESS, corel_image_size);
66

a7 /% Copy Secondary core application from FLASH to the target memory. */
] memcpy (COREL_BOOT_ADDEESS, (woid *)COREl_IMAGE START, corel_ image_size);
€9 - #endif

70

71 /% Boot Secondary core application */

72 PRINTF ({"Starting Secondary core.\r\n");

73 MCMGR_StartCore (kKMCMGE_Corel, COREL_BOOT_RDDRESS, 5, kMCMGR Start_Synchronous);
74 PRINTF("The secondary core application has been started.\r\n");

75

76 while (1)

77 H {

8 r }

74 1

go L

Figure 2. Boot core source code

Another responsibility of the boot core project is to program the memory that the secondary core will use for its program
code space. This responsibility is achieved by configuring the linker settings in the project correctly as well as configuring
the linker file correctly. The linker settings in the project must be configured to point to the correct binary for the secondary
core and placed in the correct location in memory. Figure 3 shows the hello world linker settings for the primary core

project.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

4747

NXP Semiconductors

Multi-core projects in IAR

Options for node "hello_world_cm4” x

Categany Factory Settings

General Options
Static Analysis
Runtime Checking #define Diagnostics Checksum Encodings Extra Options

C/C++ Compiler Config Library Input Optimizations ~ Advanced Output List
Assembler

Output Converter Keep symbals: (one perline)

Custom Build _hello_world_cm0Oplus_image
Build Actions
Debugger

Simulator

CADI

CMSIS DAP

GDE Server

I4et/ITAGjet

J-Link/1-Trace

TI Stellaris

Raw binary image
File: Symbal: Section: Align:
$PROJ_DIR$f..f..fcmDpIusfiarfdebu| ‘_hello_w0|| ‘_Sec_cm| ‘4 |

PE micro

STLINK
Third-Party Driver
TI MSP-FET
TIXDS

Figure 3. Linker settings for primary core of the dual-core hello_worild project

All necessary settings to create a dual-core project are contained within the Input tab of the Linker category of the project
settings. The following five boxes must be filled in correctly.

Keep symbols: In the Keep symbols text box, the additional binaries that need to be added to the output file (that is
generated when the compile button is clicked) are listed. In this case, we have only one additional image to be
added to the final output. It is named as _hello world cmOplus_ image. This symbol name is arbitrary and can be
anything.

File: In the File text box, the correct path to the binary image for the Arm Cortex-M0+ program should be included
(*.bin).
Symbol: The Symbol field must match the symbol defined in the Keep Symbols text box.

Section: This defines where to place the binary file to be included. This MUST be correctly defined in the linker file
for the binary to be programmed and placed correctly.

Align: This defines the alignment of the binary. This determines whether the data is aligned by byte, half-word, or
word. This example word aligns the binary and you shouldn’t ever need anything other than word alignment as
shown.

2. Make sure that the linker file is properly written. The linker file must properly define the section for the secondary core
binary to be placed. Figure 4 shows the linker file used in the hello world project and the important parts have been
underlined in red.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note 51747

NXP Semiconductors

Multi-core projects in IAR

B e B B B B B~ VI = VT VI = I VI = R =]
LA I S L N B = LT SIS ER B = VR T) B S]

-1 -
[Er g

[<=pes |
[t}

oo o 00 Co Co

[TV SRV IV S N <) [s e R e e]
LU I S U o8 R e N - T B o SUR S

wou
0 =1 o

[=

499
100
101
102

K32L3Ab0oo_cm4_flash.icf x

define region TEKT_region = mem: [from m interrupts_start to m_interrupts end]
| mem: [from m text Start to m text end];
define region DATA region = mem: [from m data_start to m data_end-_ size_cstack_]

define region CS5TACK region = mem: [from m data end- size cstack +1 to m data end];

if (isdefinedsymbol (_ use_shmem)) |
define region rpmsg_sh_mem region = mem: [from rpmag_sh _mem start to rpmsg sh mem end];
}
define block CSTACK with alignment = 8, size = _ size cstack {}:
define bklock HERP with alignment = &, size = _ size_heap_ {}:
define block BW { readwrite };
define block ZI { zi }:

define region corel region = mem: [from corel image start to corel image end]s

define block S5EC_CORE_IMAGE BLOCE { section _ aec_core };

/Y regions for USB /

define region USB_BDT region = mem: [from m usb sram start to m usb sram start + usb bdt size - 1];
define region USE_SREZM region = mem: [from m ush sram start + usk bdt_size to m usb sram end]:
place in USB_BDT_region { section m usb bdt };

place in USBE_SEAM region { section m usbk global };

initialize by copy { readwrite, section .textrw };
do not initialize { section .moinit, section m usb_bdt, section m ushk glckal 1;

if (isdefinedsymbol{_ use shmem }} [
do not initialize [secticon rpmsg_sh mem section };
}
place at address mem: m_interrupts_start { readonly section .intwvec };
place in TEXT region { readonly };
place in DATA region { klock BH };
place in DATA region { bBlock ZI };
place in DATA region { last klock HEAP };
place in CSTACKE region { block CSTIP.CK 1:
if (isdefinedsymbol({_ use shmem }) {
place in rpmag_sh_mem region { section rpmsg_sh mem section };
}
place in corel_region { block SEC CORE IMRGE BLOCK }:

Figure 4. Bottom of linker file

At the bottom of this linker file, there is the command of place in corel region {block SEC CORE IMAGE BLOCK };.
It commands the linker to place whatever is assigned to the sec_core_1MaGE BLOCK to the memory defined by

corel region. The block, SEC_CORE IMAGE BLOCK, is defined as section _ sec core, which means anything in the
application with that tag will be placed in that block. In this case, the only thing with that tag will be the image for the
secondary core (and that was done in the Linker->Input tab in the project settings). The region corel region is defined
as a memory region from corel image start to core1_image_end. These bounds are defined at the top of the linker file
(as shown in Figure 5).

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

6/47

NXP Semiconductors

Multi-core projects in IAR

K32L3A600000 cmd_flash.icf x
18 LR http: WiWW . X . COm
15 LR mail: supportinxp. com
20 &k
21 S R st R R L L
22 ks
23
24 define symbol m_interrupts_start = 0x00000000;
25 define symbol m_interrupts_end = (x000003FF;
26
27 define symbol m_teXt start = 0x000004005
28 define symbol m_text_end = 0x000FFFFE;
29
30 define exported symbol corel image SCart = 0x01000000;
31 define exported symbol corel image end = Ox0103FFFF;
32
33 if (isdefinedsymbol {__ use shmem) {
34 define symbol m data start = (0x20000000;
35 define symbol m_data end = (x2002ETFF;
3a define exported symbol rpmsg sh mem start = 0x2002E800;
37 define exported symbol rpmsg sh mem end = 0x2002FFFF;
38 } else |
25 define symbol m data start = 0x20000000;
40 define symbol m data end = Ox2002FFFE;
41 }
4z
Figure 5. Top of Linker file

At the top of the linker file, variables corel image starttocorel image endaredefinedas 0x01000000 and 0x0103FFFF
respectively. Therefore, the image will be placed in the Arm Cortex-M0+ flash space.

NOTE
The image range could be changed to be the Arm Cortex-M0+ RAM space. However, this would mean that the
Arm Cortex-M4 would also have to run from RAM, as the image loading tools cannot switch between loading Flash
or loading RAM. The image loader utility either loads RAM, or loads Flash.

3.1.2 Secondary core project

The secondary core project should be compiled as a normal project. It is important to use the correct flash loader for the expected
configuration. If the secondary core is expected to run from flash, it should be linked using a flash linker. If it is expected to run
from RAM, a RAM-configured linker should be used.

NOTE
Keep the Keep symbols and Raw binary image sections blank (as shown in Figure 6).

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 7147

NXP Semiconductors

Multicore debug in IAR

Options for nede "hello_world_cm0plus” >

—_—

Catagony Factory Settings

General Opbong
Static Analyss

Rurtime: Chedking #define Diagnostics Checksum Encodings Extra Options

CfC++ Compller Config Library Input Optimizations ~ Advanced Oufput List
Azsembler

Output Corverter Keep symbols: (one per ling)

Custom Buid |

Buld Actions

Debugger
Smulator
Capt
CMSLS DAP
0B Server
[4et/ITAGet
J-Link/J-Trace
TI Stellaris

Raw binary image

File: Symbal Section: Align:
FE micro | | |

STLINK
Third-Party Driver
TI MSPFET
TIXDS

Figure 6. Secondary Core Linker Input settings configuration

4 Multicore debug in IAR

Multi-core debugging generally refers to the act of debugging two cores simultaneously.

NOTE
It is possible to debug just the primary core. In this type of situation (assuming the project is a dual-core project),
the secondary core will still be programmed and will still run, but you will only have control over the primary core.
This is sometimes easier and simpler than true multi-core debugging. As such, you may find this more convenient
(depending on your goals). This section will focus on multi-core debugging.

As with multi-core project creation, debugging two cores simultaneously requires that both projects have certain settings
configured. Incorrect settings can (and usually) result in failed connection attempts.
The following information will be discussed:

1. Compiling a Multi-core project in IAR

2. Primary core project debug settings

3. Secondary project debug settings

4. Debugging

This example examines the multicore hello world project from the FRDM-K32L3A6 SDK package. The ijet debug probe is
used in this example but the content is still valid for other debug probes.

NOTE
At the time of writing this application note, IAR does not support dual-core debug with the JLink debug probe. Be
sure to check if your version of IAR supports dual-core debug with your preferred debug probe.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 8/47

NXP Semiconductors

4.1 Compiling a Multi-core project in IAR

Multicore debug in IAR

Master and slave projects are compiled separately in IAR, and as such, normal procedures should be followed to compile these
projects. However, the order does matter in this case. Because the master project is expected to program the slave’s memory
space as well, it follows that the slave project should be compiled first, so that the master project is able to link in the binary for

that project.

4.2 Primary core project debug settings

1. Make sure that the ijet (or supported debug probe of your choice) is selected in the Debugger category.

Category:

Options for node "hello_world_cm4”

General Options
Static Analysis

Assembler

Custom Build
Build Actions
Linker

Simulator
CADI

CMSIS DAP
GDE Server
I4et/ITAGjet
J-Link/1-Trace
TI Stellaris

PE micro
STLINK

TIMSPFET
TIXDs

Runtime Checking
C/C++ Compiler

Qutput Converter

Debugger

Third-Party Driver

Setup Download Images Exira Options Multicare Plugins

[JRunto

main

Driver
et JTAG]et o
Setup macros

[]Use macro file(s)

Device description file

[] Override default

Factory Settings

$TOOLKIT_DIR$\CONFIG\debugger\NXP\K32W04251M2_M4.ddf

Figure 7. Debug probe selection

Cancel

Let’s continue with the Setup tab.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

9/47

NXP Semiconductors

Multicore debug in IAR

Options for node “hello_world_cm4"” x>

Category Factary Settings

General Options
Static Analysis

Runtime Checking Selup Interface Trace Breakpoints
C/C++ Compiler

Reset

Assembler
Output Converter Hardware P
Custom Build
Build Actions Duration: ms Delay after: ms
Linker
Debuager Target power Emulator

. Always promptfor probe
Simulator []Erom the probe [] | 3; promptiorp

CADI selection

Leave on after debuggin)
CMSIS DAP - gang Serial no: I:l

CDE Server Switch off after debugging

Iet/ITAGjet
Iink/1-Trace []Log communication
T1 Stellaris

PE micro $PROJ_DIR$\cspycomm.log

ST-LINK
Third-Party Driver
TI MSP-FET
TIXDS

Figure 8. Setup of the primary core debugger

The reset method in this example is to use the Hardware reset, or reset pin, but this can be any of the reset options since
it is the primary, or master, core.

2. Let's look at the Download options of the Debugger configuration. The hello world example is configured to download
to flash. Figure 9 shows the primary core configuration (must use a flash loader if downloading to flash).

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 10/47

NXP Semiconductors

Multicore debug in IAR

Categary:

Options for node "hello_weorld_cmd”

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
Linker
Simulator
CADI
CMSIS DAP
GDE Server
I§et

Setup Download

Images Extra Options Multicore

] Verify download
[] 5uppress download
|se flash loader(s)
[]Ovenide defautt board file
STOOLKIT_DIRS config*flashloader™,

Edit...

Perform mass erase before flashing

Figure 9. Download settings for primary core project

Factarn,

Plugins

NOTE

If a RAM project is desired, this check-box should be left unchecked.

3. Examine the Multicore tab. This is arguably the most important tab. As with the linker options, this tab requires knowledge
of the slave (or secondary core) workspace. Figure 10 displays the Multicore tab.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

11747

NXP Semiconductors

Multicore debug in IAR

Options for node "hello_waorld_cm4” X
Category: Factony Settings
General Options
Static Analysis
Runtime Checking Setup Download Images Extra Options Mulicore Plugins

CfC++ Compiler

Assembler Symmetric multicore

Output Converter Mumber of cores: |1 |

Custom Build

Build Actions Asymmetric multicare

Linker Enable multicore master mode
Simulator Port |53451 |
CADI Slave workspace: |$PROJ_DIFi$,‘..,f..fcmﬂplus,fiar,fhello_world_crr|
CMSIS DAP
GDB Server Slave project |he||o_wor|d_cmﬂp|us |
LRt/ ITAGGet Slave configuration: |Debug |
J-Link/1-Trace
T Stellaris Aﬁach slave to running target
PE micro
ST-LIMK
Third-Party Driver
TI MSP-FET
TIXD5

Figure 10. Debugger settings for the Multicore tab (primary core)
Only the Asymmetric multicore settings are necessary as K32L3A6 is an asymmetric device.
NOTE
The path to the slave workspace in the debugger tab is the same as in the project configuration ($PROJ DIR
$/../../cmOplus/iar/hello _world cmQOplus.eww).
4. Make sure that the debugger interface is setup correctly.
Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 12/47

NXP Semiconductors

Multicore debug in IAR

Options for node "hello_world_cm4” x
Categany: Factony Settings
General Options
Static Analysis
Runtime Checking Setup Interface Trace Breakpoints

C/C-++ Compiler Probe config Probe configuration file

Assembler Override default

Output Converter OAUtO vErmaE aetEd
custom Build O From file $TOOLKIT_DIR$\config\debugger\NXP1K32W0.F
Build Actions

i Corel Sala

Linker (@) Explicit Select
Debugger Interface Explicit probe configuration

Simulator Multi-target debug system

CADI O JTAG _

CMSIS DAP @SWD Target number (TAP or Multidrop ID): D
GDE Server (eJTAG [#] Target with multiple CPUs

CPU number gntarget IZ'

J-Link/1-Trace Interfa q

T1 Stellaris nteriace spes JTAG scan chain contains non-Arm devices
PE micro Auto detect 0

ST-LINK

Third-Party Driver

TI MSP-FET

TIXDS

Figure 11. Debugger interface configuration for a dual-core project

The important sections to focus on in the interface tab are the Probe config section. The probe configuration can be
determined automatically, from a user defined file, or by explicit selections in this dialog box. This example will focus on
the explicit method. It is important that the Explicit probe configuration (if selected) targets the correct CPU number. Since
this project targets the Arm Cortex-M4 core, the CPU number should be 0 as it is the first CPU in the debug chain.

If afile is used, the file should have this information and the correct core must be selected in the CPU field. However, using
the settings shown above, no problems should be encountered.

NOTE
Another important note here is that it is crucial that the Interface used (SWD is shown) matches the slave project.

4.3 Secondary project debug settings

The secondary project’s debug settings are largely determined by the master’s settings. However there is no automatic link
between the two projects. So it is imperative that these settings are manually configured and correct before initiating a debug
session. Not doing so usually results in failed connection attempts, but can also lead to other erratic behavior of the IAR IDE
(sometimes causing the program to crash).

Check the following settings:

» Check whether the driver used matches the master project. This is found in the Setup tab of the Debugger category.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 13/47

NXP Semiconductors

Multicore debug in IAR

Options for node "hello_world_cm4" >

Category: Factomy Settings

General Options

Static Analysis

Runtime Checking
C/C++ Compiler Setup Download Images Bxra Options Mulicore Plugins
Aszembler
Output Converter Driver []Runtao
Custom Build et —

Build Actions S—
Linker Setup macros

[]Usze macro filefz)
Simulator
CADI
CMSIS DAP
GDE Server
Iet
JLink/1-Trace
TI Stellaris
Mu-Link
PE micra
STLIMNK
Third-Party Driver
TI MSP-FET
TIXDS

main

Device description file
[] Ovemide defautt

Cancel

Figure 12. Debugger driver selection in slave project

» Check the Download setting. Since the master project should take care of flashing the device to be debugged, the slave
project should not try to download the code. This operation could result in errors. Figure 13 displays the slave project’s
download settings.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 14 /47

NXP Semiconductors

Multicore debug in IAR

Cateqgary:

Options for node "hello_weorld_cm4”

X

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Aszembler
QOutput Converter
Custom Build
Build Actions
Linker
Simulator
CADI
CMSIS DAP
GDB Server
I-et
JLink/1-Trace
TI Stellaris
Mu-Link
PE micro
STLIMK
Third-Party Driver
TI MSP-FET
TIXDSs

Setup Download |mages Extra Options Mutticore

[] Verify download
Suppress download

|ze flash loader(z)
Cvemide default board file
STOOLKIT_DIRS corfig*flashloader,

Edit...

Perform mass erase before flashing

Plugins

Factary Settings

Cancel

Figure 13. Slave project download settings

Similarly, the slave project should not try to reset the device when initializing. This could also resultin errors or erratic behavior.
So the slave project needs to suppress resets. This is accomplished by setting the correct reset option in the Setup tab of
the appropriate debugger. In this case, this is found in the ijet/JTAGjet category.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

15/47

NXP Semiconductors

Multicore debug in IAR

Categony:

Options for node "hello_world_cm4”

General Options
Static Analysis
Runtime Chedking
C/C++ Compiler
Aszembler
Output Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
CADI
CMSIS DAP
GDE Server
J-Link/J-Trace
TI Stellaris
Mu-Link
PE micro
ST-LIMNK
Third-Party Driver
TI MSP-FET
TIXD5

Setup | |nteface Trace Breakpointz

Heset

Disabled {no reset) e

Diuration: 300| m= Dielay after: 200| m=
Emulator
] Always prompt for probe
gelection

Serial no: I:I

Tanget power
] Erom the probe

Leave on after debugging
Switch off after debugging

[] Log communication

$PROJ_DIRS \cspycomm Jog

Factar Settings

Cancel E

Figure 14. Slave project debugger reset selection

» Check whether the Interface settings of the debugger of the slave project match those of the master project.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

16/47

NXP Semiconductors

Multicore debug in IAR

Options for node "hello_world_cm4" >
L2 iz Factom Settingz
General Options
Static Analysis
Runtime Checking

CJC++ Compiler Setup Inteface Trace Breakpoints
Assembler Probe corfig Probe configuration file
Qutput Converter Overmide default
Custom Build O Ado
Build Actions (O From file
Linker @ Explicit CPU: |Cored Select
Debugger
Simulator Interface Explicit probe configuration
CALI OITAG Multi+arget debug system
CMSIS DAP))
0B Server ® SWD Target number (TAF or Multidrop 10): D
OclTAG £ Target with mutiple CPUs
ILink/3-Trace CPU number on target: EI
TI Stellaris Interf g
Mu-Link Eflace spee JTAG scan chain contains non-Am devices
) Auto detect - A
PE micra ° - Freceding bits: u
STLIMK
Third-Party Driver
TI MSP-FET
TILXDS
Cancel

Figure 15. Slave project debugger interface settings

4.4 Debugging

1. Make sure that the projects are compiled.

Since the master project includes a binary from the slave project, the slave project must be successfully compiled first.
Only then can the master project be compiled. Once both projects are compiled properly, close the slave project and leave

the master project open.

2. To initiate a debug session, click the Download and debug button in the master project.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

17147

NXP Semiconductors

Multicore debug in IAR

9 hello_world_cm4 - Master - IAR Embedded Workbench IDE - ARM 8.20.1
File Edit View Project I|-jet/JTAGjet Tools Window Help
DO R@ = XHO OC r<Q>%=<Q>I ARG=0

—_—_ 7
Workspace * 0 X | hello_world_core0.c X
|Debug W
; 43
Files & . 24
E‘.hE"D world l::m4—Debug vy 45 SERARRR A AR R R AR AR AR R AR AR R R R R AR AR RR AR AR RRRR AR AR AR R AR AR RRRR AR AR A RRRR AR RRRR AR
& board 46 4 Prototypes
= i doc a7 AERREAKRRRRRRARRRRRE KK RRRRRRARARRRR KK RRRRRR AR ARRRE KK RRRRRRRRKRRREKKRRRRRR KK
& W drivers 4
B & memgr 49 L Ny
i
memagr.c 2 code
h 51 ARRREE R RRRRR R AR RRRRR R R RRRR AR KRR RRRR KR RRRR AR KR RRRR KRR RRRR AR KRR AR KK KRR RR R KK
'— mMCmgr.
g . . 52
I—] mcmgr_intermal _core_api... =8
memgr_intemal_core_api... sS4 s
L@ R memor mu intemal o ,-$ S e

Figure 16. Download and Debug button in the master project

3. Upon clicking the Download and debug button, a second instance of IAR will open with the slave workspace open in that

@ hello_world_cmd - IAR Embedded Workbench IDE - Arm £.40,1 - O X | helloword cmDplus - IAR Embedded Werkbench IDE 0 - o X
Edit View FProject Debug Disassembly Ijet Tools Window Help File Edit WView Projet Debug Disassembly |jet Tools Window Help
= B |
DoRS = %KD DC 24 Q 2K B >0 RO-E GCO. OR@ = XE0 DC| LD Re-=E GCO.
s B,) 1
ey .
Workspace vex - Disassemaly voex Disassembly vex
o % 0l Gow | < emony oo | | [Memary
305 DCD DefaultIsk ~ - 7 7S
Files B . o 55 eigica Disassernbly Disassenbly
E @hello_world_cmd-d_. 207 DED DefaultISR 0x27cc: Dx206f'6cbe 0x0: 0x0000
308 DD ORFFFFFFEF 0x27d0 0x6c72'6£57 0x1: 0x00
305 _vVectors Ena 0x27dd: 0x7266°2064 0x2: 0x0902
310 0x27d8: 0=7420'6d6f 0=d: 0x1449
31 _vectors B _vector_table 0x27dc: 0x5020° 6568 0x6: 0x0100
312 _Vectors Size BQU _Vectors End - 0x27c0: 0x616d'6972 0x8: 0x07c?
313 Ox27ed: 0x4320°7972 Oxa: 0x0100
s 0x2720: 0x2165'726f Oxc: 0x07bE
= Ox27ec: 0x000a'0a0d Oxe: 0x0100
- _— 0x27£0: 0x704c'5£73 0x10: 00000
- 0x27£4: 0x7472'6175 0x12: 0x0000
il B 0x27£8- 0x7061°6441 0x14: 0x0000
e 0x27fc: 042726574 0x16: 00000
e R e B 022800: 0x5b65'7361 0218: 0x0000
22 SRCTITM . text:CONE: REORDER:NOE, 0x2804: Ox666e’6£63 Oxla: 0x0000
323 0x2808: 0x382d'6769 Oxle: 020000
& a2 0x280c: 0x7473'6e69 Oxle: 0x0000
325 RO, =0XE000EDOG 0x2810: Ox6563'6ebl 0x20: 0x0000
326 Rl, =_vector_tabls 0x2814: 0=0000°005d 0x22: 00000
27 R1, [RO] CPsiD 1 0x24: 00000
328 R2, [R1] Reset_Handler: 0%26: 00000
28 MSP, R2 0x28: 0x0000
330 R0, =SystemInit 0] RO, =0xE000 0x22: 0x0000
L B0 0x261a: 0x4805 Ox2c: 0x053f
sk SETE: I 7 Do DR Rl, =_vecti Ox2e: 00100
i IR RS amprogoan:scy 0x281c: 0%4905 0%30: 0x0000
;:; LS L STR R1, [RO] 0x32: 0x0000
O0x281e: 0x6001 Ox34: 0x0000
::: SECTION t’:i;::::é:uom:m LD e Dz3¢:2 020100
B ety fsticr. 0x2820: 0x680a 0%38: 0x0543
o s HSR HSP. R2 Ox3a: 00100
340 0x2822: 0x£382 0xB80 Ox3c: 0x07cf
341 PUBWEAK HardFault_Handler LDR RO, =System Ox3e: 0x0100
342 SECTION . text:CODE:REORDER:NOF 0x2826- 0x4804 Oxd0: Ox16c9
343 HardFault_Handler ELY RO 0x42: 020100
344 B . 0x2828: 0x4780 » Ox44: Ox15e9 h o
[helto_werd_ema < > vlll¢ > hello_werld_emiplus e 5
DebugLog ~ 2 x| Debugleg vax
Lag Q) Log ~
Wed Oct 30, 2019 1353:59: INFO: Trace None’ mode is used -race is disabled Wed Oct 30, 2019 1359:59: INFO: Ce Hstis ing the target
‘Wed Oct 30, 2019 13:55.59: INFO: Cannot measure currentwhen Het is not powening the target. Wed Oct 30, 2019 13:5%:59: MultiCore: Synchronous core execution DISABLED.
‘Wed Oct 30, 2018 13:58:59; MultiCore: Synchronous core execution DISABLED. A\ Wed Oct30, 2018 13:5%59: CPU is held in reset
A\ Wed Oct 30,2018 1358 53: There was 1 warming during the initislization of the debugging ssssion. ¥ Wed Oct 30, 2018 135859 Unable to exacute: driver error After the error occurred. the program counter (PC) wes <unknawn>
v v
< > < >
5uld Debuglog Build Debug Log
Ln 324, Col 1 System Co . [Ready

Figure 17. Debug session including Master and Slave workspaces

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note 18/47

NXP Semiconductors

4.

NOTE

* The entire MCU can be controlled from either IAR instance.

Multicore debug in IAR

© hellvord <ot - AR Embedded Workbench DE - Arm 6.40.1

DR = XB0 DC

Fle Edt View Projec Debug Disassembly Lt Tools Window Help

Fle Edt View Project Debug

AN N IR s N E—

et Tools Window Help

Wo-oi- P M0 r o

24Q2>%5=< Q>N RG= ©CcO
oL 0D anan ;5 0

X srup KoL s x

© @hello_world_cm4-d... v

308 o
306 oo
307 b

| Disassembly vax

: oo

LRI R s 2 2 i

Qe

2L 08

Workspace

vax

<] [Monoy

B

0 oo [

auleIs
DefaultIsR Disessembly
DefeultIsR 0x206 " 6c6e.

027cc

A || Fites
© @ hello_world_cm0plus...

v

oy
0x0: 020000

Figure 18. Debug controls in both IAR instances

» There are new controls to control the cores independently or simultaneously. There are controls start both
cores, pause execution of both cores, or get the status of both cores. Figure 19 displays and explains the
multicore controls in IAR.

@ hello_world_cm4 - Master - | Start both cores

File Edit View Project

Corestatusand T\ N R @ =
control ol

Morkspace

Set Muilticore

Figure 19. Multicore controls

If you mouse over the Core 0 or Core 1 status and control icons, an informational text box will give details of the core.
Figure 20 and Figure 21 display an example.

@ hello_world_cmé - Master - AR Embedded Workbench IDE - AREM

File Edit Debug Disassembly |-jet/JTAGjet
DR B XK) OC - < > 1
[Mo[-|M1 - + ¢ Pi-:03r ol Q-0 6
w.htfﬂcuson core 0 o

View Project Tools

Figure 20. Core 0 status

Debug | Core: 0: Cortex-MO+ |
- . . - &
Files ig‘_‘e' Stopped - e
E @he ’ 330 _ Vectors End
@ | Cyde counter; 0 331
= i doc 332 _ Vectors
I_E B difvers 333 __Vectora_Size
& W memgr 334
| F& Bmcmagre =kt
| I_ Bl mcmgrh fff FRIFIIIIIIRIIIIZ

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

19/47

NXP Semiconductors

Multicore debug in IAR

File Edit ¥iew Project Debug Disassembly
MO R = 4K

C

° hello_world_cm4 - Master - |AR Embedded Workbench IDE - ARM

I-jet/ITAGjet Tools

- < Q >

—
—+

‘o ~|[H 1

M~ i 3 v ol

h“ﬂ'r;iE'l

p_K32W04251... X

Workspace W set focus on core 1 ltartu
Debug Core: 1: Cortex-hd4
: State: Stopped 328
Files PC: 0x00002138 | 329
B @ hello_worl Cycle counter: 0 330
M board 331
M doc 33z
B drivers 333
21 W mcmgr S
momgr.c 333
F— @ mcrmgrh 336
|— L] mcmgr_intermal_core_... zgz
mecmgr_internal_core_... 33;
mcmar mu intemal.c man

Figure 21. Core 1 status

DCD
DCD
__Wectors_End

__Wectors
__Wectors_Size

FEFFrFFrrrrrrrrrrrr
. or

- = - e
Default inter

For

For

Clicking the down arrow next to each icon will reveal control options for the cores.

° hello_world_cm4 - Master - AR Embedded Wo

Figure 22. Core controls

File Edit WView Project Debug Disassembly 14
MO RS = XKD OC
' Wo ~| W1 -~ > P~ i 3 ok]
Workspac Start Core v 3 X startup_
Debug Stop Core »
328

Files L 329
= @ hello_world_cm4 - Debug 330
M board 331
W doc 332
Bl drivers 333

5. The toggle multicore execution mode will set how the other controls operate (Step Into, Step over, etc.,). Mousing over

this button will display the current operation status.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

20/47

NXP Semiconductors

Multicore projects in MCUXpresso

9 hello_world_cm4 - Master - |IAR. Embedded Workbench IDE - ARM 8.20.1

L o b

= @ hello_world_cm4 - Debug

330
230

Figure 23. Toggle multicore execution mode button

__Wectors_End

File Edit View Project Debug Disassembly I-jet/JTAGjet Tools Windo
DO R = XK OC » < Q > =
‘o - W1~ 3 Bl 3 o] » @ 8~ CEmosw
Workspace ! Toggle rlnulti:nre execution mode E _E
Debug Current mode: Run/5tep/Stop f
Files affect current core only =

6. Clicking the down arrow next to this button will allow the user to change between single core operation and dual-core
operation, as shown in Figure 24.

9 hello_ world_cm4 - Master - |IAR. Embedded Workbench IDE - ARM 8.20.1

File | Edit View Project Debug Disassembly I-jet/JTAGjet Tools Window Hely

Figure 24. Multicore mode selection options

MA@ = AR OC vy < Q > =< D
‘o ~ W1~ 3 R I o T B o .lp“ﬂv;iEmsqu.ﬂ,.ﬂ
Workspace O Run/5tep/Stop affect all cores lisassem
Tl RunfStepfSt.c:p affect current core only Goto
_ 328 DCD A

Files & . 329 DCD Disas
= @ hello_world_cm4 - Debug 330 _ Vectors End

M hoard 331

B doc 332 _ Vectors

5 Multicore projects in MCUXpresso

Multicore MCUs can be designed in many ways. However, within MCUXpresso IDE, there is an underlying expectation that one
core (the Master) will control the execution (or at least the startup) of code running on other (Slave) core(s). This section describes:

* How to make a brand new multi-core project.

» Make a multi-core project from a pair of existing projects (slave and master pair).

» How to debug a multi-core project in MCUXpresso.

5.1 Multi-core project creation

Multicore application projects as described below consists of two linked projects:

» One project containing the Master code.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

21/47

NXP Semiconductors

Multicore projects in MCUXpresso

» One project containing the Slave code.
The Master project contains a link to the Slave project which will cause the output image from the Slave to be included into the
Master image when the Master project is built.

NOTE
Building the Master project will trigger the Slave project to be built first.

5.1.1 Creating a master/slave project pair (using an SDK)
Since the Master project’s configuration needs to reference the slave project, the slave project should be created first.
To create the slave project, perform the following operations:

1. Drag and drop the SDK zip file into the Installed SDKs view (if the SDK has not already been installed) to install an SDK.
In the window that appears, click OK and wait until the import has finished.

[5) Installed SDKs 52 | [C] Properties [Console [%] Problems [J Memory % Instruction”

[# Installed SDKs

To install an SDK, simply drag and drop an SDK (zip file/folder) into the Tnstalled SDKs' view.

MName Version Location

Figure 25. Installed SDKs view in MCUXpresso IDE

2. Launch the New Project Wizard, select frdmk32I13a6 and click Next.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 22 /47

NXP Semiconductors

Multicore projects in MCUXpresso

& sok Wizard

M) -
(i) Creating project for device: K32L3A6000¢ using board: FRDM-K32L346 \E

. Board and/or Device selection page

~ SDK MCUs Available boards B &

MCUs from installed SDKs Please select an available board for your project.

MXP K32L 3460000
v K32L3A60 R
| K32L3A6000t |
IG2W0R2S
Kéx

‘ Supported boards for device: K32L3A60ox |

frdmk3213a6

~ Preinstalled MCUs
MCUs from preinstalled LPC and
generic Cortex-M part suppert

Target L)
LPC1102
LPC112x
LPC11 s
LPC11EGx
LPC11Bex
LPC11U6x
LPC11Lhax
LPC1 i ™
LPC1 TV R

Selected Device: K32L3A6000¢ using board: FRDM-K32L3A6 SDKs for selected MCU

Target Core: multicore device with cores: cortex-mOplus cortex-m4 MName SDK Version Manifest Ve... Location

Description: K32L3A60: Kinetis® K32L3A60 72MHz, 386KB SRAM Microcontrollers (MCls) 1 SDK_2x FRDM-K32L3A6 26,0 (Stage.. 3.5.0 [E, <Common>\5DK_2.6.0_FRDM-...
based on ARM® Cortex®-M4 Core and ARM® Cortex®-MOP Core

® < Back Next > Finish Cancel

Figure 26. New Project Wizard SDK MultiCore, Arm Cortex-M0+

3. On the Confugure the project page, select the cmOplus core. Make sure that MOSLAVE is selected in the core options (the
Project will automatically be given the suffix of MosLavVE). Drivers, utilities, etc. can be selected at this stage for the Slave
project if required.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 23747

NXP Semiconductors

Multicore projects in MCUXpresso
B sDK Wizard m] ®
1, The source from the SDK will be copied into the workspace, &
If you want to use linked files, please unzip the 'SDK_2.x_FRDM-K32L3A6" SDK.
. . A
. Configure the project
Project name: | K32L3A6000 Project £ | Project name suffix: | MOSLAVE &
Use default location
C\Users\nxal7750\Documents\MCUXpressol DE_11.0.0_2516\workspace\K32L3A6000c_Project Browse...
Device Packages Board Project Type Project Options
(®) K32L3A60VRIA (®) Default board files ®) C Project (O C++ Project SDK Debug Console (@) Semihost (C) UART
() Empty board files () C Static Library (O C++ Static Library [CMSIS-Core
Copy sources
Import other files
Cores
(O emd [cmd) Master @
Components =
Add or remove SDK software compenents
Operating Systems ._Drivers| CMS5IS Drivers | Utilities| Middleware | Board Components | Abstraction Layer | Software Components
Operating Systems & | =
|t;.-'p&t: filter ‘
MName Description Version
[4 Amazen-FresRTOS Amazon FreeRTOS, Real Time Operating System 10,20
It baremetal 1.0.0
¥
@ < Back Mext > FEinish Cancel
Figure 27. SDK Wizard Arm Cortex-M0+ slave project configuration
4. Set the Arm Cortex-M0+ Slave memory configurations.

NOTE

The MCUXpresso IDE’s managed linker script mechanism will default to link code to the first Flash region in this
view (if one exists) and use the first RAM region for data, heap and stack.

To force the Arm Cortex-MO+ code to link to a specific area of memory, ensure that the desired memory region is at the
top of the memory configuration list.

NOTE

To place the project in RAM, from the previous note, ensure the Flash region is removed and the desired RAM
bank is at the top of the memory configuration list.

In this example, we chose memory region starting at 01000000, which corresponds to the Arm Cortex-M0+ flash space,
for the Arm Cortex-M0+ code and RAM starting at 0x9000000 for the Arm Cortex-M0+ data.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note

24 /47

NXP Semiconductors

Multicore projects in MCUXpresso

B8 sDK Wizard

. Advanced project settings

¥ (/C++ Library Settings

Set library type (and hosting variant) | pegiib (semihost-nf) w
[Redlib: Use floating point version of printf MNewlibNano: Use floating point version of printf
1 Redlib: Use character rather than string based printf NewlibNano: Use floating point version of scanf
Redirect SDK "PRIMNTF" to C library "printf" Redirect printf/scanf to ITM
Include semihost HardFault handler [Redirect printf/scanf to UART

~ MCU C Compiler

Language standard Compiler default
~ MCU Linker
[Link application to RAM

~ Memory Configuration

Memory details
Default LinkServer Flash Driver ‘ Browse...

Type Mame Alias Location Size Driver I

I Flash PROGRAM_FLASH_cmOplus Flash 0x1000000 0x40000 FTFE_2K_K32Wix_cmOplus.cfx I
RAM SRAM_TCM RAM 0%3000000 0x20000 I& |
RAM FLEX_RAM RAMZ 0%48000000 0x1000
RAM USB_RAM RAM3 %48010000 0xB00
Add Flash | Add RAM Split| |Join | | Delete Import... | | Merge...| | Export... | | Generate...

@ < Back Next > Cancel

Figure 28. New project wizard SDK Arm Cortex-M0+ slave memory

5. Click Finish to complete the creation of the Slave project.
To create the Master project, perform the following operations:
1. Launch the New Project Wizard, select FRDMK32L3A6 SDK, and click Next. Then, select cm4 Core and click the MASTER

check box. This configures the wizard to create a Multicore project.

NOTE
The project will automatically be given the suffix MASTER. Drivers, utilities, etc. can be selected at this stage for
the Master project if required.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note 25/47

NXP Semiconductors

Multicore projects in MCUXpresso

B sDK Wizard m] ®

-
1, The source from the SDK will be copied into the workspace, \E
If you want to use linked files, please unzip the 'SDK_2x_FRDM-K32L3A6' SDK.

. Configure the project -

Project name: | K32L3A60woc_Project L7 | Project name suffix: | MASTER e

Use default location

C\Users\nxal7750\Documents\MCUXpressolDE_11.0.0_2516\workspace\K32L 3A6000_Project Browse...
Device Packages Board Project Type Project Options
(@) K32L3A60VPI1A (®) Default board files @ C Project (O C++ Project SDK Debug Console @) Semihost () UART
(O Empty board files (O C Static Library (O C++ Static Library [CMSIS-Core

Copy sources
Import other files

Components =

Add or remove SDK software components

Operating Systems | Drivers . CMSIS Drivers | Utilities| Middleware | Board Components | Abstraction Layer | Software Components

Drivers el % ‘ =
| type to filter |
Name Description Version L)
4% ewm EWM Driver 201
[4 flash Flash Driver 3.00
[4 flexbus FLEXBUS Driver 210
[4 flexio FLEXIO Driver 202
[flexio_i2e_master FLEXIO 12C Driver 2138
[flexio_spi FLEXIO SPI Driver 213
[gt flexio_spi_edma FLEXIO 5Pl EDMA Driver 213
[4 flexio_uart FLEXIO UART Driver 213
O -@ flexio_uart_edma FLEXIO UART EDMA Driver 213
e
O i2c LPI2C Driver 2110
R e cdeee [T aae v
@ < Back Next > Finish Cancel

Figure 29. SDK wizard Arm Cortex-M4 master project configurations

2. Set the Arm Cortex-M4 Master memory configurations.

NOTE
The MCUXpresso IDEs managed linker script mechanism will default to link code to the first Flash region in this
view (if one exists) and use the first RAM region for data, heap and stack.

To place the Arm Cortex-M4 project code in a specific section of memory, ensure that the desired memory region is at the
top of the memory configuration list. In this example, we are placing the Arm Cortex-M4 code in the Arm Cortex-M4 flash,
which starts at address 0x0, and the Arm Cortex M4 data in RAM starting at 0x20000000.

NOTE
If we want to place the project in RAM, from the previous note, ensure the Flash regions are removed and the
desired RAM bank is at the top of the memory configuration list.

3. Click Browse next to the Slave project for MOSLAVE selection box (as shown in Figure 30) to select the Slave project
within the Workspace.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 26 /47

NXP Semiconductors

Multicore projects in MCUXpresso

B SDK Wizard u] X
€9 Please select a slave project to link for multicore projects! @

¥ (/C++ Library Settings A

Set library type (and hosting variant] | gedlib (semihost-nf) ~
[Redlib: Use floating point version of printf NewlibNano: Use floating point version of printf
[Redlib: Use character rather than string based printf MNewlibMNano: Use floating point version of scanf
Redirect SDK "PRINTF" to C library "printf" [Redirect printf/scanf to ITM
Include semihost HardFault handler [Redirect printf/scanf to UART

~ Hardware settings

Set Flosting Point type | Fpy4-SP (Hard ABI) v
~ MCU C Compiler

Language standard | Compiler default ~

* MCU Linker
[Link application to RAM

~ Memory Configuration

Memory details
Default LinkServer Flash Driver ‘ Browse...
Type Mame Alias Location Size Driver &
Flash PROGRAM_FLASH_cmd Flash 0 0x100000 FTFE_4K_K32Wix_cmd4.cfx
Flash PROGRAM_FLASH_cmOplus Flash2 0x1000000 %40000 FTFE_2K_K32W0x_cmOplus.... &
RAM SRAM_DTC cmd RAM 0x20000000 0x30000
RAM SRAM_TCM_cmOplus RAMZ 0x9000000 0x20000
RAM SRAM_ITC emd RAMZ 0x8000000 0x10000
RAM FLEX_RAM RAM4 0x48000000 0x1000
RAM USB_RAM RAM3 0x48010000 0x800
Add Flash | Add RAM Split| |Join | Delete Import...| | Merge...| | Export... | | Generate...
~ Multicore slave projects settings
Optionally allow an existing slave project to be associated with this project.
Slave project for MOSLAVE /7 | Browse... Link Section RAMZ ~
& By default, the slave images will be placed in the RAM2 block of the master project's memory map. The slave memory setting in the master project should match how the slave project was built.
v
@ Next » Finish Cancel

Figure 30. MCUXpresso memory selection dialog box

4. Select the previously created Slave project and click OK.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 27147

NXP Semiconductors

Multicore projects in MCUXpresso

3 slave project selection for MOSLAVE O et

Select a slave project to link with the master project being created.

(== K321 3A600a_Project_MOSLAVE

Figure 31. New Project Wizard SDK Arm Cortex-M4 Master Slave Selection

5. Make sure that the Link Section name (the default value is RAM2) is a memory region that matches the linked address of
the Slave project. In this case, we select PROGRAM_FLASH_cmOplus as it corresponds to address 0x1000000.

Memaory details
Default LinkServer Flash Driver | ‘ Browse...
Type Mame Alias Location Size Driver G.
Flash PROGRAM_FLASH_cm4 Flash L] 0100000 FTFE_4K_K32W0x_cmd.cfx I
s e e It
Flash | PROGRAM_FLASH_cmOplus Flash2 01000000 0240000 FTFE_2K_K32W0x_cmOplus.... =l
RAM SRAM_DTC_cm4 020000000 (30000
RAM SRAM_TCM_cmOplus (9000000 (20000
RAM SRAM_ITC _cmd 0xB000000 010000
RAM FLEX_RAM 0x48000000 0x1000
RAM USB_RAM RAM3 0480710000 0x800
Add Flash | Add RAM Split | |Join | | Delete Import... | | Merge... | | Export... | | Generate...
~* Multicore slave projects settings
Optienally allow an existing slave project to be associated with this project.
Slave project for MOSLAVE K32L3A600oo_Project MOSLAVE /7 | Browse... Link Section I PROGRAM_FLASH_cmOplus I ~
& By default, the slave images will be placed in the RAM2 block of the master project's memory map. The slave memory setting in the master project should match how the slave project was built.
v

Figure 32. New project wizard SDK Arm Cortex-M4 master memory and slave selection

6. Click Finish to generate the Master project.

5.1.2 Editing existing project settings for Multicore

If you wish to make a multi-core project from two existing projects (one for the Arm Cortex-M4 and the other one for the Arm
Cortex-M0+), perform the following modifications to the project settings. The multi-core he11o world example located in the
FRDMK32L3A6 SDK will be used as a guiding example.

1. Modify the slave project settings.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 28 /47

NXP Semiconductors

Go to Project Properties -> C/C++ Build -> MCU Settings

Multicore projects in MCUXpresso

In the memory details, edit the list so that the memory region you want the Arm Cortex-M0+ code to be placed in is at the
top of the list. For this example, we chose memory region starting at 0x1000000.

NOTE

The MCUXpresso IDE’s managed linker script mechanism will default to link code to the first Flash region in this

view (if one exists) and use the first RAM region for data, heap and stack.

Figure 33. Existing Arm Cortex-M0+ slave memory settings

Memaory details (K32L3A60o0d™
Default LinkServer Flash Driver | Browse...

Type Mame Alias Location Size Driver {r
Flash PROGRAM_FL... Flash O 1000000 O 0000 FTFE_2K_K32...
RAM SRAM_TCM RAM (9000000 20000 {!’ I
RAM FLEX_RAM RANM2 (e 2000000 Do 1000
RAM LUSE_RAM RAM3 e 80710000 OxB00
Add Flash | | Add RAM Split | | Join | | Delete Import... | | Merge... | | Export... | | Generate...

NOTE

To place the project in RAM, from the previous note, ensure the Flash regions are removed and the desired RAM
bank is at the top of the memory configuration list.

2. Go to Project Properties -> C/C++ Build -> Settings -> Tool Settings -> MCU Linker -> Multicore, select the desired
configuration, and ensure that the project is configured as MOSLAVE.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

29/47

NXP Semiconductors

Multicore projects in MCUXpresso

s Properties for K32L3A600a_Project MOSLAVE

m} b4
type filter text Settings 0. v w
Resource
Builders
s CfC++ Build Configuration: |Debug [Active] ~ || Manage Configurations...

Build Variables
Environment

Logging %3 Tool Settings A Build steps Build Artifact Binary Parsers @ Error Parsers
MU settings
Settings v B3 MCU C Compiler Multicore cenfiguration
Tool Chain Editor @ Dialect MOSLAVE a
C/C++ General (2 Preprocessor
MCUXpresso Config Tools (2 Includes
Project Matures (2 Optimization
Project References @ Debugging
Run/Debug Settings (£ Warnings
Task Tags (2 Miscellaneous
Validation @ Architecture
w BB MCU Assembler
£ General

@ Architecture & Headers
~ B3 MCU Linker
@ General
(E2 Libraries
@ Miscellaneous
(Z2 Shared Library Settings
@ Architecture
(%2 Managed Linker Script
@ Multicore
w B3 MCU Debugger
@ Debug
(2 Miscellaneous

Figure 34. Existing Arm Cortext-MO+ Slave Multicore Settings

NOTE
The same build configuration must be selected for both the Arm Cortex-M4 and Arm Cortex-MO+ projects.

3. Click OK to save the changes and close the project properties window.

Now it's time to edit the Master project settings.

1. Go to Project Properties -> C/C++ Build -> MCU Settings.

2. In the memory details, edit the list so that the memory region you want the Arm Cortex-M4 code to be placed in is at the

top of the list. For this example, we chose memory region starting at 0x0. Additionally, ensure that the memory region that
you chose for the Arm Cortex-M0+ code is also in the list.

NOTE

The MCUXpresso IDE’s managed linker script mechanism will default to link code to the first Flash region in this
view (if one exists) and use the first RAM region for data, heap and stack.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note 30/47

NXP Semiconductors

Multicore projects in MCUXpresso

Memory details (K32L3A60xxx)

Default LinkServer Flash Driver | Browse...
Type Marme Alias Location Size Driver 1} |
Flash PROGRAM_FLASH cm4 Flash Os0 0= 100000 FTFE_4K_K32W...

Flash PROGRAM_FLASH_cmOplus Flash2 (b 1000000 (e 0000 FTFE_2K_K32W... | f},
RAM SRAM_DTC _cmd RAM Os20000000 (30000
|| Ram SRAM_TCM_cm0plus RAM2 0x9000000 0x20000 |
RAM SRAM_ITC_cmd RAM3 (%8000000 (10000
RAM FLEX_RAM RANM4 O B000000 (e 1000
RAM USB_RAM RAM3S (48070000 (800
Add Flash | | Add RAM Split | | Join | | Delete Impert... | | Merge... | | Export.. | Generate..
Figure 35. Existing Arm Cortex-M4 Master Memory Settings

NOTE
To place the project in RAM, from the previous note, ensure the Flash regions are removed and the desired RAM
bank is at the top of the memory configuration list.

3. Go to Project Properties -> C/C++ Build -> Settings -> Tool Settings -> MCU Linker -> Multicore and select the desired
configuration. The selected configuration should be the same as that of the Slave project. In this case, we chose the
Debug configuration for both.

4. Select the checkbox for MOSLAVE to indicate that there is a slave project that should be linked to the Arm Cortex-M4
project. Then, select the appropriate master memory region in which the Arm Cortex-M0+ code will be placed. This should
correspond to the memory region chosen in the Arm Cortex-MO+ project properties. In this example, we chose
PROGRAM FLASH cmOplus, Which corresponds to memory starting at 0x1000000.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 31/47

NXP Semiconductors

Multicore projects in MCUXpresso

type filter text

Resource
Builders
w C/C++ Build
Build Variables
Environment
Logging
MCU settings
Settings
Tool Chain Editor
C/C++ General
MCUXpresso Config Tools
Project Natures
Project References
Run/Debug Settings
Task Tags
Validation

. Properties for K32L3A600a_Project MASTER

Settings

Configuration: |Debug [Active]

Manage Configurations...

B Tool Settings & Build steps

~ B3 MCU C Compiler
@ Dialect
(22 Preprocessor
@ Includes
(2 Optimization
(2 Debugging
Warnings
@ Miscellaneous
@ Architecture
w B3 MCU Assembler
@ General
@ Architecture & Headers
~ B3 MCU Linker
@ General
@ Libraries
@ Miscellaneous
(2 Shared Library Settings
@ Architecture
(# Managed Linker Script
@ Multicore
~ B3 MCU Debugger

Build Artifact Binary Parsers €3 Error Parsers

Multicore slaves

Slave name

Master memory region

Slave application (object)

MOSLAVE

PROGRAM_FLASH_cmOplus

$workspace_loc/K32L3A60c_Proj...

Figure 36. Existing Arm Cortex-M4 Master Multicore settings

Under the Slave application, click on the ellipsis to open a window to select the object file for the slave project.

Configuration:

B Tool Settings & Build steps

Debug [Active]

w 3 MCU C Compiler
(2 Dialect
[Preprocessor
(2 Includes
(# Optimization
@ Debugging

Multicore slaves

Build Artifact Binary Parsers € Error Parsers

~ | | Manage Cenfigurations...

Slave name

MOSLAVE

Master memory regicn

PROGRAM_FLASH_cmOplus

Slave application (object)
Hworkspace_loc/K32L3A6k_Praj...

—

Figure 37. Ellipsis to click on to select slave project

6. This file should be in the selected configuration folder after building the slave project.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

32/47

NXP Semiconductors

Multicore projects in MCUXpresso

Select the object file

¥ Object file selection for MOSLAVE O >

|¥| .cproject

|¥| .project

[= .settings

[= CMsIS

w [= Debug

kK32L3A600_Project MOSLAVE. axf
K32L3A6000_Project MOSLAVE.axf.o
K32L3AEMo: Project_MOSLAVE.map
B K32L3A6000_Project_MOSLAVE_Debug.ld
e K32L3A6000_Project MOSLAVE_Debug_library.ld
e K32L3A600o_Project_MOSLAVE_Debug_memory.ld
= board
[component
= dewvice

v 0% K32L3A6000_Project_MOSLAVE A

= drivers LY

OK

Q

Figure 38. Existing Arm Cortex-M4 Master Slave selection

7. Go to Project Properties -> Project References and select the checkbox for the slave project.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

33/47

NXP Semiconductors

Multicore debug in MCUXpresso

u Properties for K32L3460ox_Project_ MASTER

type filter text Project References
R
Ee%lc;urce Projects may refer to other projects in the wor
unders Use this page to specify what other projects ar
w C/C++ Build
Build Variables Project references for 'K32L3A6000_Project_M
Envi t
Airenmen 125 K320 3A60w00¢_Project_MOSLAVE
Legging
MCU settings
Settings

Tool Chain Editor
C/C++ General
MCUXpresso Config Tools
Project Matures
Project References
Run/Debug Settings
Task Tags
Validation

Figure 39. Existing Arm Cortex-M4 Master Slave Project Reference

8. Click OK to save the changes and close the project properties window.

6 Multicore debug in MCUXpresso

The Master core debugger handles flashing of both the primary and the auxiliary core applications into the SoC flash memory;
therefore, the Master project should be run (debugged) first. However, before debugging, you must ensure that the slave project
debug settings are configured correctly for multi-core debugging.

6.1 Configuring slave debug settings

With the slave project selected, go to Project Properties -> Run/Debug Settings. Select the debug configuration and click Edit,

as shown in Figure 40.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

34/47

NXP Semiconductors

Multicore debug in MCUXpresso

type filter text Run/Debug Settings Svivw
Resource
Builders This page allows you to manage launch configurations associated with the currently selected resource.

v C/C++ Build

Launch configurations for ‘frdmk32w042_multicore_examples_hello_world_cmOplus'":

Build Variables

Environment | WREE
Logging 42_multicore_examples_ _ erver Release Duslicate
MCU settings .frdmk32w042_multicore_exampla_hello_world_cm«# LinkServer Release ihs
Tool Chain Editor

C/C++ General Delete

MCUXpresso Config Tools

Project References

Run/Debug Settings

Task Tags

Validation

New...

Figure 40. Arm Cortex-M0+ slave edit run/debug settings

NOTE
If no configurations are available, click new to create a new configuration. Be sure to click Search project and
select the binary from the slave project. You may also need to build the slave project before executing this step.

In the Edit launch configuration properties window, click on the LinkServer Debugger tab and check Attach only, as shown in
Figure 41.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 35/47

NXP Semiconductors

Multicore debug in MCUXpresso

. Edit Configuration

Edit launch configuration properties

®@

Name: | K32L3A60xor_Project MOSLAVE Debug |
Main ﬁ;ﬁi GDE Debugger (LinkServer Debugger - & GUI Flash Tool\l %5 Other Symbols\l "3 Startup\l Be Source\l S| Common\l
. -
LinkServer Debugger
Debug Options
Debug Connection | SWD v | | £ojit JTAG confiquration
LinkServer Options
= Debug Connection
Settings for the debug connection
[] Attach anly [JReset on Connect
Reset script ‘ V| Workspace... || File System...
Connect script ‘ V| Workspace... || File System...
BootROM stall |
Flash driver reset handling ~ | Reset handling ~
Disconnect behavior cont ~ | Semihosting support | On ~
w
Revert Apply

Figure 41. Arm Cortex-M0+ slave attach only settings

6.2 Primary core debugging

To download and run the multicore application, switch to the Master application project and perform all steps as described in
Section 7.3 Run an example application in MCUXpresso IDE User Guide (found in <k321, SDK root>\docs). These steps are
common for both single core applications and the Master side of dual-core applications, to ensure that both sides of the multicore

application are properly loaded and started.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

36/47

NXP Semiconductors

Multicore debug in MCUXpresso

() Quickstart Panel 3% (%)= Varables ®g Breakpoints

MCUXpresso IDE - Quickstart Panel
ioE | Project: K32L3AB0eo_Project MASTER [Debug]

= Create or import a project

= . Mew project...
-y . Import SDK example(s)...
® Import project(s) from file system...

* Build your project

TR A Build
&"Clean

= Debug your project

'-g Debug

~ Miscellaneous

B Edit project settings

. MCUXpresso Config Tools= »

(# Quick Settings> >

,@1 Export project(s) to archive (zip)

B Export project(s) and references to archive (zip)
|o Build all projects [Debug]

Figure 42. Debug K321.3A60xxx_Project MASTER Case

= 0O

]

B-E-8-

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

37/47

NXP Semiconductors

Multicore debug in MCUXpresso

38 Probes discovered O x

Connect to target: K32L3A60hoo

2 probes found. Select the probe to use:

Available attached probes

Marmne Serial number/ID Type Manu... |DE Debug Mode
CMSIS-DAP w1 02370b0620130... LinkS.. ARM Mon-Stop

Supported Probes (tick/untick to enable/disable)
MCUXpresso IDE LinkServer (inc. CMSI5-DAP] probes
P&E Micro probes

SEGGER J-Link probes

Probe search options

Search again

Remember my selection (for this Launch configuration)

@

Figure 43. Attached probes: debug emulator selection

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 38/47

NXP Semiconductors

Multicore debug in MCUXpresso

B8 mutticore_guide - K32L3A600ac_Project MASTER/source/K32L 3A6000:_Project_MASTER.c - MCUXpresso IDE
File Edit Source Refactor Navigate Search Project CenfigTools Run Analysis FreeRTOS Window Help

it | B~ R-BYL @-Bin | IBMI S blilERERER S P IS - O -G (™ £ 0 -
By Projec... 52 | Periph.. il Regist. #gFaults = O 3 Debug 32 i» v=98 |
= <=:==> ‘ | . T v K32L3A60eec_Project MASTER LinkServer Debug [C/C++ (NXP Semicenductors) MCU Application] ~
125 K321 36000 Project_ MOSLAVE v L@ K32L3A600x_Project_MASTER.axf [K32L3A6000 (cortex-md)]
w125 K321 346000 Project_MASTER <Debugs ~ o Thread #1 1 (Suspended : Breakpoint)
@ Project Settings = main() at K32L3A600_Project_MASTER.:50 (408 v
4% Binaries = —
[l Includes [€] K32L3A60w0¢_Project MASTER.c 332 fsl_str.c = 7
(& CMSIS int main(void) S
(22 board { _
2 component /* Initialize MCMGR, install generic event handlers */
P MCMBR_Init();
(3 device =
(B drivers /* Init board hardware.*/
(& mecmgr BOARD_BootClockRUN();

v (3 source BOARD_InitDebugConsole();

€] K32L3A6050_Project MASTER.c

= /* Print the initial banner from Primary core */
[semihost_hardfault.c

PRINTF("\rinHello World from the Primary Corelirinin");

(2 startup
~ (2 utilities o #ifdef CORE1_IMAGE_COPY_TO_RAM
[fsl_assert.c = /* Calculate size of the image - not required on MCUXpresso IDE. MCUXpresso copies the secondary core

image to the target memory during startup automatically */
uint32_t corel_image_size;
corel_image_size = get_corel_image_size();
PRINTF("Copy Secondary core image to address: 8x¥x, size: ¥d\n", CORE1_BOOT_ADDRESS, corel_image_size);

fsl_debug_conscle_conf.h
g

@ fsl_debug_consele.c

@ fsl_debug_conseleh

@ fsl_str.c
[fsl_strh /* Copy Secondary core application from FLASH to the target memory. */
memcpy (CORE1_BOOT_ADDRESS, (woid *)CORE1_TMAGE_START, corel image size);
(&= Debug : - - = - - -
=4 #endif
oc

K32L3A60:00¢_Project MASTER LinkServer Debug.launch /* Boot Secondary core application */

PRINTF("Starting Secondary core.\rin");

Figure 44. Stop master core application at main () when running debugging

From here, you can continue to debug the application as if it were a single core device. Or you could continue on to learn how
to debug the secondary core at the same time.

6.3 Secondary core debugging

It is possible to debug both sides of the multicore application in parallel by attaching to the running application of the slave core.
After creating and running the debug session for the master core, perform the same steps for the slave core application. Highlight
the multicore slave project in the Project Explorer and click Debug in the Quickstart Panel, as shown in Figure 45.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 39/47

NXP Semiconductors

Multicore debug in MCUXpresso

() Quickstart Panel 3% (%)= Varables @g Breakpoints & O

MCUXpresso IDE - Quickstart Panel
iIoE | Projecty K32L3A6000_Project_MOSLAVE [Debug]
* Create or import a project

= .Newprcject...
-5-
f .Impu:rtSDKexample{s]...
® Import project(s) from file system...

= Build your project

@, Build
@” Clean

~ Debug your project ~G - B~

. '-t% Debug

=5 K32L3A60m00_Project_MOSLAVE

Figure 45. Debug K321.3a60xxx_Project MOSLAVE Case

After initializing the slave debug session, you can see two separate threads that you can control from the single IDE, as shown
in Figure 46. You can synchronize suspension/resumption of both cores using Suspend All Debug sessions and Resume All
Debug sessions controls.

B multicore_guide - K321 3A6050_Project_MASTER/source/K32L 3AB0i00c_Project_MASTER.c - MCUXpressa IDE
File Edit Source Refactor Navigate Search Project ConfigTools Run Analysis FreeRTOS Window Help
mil @ 8- |-BOCi@-Bin|pusstze S blER2R e Sl Ihiks -0 % i®- g vif-
By Projec... 52 | Periph.. 1 Regist. #gFaults = O 3% Debug 32 i» v=98 |
=15 ‘ s % | [R K32L3A60wec_Project_ MASTER LinkServer Debug [C/C++ (NXP Semiconductors) MCU Applicatinn]l
125 K32L3A60%0cc_Project MOSLAVE <Debug> w o K3Z2L3AbMoo Project_MASTER.auf [K32L3AB o (cortex-md)]
v K32L3A6000_Project_MASTER ~ o Thread #1 1 (Suspended : Breakpoint)
& Project Settings = main() at K32L3A600o_Project_MASTER.c:50 0408
ﬁ? Binaries | arm-none-eabi-gdb (8.2.50.20181213)
) Includes LS| SZLSAE{bm_PrDJect_MOSLAVE LinkServer Debug [C/C++ (NXP Semiconductors) MCU Apphcatmn]l
(8 CMSIS ~ (7 K32L3AB000c Project MOSLAVE.axf [K32L3A6000 (cortex-mOplus)]
(2 board +& Thread #1 1 (Running) (Running)
(22 component s arm-none-eabi-gdb (8.2.50.20181213)
= device
(= drivers
(& mecmgr
~ (2 source [€] K32L3A60w0¢_Project MASTER.c 332 fsl_str.c = 8

€] K32L3A6000c Project MASTER.c
[semihost_hardfault.c

7= int main(void) ~

/* Initialize MCMGR, install generic event handlers */

start
& stertup HMCMBR_Tnit();
v (2 utilities -
[€ fsl_assert.c /* Init board hardware.*/

[W fsl_debug_console_conf.h
[€ fsl_debug_console.c

@ fsl_debug_conseleh

@ fsl_str.c

BOARD_InitDebugConscle();

/* Print the initial banner from Primary core */

9

]

1

2

3 BOARD_BootClockRUN();

4

5

[

7 PRINTF("\rinHello World from the Primarv Corelirinin");

Figure 46. Two opened debug sessions

Now, the two debug sessions are opened, and the debug controls can be used for both debug sessions depending on the debug
session selection. At this point, it is possible to suspend and resume individual cores independently. It is also possible to make
synchronous suspension and resumption of both cores with either following methods:

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 40/ 47

NXP Semiconductors

Multicore code

« select both opened debug sessions (multiple selection) and click Suspend/Resume (highlighted in Figure 47).

o om e I R RR OS]

Figure 47. MCUXpress IDE single thread controls

+ use the Suspend All Debug sessions and Resume All Debug sessions buttons (highlighted in Figure 48).

| > 00 @ Y B i 0 w2 RR|W S

Figure 48. MCUXpresso IDE multicore synchronous controls

7 Multicore code

The project settings for the primary core and secondary core are only part of the dual-core project aspect. The source code for
each project must be written to take into account the operations of the other core. In general, the primary core is expected to
configure the common clocks, peripherals, and memory. In doing this, the secondary core will have to do minimal work once it
is released from reset, but there is absolutely nothing preventing the secondary core from setting up its own areas.

As there is no mechanism for the secondary core to release on its own, the primary core must release the secondary core from
reset with any of the following methods:

1. using the MCMGR (Multicore Manager) high-level drivers
2. using the MU (Messaging Unit) unit low-level drivers
3. using raw register accesses

The MCMGR high-level drivers provide flexibility and control for complex applications and can also register and trigger events
between the cores. The MU unit low-level drivers simply give you access to the registers in a portable manner and would likely
only be used if you have a simple program that needs to perform a limited number of actions. When using this option, it’s important
that the user understands what the target application is doing and how the interaction of the cores is happening. Raw register
accesses should only be used for simple programs or when the user needs a custom function, driver, or has an advanced level
of understanding of the MU and inter-core interaction. This application note only focuses on the use of the MCMGR high-level
drivers as this is recommended. The MCMGR code is part of the MCUXpresso SDK package (see the middleware/multicore/
mcmgr folder).

The project (both master and slave) needs the following files:
* mcmgr.c
* mcmgr.h
* mcmgr_internal core_api.h
* mcmgr_internal core_api_k3213a6.c
* mcmgr mu_internal.c
NOTE

The files are already added to the hello world multicore project, but you may need to add them manually
to your own project(s).

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 41 /47

NXP Semiconductors

Multicore code

Workspace v O X

debug >

Files = S
= @ hello_world_cm4 - debug v

M board

B CMSIS

—& Bl component

M device

M doc

M drivers

7 B mcmgr
& [l memgr.c
F— [kl mcmgrh

|— mcmgr_internal_core_api.h
mcmgr_internal_core_api_k32l3ab.c
memgr_mu_internal.c

M startup
M utilities
M Output

Figure 49. MCMGR files included in multicore projects

In addition, the path to the header files must be made known to the compiler. The path shown in Figure 50 should be included
in your preprocessor search path.

NOTE

The pathis already added tothe he11o_world multicore project, but you may need to add it manually for project(s)

you are converting.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

42/47

NXP Semiconductors

Multicore code

Options for node "hello_world_cm4" =
Category: Factom Settings
General Options [bulti-file: Carmpilation
Static Analysis Dizeard Uruzed Publics
Runtime Checking

C/C++ Compiler MISRALC: 1958 Encodings Extra Options
Aszembler Language 1 Language 2 Code Optimizations Output
Output Converter List Preprocessor Diagnostics MISRA-C:2004
Custom Build
Build Actions [] lgrore standard include directories
gn:ler Additional include directaries: (one per ling)

ERHagEr SPROJ_DIRS/./././././. /devices/KI2LIAGD al]

Simulator

CADI | A sdevices MYers

CMSIS DAP SPROJ_DIRS/ .77 ./ 7/ fdevices/KIZLIAGD divers

GDB Server SPROJ_DIRS/..A./.0 1 Adevices/KIZLIABD drivers W

I-jet Preinclude file:

J-Link/J-Trace | ||

TI Stellaris

Mu-Link Defined symbals: (one per ling)

PE micro DEBUG ~ [] Preprocesser autput to file

STLINK CPU_K32L3A60VPJ1A_cmd Preserve comments

. : MCMGR_HANDLE_EXCEPTIC - ine directi

Third-Party Driver — — Generate Hine directives

T MSP-FET __SEMIHOST_HARDFALULT_| w

TI XDS

. Cancel

Figure 50. File path to be added to Preprocessor search path for Multicore Manager files

In addition, the MU drivers will also be needed. They are £s1 mu.c and £s1 mu.h.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020

Application Note

43 /47

NXP Semiconductors

Multicore code

Files ~

=R |hello_world_cm4 - Debuc n-

& W board

& W doc

5 W drivers

[l fsl_clock.c -
fsl_clock.h

fsl_common.c -
fsl_commaon.h

fsl_gpio.c .
fsl_gpio.h

fsl_lpuartc -
fsl_lpuarth

fsl_msmc.c -
[f=l memch

fsl_mu.c -
[fsl_muh
b fsf:pl:urt.h

e

Talaldldldl

Figure 51. MU drivers added to the hello_world multicore project

NOTE
The preprocessor search path should include the file path to these driver files.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 44 | 47

NXP Semiconductors

Multicore code

Options for node "hello_world_cmd” >
Category: Factory Settings
General Options [bulti-file: Campilation
Static Analysis Dizcard Unuzed Publics
Runtime Chedking

C/C++ Compiler MISRAL: 1958 Encodings Extra Options
Assembler Language 1 Language 2 Code Optimizations Output
Output Converter List Preprocessor Diagnostics MISRA-C:2004
Custom Build
3 Build Actions [] Ignore standard include directories
gn:;er Additional include directories: (one per ling)
il SPROJ_DIRS/../.././ ./../../devices/K32L3AGD ~
Simulator niR . : 3
CADI
CMSIS DAP U) T s (=37, [T W e
GOB Server SPROJ_DIRS/ ./ .7 7./ 7 fdevices/KIZLIAB0 utilities debug_t
Ijet Preinclude file:
MHink/1-Trace
TI Stellaris
MuLink Defined symbols: {one per ling)
PE micra DEBLG A [] Preprocessor output ta file
ST-LIMNK CPU_K3IZL3ABIVPI1A_cmd Preserve comments

MCMGH_HANDLE_E;“_: EPTIC Generate Hine directives

Vhir-Party Driver SEMIHOST HARDFAULT | v

TI M5P-FET
TIXD5

Cancel

Figure 52. MU driver file path

To use the MCMGR high-level drivers, there are two initialization functions that need to be called. These calls apply to both master
and slave project(s), as shown in Figure 53.

s
int main({weoid)
[{
| /% Initiglize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup seqguence) to allow Corelp event triggering. */
MCMGR._EarlyInit({);

/% Initialize MCMGR, install generic event handlers */
MCMGE Tnit():

/% Init board hardware.*/

FARTITY T faTiio o eoom o

Figure 53. MCMGR initialization function calls

The MCMGR_EarlyInit function must be called as close to the reset entry as possible. This function enables the clock gate to the
MU unit and triggers the core up event that is propagated to the counterpart core. The MCMGR Init function must be called from
main and enables all of the other MCMGR API to be used.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 45/ 47

NXP Semiconductors

Conclusion

Once these functions have been called, the master software should then call the McMGR_Startcore function to start the secondary
core. This function call is as shown in Figure 54.

/% Boot Secondary core application */

PRINTF{"5tarting Secondary core.\r\n");

MCMGE_StartCore (KMCMGE_Corel, CORE1_BOOT_RADDRESS, 5, KMCMGE Start Synchronous);
PRINTF{"The secondary core application has been started.\r\n");

Figure 54. MCMGR function to start the secondary core

The MCMGR_startCore function requires the following arguments:

* mcmgr_core t coreNum: This should be either kMCMGR Corel or MCMGR Core0. Core0 is the Arm Cortex-M4 core and
Core1 is the Arm Cortex-MO0+ core.

* void *bootAddress: This is a pointer to the beginning of the secondary core’s application. The only valid options are the
start of the secondary core’s flash memory space or the RAM memory space.

* uint32_t startupdata: This is some user/application data (variable, or array, or function) to be passed from the primary
core to the secondary core during the startup. For instance, it can be leveraged in case of rpmsg inter-core communication
for passing the shared memory base address from the master side to the remote side.

* mcmgr_start _mode t mode: This is the mode with which you want the cores to start. Valid options are
kMCMGR_Start Synchronous OF kMCMGR_Start Asynchronous. If kMCMGR Start Synchronous is used, the primary core
will start the secondary core and then wait for an event from the secondary core before continuing operation. Otherwise,
the primary core will start the secondary core and immediately continue operation.

The slave core may either just start and do nothing, or retrieve any startup data that it was passed. Figure 55 shows an example.

/% Get the startup data */
do
{
status = MCMGE_GetStartupData (estartupData)
} while (status != kStatus MCMGE_Success):

Figure 55. Slave core implementation retrieving startup data

How the slave core processes this data depends on the specifics of your application.

8 Conclusion

This application note has shown, through a simple example, how multicore projects are created, compiled, and debugged. The
SDK package for the K32L series devices contains many multicore examples to aid in your project development. These examples
include Embedded Remote Procedure Call examples, Remote Processor Messaging examples, demonstrations of the SDK'’s
Multicore Manager drivers, and Resource Domain Manager examples. More information on all of these resources can be found
at <ksDK_ROOT>/multicore in the respective resources folder.

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 46 / 47

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 01/2020
Document identifier: AN12673

arm

	Contents
	1 Introduction
	2 Overview
	3 Multi-core projects in IAR
	3.1 Multi-core project creation
	3.1.1 Primary core project
	3.1.2 Secondary core project

	4 Multicore debug in IAR
	4.1 Compiling a Multi-core project in IAR
	4.2 Primary core project debug settings
	4.3 Secondary project debug settings
	4.4 Debugging

	5 Multicore projects in MCUXpresso
	5.1 Multi-core project creation
	5.1.1 Creating a master/slave project pair (using an SDK)
	5.1.2 Editing existing project settings for Multicore

	6 Multicore debug in MCUXpresso
	6.1 Configuring slave debug settings
	6.2 Primary core debugging
	6.3 Secondary core debugging

	7 Multicore code
	8 Conclusion

