AN13500

EdgeLock A5000 Secure Authenticator for electronic anti-
counterfeit protection using device-to-device authentication

Rev. 1.1 — 14 September 2022

Application note

Document information

Information Content
Keywords A5000, mutual authentication, proof of possession
Abstract

This document describes how to leverage A5000 for device-to-device
authentication




NXP Semiconductors

AN13500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device
authentication

Revision history

Revision history

Revision Date Description

number

1.0 2022-03-28 Initial version

1.1 2022-09-14 Update Section 4.8.3 How to configure the A5000 product specific SCP keys in the Plug &
Trust Middleware.

AN13500 All information provided in this document is subject to legal disclaimers.

Application note Rev. 1.1 — 14 September 2022

© NXP B.V. 2022. All rights reserved.

2/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

authentication

1 Device-to-device authentication

AN13500

The loT environment increases the exposure of high value components to new
security threats. OEM manufacturers need to protect themselves from non-authorized
components, discriminate original devices from fake copies, avoid device misuse and
over usage, and make sure customers purchase original equipment.

If we do not take security into account, attackers may try to compromise our devices by:

» Exploiting software bugs

» Extracting secret device keys

¢ Inserting counterfeit devices

* Abusing untrusted connections
* Disclosing confidential data, etc

These security threats are significantly serious for IoT systems dealing with real time
processes, even risking safety in case of medical devices, industrial processes, energy
grids or traffic lights automation, among others.

For illustrative purposes, let's assume an OEM which manufactures a certain type
of machinery controlled by a centralized control unit as shown in Figure 1. As these
machines perform some critical tasks in the manufacturing plant:

* The control unit authenticates the machine that is attempting to connect to it.
* The machines also authenticate the control unit that will manage it.

Therefore, only authenticated machines and control units will be used in the supply
chain. This mechanism ensures protection against rogue devices that might damage
production, degrading security levels or risking employee safety.

Machine Control unit

eI I

LTy

[T

Authenticated Authenticated
machine control unit

Figure 1. Device-to-device authentication scenario

The exchange of digital certificates is the basis of the authentication process. The two
parties each check that the certificate is valid and was issued by a trusted authority,
known as Certificate Authority. Section 2 describes how certificates are verified using a
certificate chain of trust.

Digital certificates, as public information, are susceptible to be intercepted and be
misused. For this reason, a proof of possession of the certificate private key is an
essential requirement to validate the certificate source. Section 3 describes how to
leverage A5000 to conduct the proof of possession.

The private key must be kept secret and protected. The leakage of any private key
compromises the identity verification and the overall system security. The A5000
provides a trust anchor at the silicon level, providing a tamper-resistant platform capable
of securely storing keys and credentials needed for offline authentication.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
3145



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device
authentication

2 Certificate chain of trust

loT requires each device to possess a unique identity. For certificate-based
authentication scheme, the identity is made of:

* Device certificate
¢ Device key pair

The digital certificate binds an identity with a public key. Digital certificates are verified
using a chain of trust. The certificate chain of trust is a structure of certificates that enable
the receiver to verity that the sender and all CA's are trustworthy. The trust anchor for the
digital certificate is the root CA.

Certificates are issued and signed by certificates that reside higher in the certificate
hierarchy, so the validity and trustworthiness of a given certificate is determined by the
corresponding validity of the certificate that signed it. The certificate chain of trust results
in a root CA signing an intermediate CA that in turn signs a leaf certificate as shown in

Figure 2

Leaf
Owner's private key certificate

Reference
Issuer's (CA)name  E R LR P =
Sign 1 Intermediate
Issuer's (CA) signature Dasmmmmmm—  [SSUET'S private key 1 certificate

Verify Signature

Reference
------------------- :
Sign I Root
Root CA signature smmmmmmmmm ] ROOt CA private key 1 certificate
1

A4

Self-Sign Root CA's name

Verify Signature

L Root CA's signature

Figure 2. Certificate chain of trust

loT devices manufactured by the OEM should be equipped with a unique key pair and a
digital certificate signed by the OEM's CA certificate. The OEM's CA certificate is used to
sign all the certificates of the devices manufactured by the OEM. Precisely, this signature
provides the means to verify the validity of device certificates in the field (Figure 3).

AN13500 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 1.1 — 14 September 2022

4/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device
authentication

OEM'’s CA CA private
certificate key

]

ngn \ Sign J Sign

Device Device Device
certificate #1 certificate #2 certificate #N

Figure 3. Certificate hierarchy

Before a machine or control unit manufactured by the OEM goes to the operation phase,
they must possess the CA certificate, an individual certificate and a key pair securely
stored as shown in Figure 4.

Machine

Y

2ol [@ol: Qoo 7

OEM's CA Machine Machine OEM's CA Control unit Control unit
certificate certificate private key certificate certificate private key

Figure 4. Machine and control unit credentials

Secure silicon chips like A5000 are capable of internally protecting private keys in loT
devices. The CA certificate could optionally be stored outside the A5000. Section 5
outlines the A5000 trust provisioning models available.

AN13500 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 1.1 — 14 September 2022

5/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

authentication

3 Mutual authentication flow

AN13500

3.1

The authentication flow consists of a mutual authentication procedure. First, the machine
will authenticate the control unit that it will be connected to. After that, the control unit will
authenticate the machine that attempts to connect.

Control unit authentication

The authentication of the control unit consists of two steps: the cerftificate validation and
the private key proof of possession as shown in Figure 5.

Certificate validation:
The first step is the verification of the control unit digital certificate.

1. The control unit sends its device certificate together with its hierarchy of CA
certificates.

2. The machine validates that the provided certificate chain of trust is valid by verifying
the signatures of all the certificates in the chain up to the root CA

If the control unit certificate is valid, it means that the public key included in it can be
trusted.

Proof of possession:

The second step is the proof of possession. This procedure is needed to make sure that
the certificate we verified belongs to the control unit. This proof of possession mechanism
ensures that the uploader of the certificate also knows the associated private key. For
that,

1. The machine generates a random challenge

2. The control unit returns the random challenge signed, using its private key stored
inside A5000.

3. The machine validates the random number signature with the public key obtained
from the control unit certificate.

A successful response means that the control unit is authentic. Bear in mind that the trust
relies on protecting the private key. For this reason, the use of A5000 is fundamental to
make sure the private key is not compromised.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
6/45



NXP Semiconductors

AN13500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device
authentication

7

Control unit
private key

Controlunitl o
o s
ASDUD

P
/
/

(Xl

OEM's CA
certificate

I

Control unit
certificate

r;i

% ’ W
OEM's CA
certificate

Machine
private key

Machine
certificate

— Machine

et T
O

k= A5000

@

Send certificate chain for validation

Check control unit certificate
signature. Extract unique «
public key from certificate  “eee®

Send random challenge for signature f\
.

Sign random
X challenge with private O'—'rr

s«+*  key stored in A5S000

Check random challenge f'\ Send signed random | 967949 O
signature with the ¢

extracted publickey ~ “e,.*

L @

Control unit
authenticated!

Figure 5. Control unit authentication flow

3.2 Machine authentication

The authentication of the machine also consists of two steps: the certificate validation
and the private key proof of possession as shown in Figure 6. These two steps are
equivalent to the ones performed for the control unit authentication.

Certificate validation:
The first step is the verification of the machine digital certificate.

1. The machine sends its device certificate together with its hierarchy of CA certificates.

2. The control unit validates that the provided certificate chain of trust is valid by verifying
the signatures of all the certificates in the chain up to the root CA

If the machine certificate is valid, it means that the public key included in it can be
trusted.

Proof of possesion:

The second step is the proof of possession. This procedure is needed to make sure that
the certificate we received belongs to the machine. This proof of possession mechanism
ensures that the uploader of the certificate also knows the associated private key. For
that,

1. The control unit generates a random challenge

2. The machine returns the random challenge signed, using its private key stored inside
A5000.

3. The control unit validates the random number signature with the public key obtained
from the machine certificate

A successful response means that the machine is authentic. Bear in mind that the trust
relies on protecting the private key. For this reason, the use of A5000 is fundamental to
make sure the private key is not compromised.

AN13500

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2022. All rights reserved.

Application note

Rev. 1

.1 — 14 September 2022

7145



NXP Semiconductors

AN13500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

AN13500

authentication

%o 7

OEM's CA Machine Machine
certificate certificate private key

ool T

OEM's CA
certificate certificate

Control unit
private key

Control unit

Machine

Control unit

@ Q Step 1: Certificate validation

Send certificate chain for validation
.

Send random challenge for signature

Sign random (‘\
O_“. challenge with private ¢

Check machine certificate
signature. Extract unique
public key from certificate v

Step 2: Proof of possession

key stored in AS000 “s.e®

Send signed random | 578795 O— /\
.

‘-.-.

Figure 6. Machine authentication flow

Check random challenge
signature with the
extracted public key

L @

Machine
authenticated!

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022

81/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

authentication

4 Evaluating A5000 for anticounterfeit protection

AN13500

4.1

This chapter describes how to evaluate the A5000 Secure Authenticator for
anticounterfeit protection using device-to-device authentication. The following description
is provided only for demonstration. Therefore, the subsequent procedure must be
adapted and adjusted accordingly for commercial deployment.

The Plug Trust Middleware offers out of the box several software libraries to implement
and verify a device-to-device authentication on devices running an embedded Linux
distribution.

¢ OpenSSL
¢ PKCS11
¢ Plug&Trust Middleware SSS API

The following chapters are demonstrating the principal of the machine and control unit
authentication flow based on the theoretical example described in Section 3“. To simplify
the hardware setup a single A5000 Secure Authenticator IC is used.

To keep the example as simple as possible only A5000 pre-provisioned credentials are
used to demonstrate the Mutual Authentication.

The examples are divided into the following steps to introduce the A5000 and the
Plug&Trust OpenSSL engine and the ssscli tools:

1. Section 4.1 Hard- and software setup

Section 4.2 OpenSLL engine overview

Section 4.3 Plug & Trust Middleware ssscli tool introduction

Section 4.4 Pre-provisioned A5000 device certificates used by the example
Section 4.5 Retrieve the pre-provisioned A5000 credentials

Section 4.6 Chain of trust of the pre-provisioned device certificates

Section 4.7 Mutual authentication flow

a. Section 4.7.1 Control unit authentication

b. Section 4.7.2 Machine authentication

NooR~ON

The physical 12C connection between the Raspberry Pi and the A5000 Secure
Authenticator can be established either in plain or secured (authenticated and encrypted)
using the Global Platform Secure Channel Protocol 03 (SCP03). Section 4.8 gives a brief
overview about Global Platform Secure Channel Protocol 03 and explains how to run the
examples using Platform SCP.

How to manage access from multiple Linux processes to the A5000 authenticator
application is briefly discussed in Section 4.9 .

Hard- and software setup

The following hardware is used for this demo as a reference for any other embedded
Linux board like the NXP i.MX8:

» Raspberry Pi3 Model B+ or Pi4 Model B
¢ OM-A5000ARD development kit (NXP 12NC: 935424319598)
¢ Optional - OM-SE050RPI adapter board for Raspberry Pi (NXP 12NC: 935379833598)

The AN12570 "Quick start guide with Raspberry Pi" describes the hardware and software
for the NXP SEQ05x Secure Element. Chapter “3.3. Build EdgeLock SE Plug & Trust

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
9/45


https://www.nxp.com/OM-A5000
https://www.nxp.com/part/OM-SE050RPI
https://www.nxp.com/docs/en/application-note/AN12570.pdf

NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

AN13500

authentication

Middleware test examples” describes the CMake settings to build the middleware
accessing a SE05x Secure Element.

To build the Plug & Trust Middleware to support the A5000 Secure Authenticator
application the following CMake setting needs to be modified before building the
middlware:

e Select AUTH for the CMake option PTWM_Applet.

» Select None for the CMake option PTWM_FIPS.

* Select 07_02 for the CMake option PTWM_SE05X_Ver.
¢ Disable the CMake option SSSFTR_SE05X_RSA.

The project settings can be specified dynamically using the CMake GUI. Figure 7 shows
a CMake GUI screenshot with Edgel.ock A5000 project settings.

¢ Run the following commands to update the CMake settings and rebuild the Plug &
Trust Middleware:
cd ~/se mw/simw-top build/raspbian native se050 tloi2c
cmake-gui .
Update the CMake settings as explained above. Press first Configure and second
Generate and close the CMake GUI.
cmake --build .
sudo make install
sudo ldconfig /usr/local/lib/

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
10/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

authentication
A CMake 3.16.3 - /home/pi/sed5x_mw/simw-top_build/raspbian_native_se030_t1oilc — O e
File Tools Options Help
Where is the source code: |fhomefpifseDSx_mw}simw—top | | Browse Source... |
Where to build the binaries: |/home/pi/se05x_mw/simw-top_build/raspbian_native_se050_tloi2c - | |m|
Search: | | | Grouped | | Advanced | qF Add Entry | | & Remove Entry |

-

Name Value [~]

<] f<| <] | | BN |

SIASASLSLNLNLY

|| eleislelele

Press Configure to update and display new values in red, then press Generate to generate selected build files.

| Configure ” Generate | Cpen froect Current Generator: Unix Makefiles

o "o~

Figure 7. A5000 CMake options

4.2 OpenSSL engine overview

OpenSSL is a free software library contains an open-source implementation of the TLS
protocols. OpenSSL is available for most Unix-like operating systems (including Linux,
macQOS, and BSD) and Microsoft Windows.

AN13500 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. Al rights reserved.

Application note Rev. 1.1 — 14 September 2022

11/45


https://en.wikipedia.org/wiki/Transport_Layer_Security

NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

AN13500

authentication

The OpenSSL software library, written in C, includes a command-line interface for
general-purpose cryptography and managing certificates. For simplification the demos
below are using the OpenSSL CLI.

Starting with OpenSSL version 0.9.6, a new component called ENGINE, was added to
support alternative cryptography implementations. This Engine interface is used by the
Plug & Trust Middleware to interface with the A5000. The OpenSSL engine provides the
glue between applications using standard OpenSSL APIs and the Secure Authenticator
API.

Host MCU / MPU

Host Application

OpenSSL API

OpenSSL

ed4sss OpenSSL engine

EdgeLock Plug&Trust
middleware stack

EdgelLock A5000
Figure 8. Principle of the OpenSSL engine

The Plug&Trust middleware OpenSSL engine allows to use the A5000 Secure
Authenticator for the following operations:

e EC crypto: EC sign/verify and ECDH compute key
* Fetching random data

The A5000 secure key and object management is not covered by the engine interface
but supported by the Plug & Trust Middleware ssscli tool as demonstrated in the
next chapters.

OpenSSL requires a key pair, consisting of a private and a public key, to be generated or
loaded into the A5000 before the cryptographic operations can be executed.

* Private Key: The Private key is securely stored inside the A5000 Secure Authenticator
and cannot be retrieved by the OpenSSL engine.

* Reference Key: Standard OpenSSL API needs to be called with a key. Instead of a
real private key the OpenSSL key data structure gets used with a reference to the
private key inside the Secure Authenticator. The reference key looks for OpenSSL like
a real key, but it does not contain secret data.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
12/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

AN13500

4.3

authentication

« Certificate/Public Key: The Certificate/Public Key as read from the Secure Element
can still be inserted into the OpenSSL key structure.

The A5000 Secure Authenticator can be easily integrated by applications which are
already using the OpensSSL API or the command-line tools. Instead of using a private
key, the application needs to use a reference key.

For more details, please see the Plug & Trust Middleware documentation:
* 8.1. Introduction on OpenSSL engine

* 5.3.2. AWS Demo for iMX Linux / RaspberryPi

*5.4.2. OpenSSL Engine: TLS Client example for iMX/Rpi3

Run the following command to check weather OpenSSL is installed or not:

openssl version

pi@raspberrypi:~ % openssl version
OpenSSL 1.1.1d 1@ Sep 2019
pil@raspberrypii~ $

Figure 9. Check the installed OpenSSL version

If OpenSSL is not already installed, you can run the following commands to install it:

apt-get install openssl libssl-dev

Plug & Trust Middleware ssscli tool introduction

The ssscli is a command line tool that can be used to send commands to A5000
interactively through the command line. For example, you can use the ssscli to create
keys and credentials in the A5000 security IC during evaluation, development and testing
phases. The ssscli tool is written in Python and supports complex provisioning scripts
that can be run in Windows, Linux, OS X and other embedded devices. It can be used to:

¢ Insert keys and certificates in DER or PEM format into the A5000

* Retrieve the public keys and certificates form A5000 and store the key into a DER
(Distinguished Encoding Rules) or PEM (Privacy Enhanced Mail) formatted file

* Create reference-keys and store the key into a DER or PEM formatted file

* Delete A5000 (erase) keys and certificates inside

¢ Generate keys inside the EdgelLock A5000

 Attach policies to objects

* List all A5000 secure objects

* Retrieve the A5000 device unique ID

¢ Run some A5000 basic operations like sign/verify and encrypt/decrypt operations

Please refer to the Plug & Trust Middleware documentation chapter "9. CLI Tool" for
detailed description how to use ssscli tool. Alternative use the following command to
display the ssscli built in help:

ssscli --help

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
13/45


https://en.wikipedia.org/wiki/X.690
https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail

NXP Semiconductors

AN13500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

authentication

pi@raspberrypi:~ $ ssscli --help
Usage: ssscli [OPTIONS] COMMAND [ARGS]...

Command line interface for SE050

pi@raspberrypii~ $

Figure 10. ssscli help

Options:
-v, --verbose Enables verbose mode.
--version Show the version and exit.
--help Show this message and exit.
Commands :
a7ich A71CH specific commands
cloud (Not Implemented) Cloud Specific utilities.
connect Open Session.
decrypt Decrypt Operation
disconnect Close session.
encrypt Encrypt Operation
erase Erase ECC/RSA/AES Keys or Certificate (contents)
generate Generate ECC/RSA Key pair
get Get ECC/RSA/AES Keys or certificates
policy Create/Dump Object Policy
refpem Create Reference PEM/DER files (For OpenSSL Engine).
se@5x SEO5X specific commands
set Set ECC/RSA/AES Keys or certificates
sign Sign Operation
verify verify Operation

The help includes a parameter description for all supported commands. To list all options

for the connect command use:

ssscli connect --help

pi@raspberrypi:~ $ ssscli connect --help
Usage: ssscli connect [OPTIONS] subsystem method port_name

Open Session.

subsystem = Security subsystem is selected to be used. Can be one of
"se®5x, auth, a71ch, mbedtls, openssl”

method = Connection method to the system. Can be one of "none, sci2c,
vcom, tloi2c, jrcpvl, jrcpv2, pcsc”

port_name = Subsystem specific connection parameters. Example: COM6,
127.0.0.1:8050. Use "None" where not applicable. e.g. SCI2C/T1loI2C.
Default 1i2c port (1i2c-1) will be used for port name = "None".

Options:

Authentication type. Default is "None". Can
be one of "None, UserID, ECKey, AESKey,
PlatformSCP, UserID_PlatformSCP,
ECKey_PlatformSCP, AESKey_PlatformSCP"

--scpkey TEXT File path of the platformscp keys for
platformscp session
--help Show this message and exit.

pi@raspberrypii~ $

Figure 11. ssscli connect help

--auth_type [None|PlatformSCP|UserID|ECKey|AESKey|UserID PlatformSCP|ECKey PlatformSCP|AESKey PlatformSCP]

Note: The subsystem option auth shall be used to define a session with the A5000
authenticator. For the Raspberry Pi the connection method none can be used.

The A5000 Secure Authenticator supports also the se05x commands certuid,

readidlist, reset and uid.

ssscli se05x --help

AN13500 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2022. All rights reserved.

Application note Rev. 1.1 — 14 September 2022

1445



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

AN13500

4.4

authentication

pi@raspberrypi:~ $ ssscli se@5x --help
Usage: ssscli seB5x [OPTIONS] COMMAND [ARGS]...

SEO5X specific commands

Options:
--help Show this message and exit.
Commands :
certuid Get SEGO5X Cert Unigque ID (10 bytes)
readidlist Read contents of SEQ50
reset Reset SEB5X
uid Get SEO5X Unique ID (18 bytes)

pi@raspberrypi:i~ %

Figure 12. ssscli se05x help

The following commands will list all AS000 secure objects:
ssscli connect auth tloi2c none

ssscli se05x readidlist

pi@raspberrypi:~ $ ssscli connect auth tloi2c none
pi@raspberrypi:i~ $ ssscli se@5x readidlist
SSS :INFO :atr (Len=35)
01 AO 00 00 03 96 04 03 E8 00 FE 02 0B 03 E8 00
01 00 00 00 00 64 13 88 OA 00 65 53 45 30 35 31

00 00 00

$ss :WARN :Communication channel 1is Plain.

555 :WARN :!!!Not recommended for production use.!!!

Key-Id: 0X7da00001 USER-ID

Key-Id: 0X7da00002 AES Size(Bits): 128

Key-Id: 0X7daf0003 NIST-P (Public Key) Size(Bits): 256

Key-Id: 0X7da00011 USER-ID

Key-Id: 0X7daf0012 AES Size(Bits): 128

Key-Id: 0X7da00013 NIST-P (Public Key) Size(Bits): 256

Key-Id: OX7fff0201 NIST-P (Key Pair) Size(Bits): 256

Key-Id: 0X7fff0202 NIST-P (Key Pair) Size(Bits): 256

Key-Id: 0X7fff0204 NIST-P (Public Key) Size(Bits): 256

Key-Id: OX7fff0205 USER-ID

Key-Id: OX7fff0206  BINARY Size(Bits): 144 machine
Key-Id: OX7fff0207 USER-ID .
Key-Id: OX7fff020a _ AES Size(Bits): 128 credentials
Key-Id: 0XfOOO0000 NIST-P (Key Patir) Size(Bits): 256 | ECC256 ke pair\ (%]
Key-Id: 0Xf0000001 BINARY Size(Bits): 3760 Certi{ica%e %]

ey-1d: 0X10000002 ST-P (Key Pair) Size(Bits): 256 ] ECC256 key pair 1
[Key—Id: _0X10000003 _ BINARY Size(Bits): 3760 Cer‘tifica}c’e 1
Key-1d: 0XTO000012 NIST-P (Key Pair) Si1ze(Bits): 256 -
Key-Td: 0Xf0000028 NIST-P (Public Key) Size(Bits): 256 control unit
Key-Id: 0Xf0003394 AES Size(Bits): 256 credentials

pi@raspberrypi:~ $ i

Figure 13. ssscli readidlist

Note: If you are not able to connect to the A5000 with an error saying that there is a
session already open, run ssscli se05x disconnect first.

To close a session use:

ssscli disconnect

Pre-provisioned A5000 device certificates used by the example

Examples described in this document are using the following pre-provisioned credentials
listed in the table below.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
15/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

AN13500

4.5

4.5.1

authentication

To be able to demonstrate the principle of machine and control unit authentication flow
with a single Raspberry Pi and OM-A5000ARD board the ECC256 key pair O (object ID
0xF0000000) and the corresponding certificate 0 (object ID 0xF0000001) are used as
“machine” credentials.

As “control unit” credentials the ECC256 key pair 1 (object ID 0xF0000002) and the
corresponding certificate 1 (object ID 0xF0000003) are used.

Table 1. Pre-provisioned certificates and keys used by the example

Credentials Key name and type Certificate Identifier

are assigned

to

Machine Originality Key 0, ECC256, Die |Certificate 0 0xF0000000 (key)
Individual 0xF0000001 (cert)

Control Unit | Originality Key 1, ECC256, Die |Certificate 1 0xF0000002 (key)
Individual 0xF0000003 (cert)

Note: The complete list of pre-provisioned device credentials is provided in the A5000
Edgelock Secure Authenticator Product data sheet.

Retrieve the pre-provisioned A5000 credentials

The ECC private keys are securely stored inside the A5000 secure authenticator and
cannot be read out. Standard OpenSSL API and the OpenSSL command-line tools
needs to be called with a private key to perform private key operations.

The Plug & Trust Middleware provides an OpenSSL engine which allows to use so called
reference keys instead of private keys. A reference key contains only a reference, the
object ID, to the private key inside the A5000. The reference key looks for OpenSSL

like a real key, but it does not contain secret data. All private ECC operations using a
reference key, e.g. ECC signing, are performed securely inside the A5000 without the
need to know the private key value.

This chapter demonstrates how to use the ssscli and openssl command-line tools to
perform the following operations:

¢ Reading of the pre-provisioned A5000 device certificates and save them into a PEM
formatted file.

* Reading of the pre-provisioned A5000 device certificates public keys and save them
into a PEM formatted file.

» Creation of the corresponding reference keys and storage in a PEM-formatted file.

Retrieve the pre-provisioned A5000 device certificates

Create a folder inside your home directory for the example certificates and keys using the
following commands:

mkdir ~/auth demo
cd ~/auth demo

Run the following sssc1i commands to read the device certificates and store them into
a file. By default a filename with extension .pem and . cer will store the certificate in
PEM format. Other extensions will store the certificate in DER format. In the following
examples we use machine.pem and control_unit.pem as the certificate file names.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
16 /45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

AN13500

authentication

ssscli get cert F0000001 machine.pem

ssscli get cert F0000003 control unit.pem

pi@raspberrypi:~/auth_demo $ ssscli get cert FOOOOOO1 machine.pem
Getting Certificate from KeyID = 0xFOO00001
5SS :INFO :atr (Len=35)

01 A 00 00 03 96 04 03 E8 00 FE 02 0B 03 E8 00

01 00 00 0O 00 64 13 88 QA 00 65 53 45 30 35 31

00 00 00
5SS :WARN :Communication channel 1is Plain.
S5S :WARN :!!!'Not recommended for production use.!!!

Retrieved Certificate from KeyID = 0xFO000001
pi@raspberrypi:~/auth_demo $ ssscli get cert FOOOO0O3 control unit.pem
Getting Certificate from KeyID = 0xFOO00003
5SS :INFO :atr (Len=35)

01 AQ 00 0O 03 96 04 03 E8 00 FE 02 0B 03 ES8 00

01 00 00 0O 00 64 13 88 QA 00 65 53 45 30 35 31

00 00 00
5SS :WARN :Communication channel 1is Plain.
S5S :WARN :!!!Not recommended for production use.!!!

Retrieved Certificate from KeyID = 0xFOO00003
pi@raspberrypii~/auth_demo $ [

Figure 14. Retrieve the pre-provisioned A5000 device certificats

Both certificates are stored in PEM format. These are text files containing base64
encoded data. The Linux command cat can be used to output the contents of a text file:

cat machine.pem

cat control unit.pem

pi@raspberrypi:~/auth_demo $ cat machine.pem

————— BEGIN CERTIFICATE-----
MIIBOTCCAXegAwIBAgIUBABQAYycdabUY r8EMAKI rwAAAAAWCGYIK0ZIzjOEAWIwW
VJEXMBUGA1UECwwOUGx1ZyBhbmQgVHI 1c 3Q0xDDAKBgNVBAOMABSYUDE tMCsGA1UE
AwwkT1hQIE1udGVybWVkaWFBZS1Db25uZWNRaXZpdH1DOXZFM]AZMBAXDTIXMTE X
Nj AwMDAWMFoXDTQ2MTE xMDAwWMDAWMFowXzEXMBUGA1UE CwwOUGx1ZyBhbmQgVHI 1
¢3QxDDAKBgNVBAoMABGSYUDE2MDQGA1UE AwwtRGYV2Q2%ub j AtMDQwMDUWMDE4Qz 1D
Nz VBNKQONJJCRj AOMz AwMj g5QUYWMDAWMFkwEWYHK0ZIz jOCAQYIK0ZIz jODAQCD
QgAEOMRs L XoVFWBduEHh 1QhPKE FAQV22h@XTSYY j Tkg iBxHMz rQbmdX0+8EVH41m
84/14050cnk1bXBB6KxAVcMzQgMaMBgwCQYDVROTBAIWADALBgNVHQBEBAMCBAAw
CgYIKoZIzjOEAWIDSAAWRQIQT/GX4IjvbEsafelESTROt1TDfz10Z x4NxCU+3w1
BrwCIOQDc+U8amM4QCPITBya0C5/+LXU9SypEdgs1bLT/ymGs8g==

————— END CERTIFICATE-----

pi@raspberrypi:~/auth_demo $ cat control unit.pem

————— BEGIN CERTIFICATE-----

MIIBOjCCAXegAwIBAgIUBABQAYycdabUY r8EMAKIrwAAAAEWCOYIK0ZIz jOEAWIW
V3iEXMBUGA1UECwwOUGx1ZyBhbmQgVHI 1c 3Q0xDDAKBgNVBAOMABSYUDE tMCs GA1UE
AwwkT1hQIETudGVybWVkaWFOZS1Db25uZWNOaXZpdHLDQXZFM] AZMBAXDTIxMTE X
N3 AwMDAWMFoXDTQ2MTE xMDAWMDAWMFowXzEXMBUGA1UE CwwOUGx 1ZyBhbmQgVHI 1
c3QxDDAKBgNVBAOMARSYUDE2MDQGA1UEAwWWtRGY2Q29ub jEtMDQwMDUWMDE 40z 1D
Nz VBNkQONj JCRj ABMz AwMj g5QUYWMDAWMFkwEWYHK0ZIz jOCAQYIKoZIz jODAQCD
QgAEBBWwWY9gnuDFrXwmZp /WIv7k78VvOdmViPgUsaPAz6ATY jVak+Cmr8CeHOHq
1U/bCUZFo2yILSOHWEWBTkIgwgMaMBgwCQYDVROTBAIwWADALBgNVHQBEBAMCB4 AW
CgYIKoZIzjOEAWIDSQAWRGIhAPrFeEOV1YgyI+0fxmm/E4tux+NmUHHOS5CUAgnPz
zDgzA1EASHI31AY6eQzWgR/BhoXWdZHz 9bhwQRGS2n 3] qGE4dmU=

————— END CERTIFICATE-----

pi@raspberrypii~/auth_demo $ [

Figure 15. Device certificats in PEM format

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
17145


https://en.wikipedia.org/wiki/Base64

NXP Semiconductors

AN13500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

AN13500

authentication

The x509 Openssl command can be used to display the contents of a certificate in
human readable form (-text switch). The -noout switch reduces the output by not

printing the base64 encoded certificate itself.

openssl x509 -noout -text -in machine.pem

pi@raspberrypi:~/auth_demo $ openssl x589 -noout -text -in machine.pem
Certificate:
Data:
Version: 3 (0x2)
Serial Number:
04:00:50:01:8c:9c:75:a6:d4:62:b7:04:30:02:89:a7:00:00:00:00
Signature Algorithm: ecdsa-with-SHA256

Issuer: OU = Plug and Trust, 0 = NXP, CN = NXP Intermediate-ConnectivityCAvE206

Validity
Not Before: Nov 16 00:00:00 2021 GMT
Not After : Nov 10 00:00:00 2046 GMT

Subject: OU = Plug and Trust, 0 = NXP, CN = DevConn0-840050018C9C75A6D462BF04300289AF0000

Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey
Public-Key: (256 bit)
pub:
04:38:c4:6c:2d:7a:15:15:60:5d:b8:41:e1:d5:08:
41:28:41:5d:41:5d:b6:87:45:d3:49:86:23:4e:48:
22:07:11:ccice:b4:1b:99:d5:f4:fb:c1:15:1F:89:
66:13:8T:c8ieliee:4e:72:79:35:6d:70:41:e8:ac:
40:55:¢c3:33:42
ASN1 OID: prime256v1
NIST CURVE: P-256
X509v3 extensions:
¥509v3 Basic Constraints:
CA:FALSE
X509v3 Key Usage:
Digital Signature
Signature Algorithm: ecdsa-with-SHA256
30:45:02:20:41:71:97:e0:88:ef:6c:4b:1a:7d:e9:44:48:84:
de:b6:d4:¢c3:77:3d:68:66:3c:78:37:10:94:Tb:7c:35:06:bc:
02:21:00:dc:79:4f:1a:98:ce:10:08:72:57:07:26:b4:0b:97:
fe:2d:75:3d:4b:2a:44:76:ab:35:6¢c:b7:ffica:6l:ac:f2
pi@raspberrypi:~/fauth _demo $

Figure 16. Content of the machine certificate

openssl x509 -noout -text -in control unit.pem

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022

18/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

4.5.2

AN13500

authentication

pi@raspberrypi:~/auth_demo $ openssl x509 -noout -text -in control_unit.pem
Certificate:
Data:
Version: 3 (0x2)
Serial Number:
04:00:50:01:8c:9¢c:75:a6:d4:62:bf:04:30:02:89:af:00:00:00:01
Signature Algorithm: ecdsa-with-SHA256
Issuer: OU = Plug and Trust, O = NXP, CN = NXP Intermediate-ConnectivityCAvE206
Validity
Not Before: Nov 16 00:00:00 2021 GMT
Not After : Nov 10 00:00:00 2046 GMT
Subject: OU = Plug and Trust, 0 = NXP, CN = DevConn1-040050018C9C75A6D462BF04300289AF0000
Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey
Public-Key: (256 bit)
pub:
04:04:15:b0:c1:57:60:9e:e0:c5:ad:7c:26:66:97:
d6:26:fe:edief:c5:67T:d1:d9:95:8c:fa:94:bl:a3:
cO:cf:al@:1f:i62:35:5a:93:e0:ab6:af:c0:9e:lc:el:
ea:95:4f:db:09:46:45:a3:6¢:88:2d:23:87:c0:4c:
01:4e:42:20:c2
ASN1 OID: prime256v1
NIST CURVE: P-256
X509v3 extensions:
X509v3 Basic Constraints:
CA:FALSE
X509v3 Key Usage:
Digital Signature
Signature Algorithm: ecdsa-with-SHA256
30:46:02:21:00:Fa:¢5:178:43:95:95:88:32:231ed:1f:c6:69:
bf:13:8b:be:c7:e3:66:50:71:f4:24:25:00:82:73:f3:cc:3a:
b3:02:21:00:e4:72:77:94:06:3a:79:0c:d6:81:17:74:86:85:
d6:75:91:13:75:b8:70:41:11:92:da:7d:e3:aB8:61:38:76:65
pi@raspberrypi:~/auth _demo $

Figure 17. Content of the control unit certificate

Retrieve the pre-provisioned A5000 device certificates public keys

The ECC public keys are required for the ECC verify operation. The ECC public keys can
be extracted from the corresponding certificate using the OpenSSL command-line tool or
with the help of the ssscli tool. In this chapter the ssscli tool is used.

ssscli get ecc pub --format PEM 0xF0000000 machine pub key.pem

ssscli get ecc pub --format PEM 0xF0000002
control unit pub key.pem

pi@raspberrypi:~/auth_demo $ ssscli get ecc pub --format PEM 0xFOOOOBO0 machine_pub_key.pem
Getting ECC Public Key from KeyID = OxFOBO000O
55§ :INFO :atr (Len=35)

01 A® 0O 06 03 96 04 83 E8 00 FE 082 0B 63 E8 00

01 00 00 00 00 64 13 88 0A 00 65 53 45 38 35 31

00 00 PO
5SS :WARN :Communication channel is Plain.
5SS :WARN :!!!Not recommended for production use.!!!

Retrieved ECC Public Key from KeyID = O@xFO0Q0000
pi@raspberrypii~/auth_demo $ ssscli get ecc pub --format PEM OxF0000002 control_unit_pub_key.pem
Getting ECC Public Key from KeyID = OxFO800002
SSS :INFO :atr (Len=35)
01 A0 00 00 B3 96 04 83 E8 00 FE 02 0B @3 E8 00
01 00 0O 00 00 64 13 88 OA 00 65 53 45 30 35 31

@0 00 00
5SS :WARN :Communication channel is Plain.
5SS :WARN :!!!Not recommended for production use.!!!

Retrieved ECC Public Key from KeyID = 0xFO008002
pi@raspberrypi:~/auth demo $

Figure 18. Retrieve the pre-provisioned A5000 device certificate's public keys

We use again the Linux command cat to display the both PEM formatted public keys:
cat machine pub key.pem

cat control unit pub key.pem

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
19/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

AN13500

authentication

pil@raspberrypi:~/auth_demo $ cat machine pub key.pem

————— BEGIN PUBLIC KEY-----
MFkwEWYHK0Z1zjBCAQYIK0oZIzjODAQcDQgAEOMRS LXoVFWBduEHh 1QhPKEFdQV22
hOXTSYY jTkgiBxHMz rQbmdX0+8EVH41m84/14050cnk1bXBB6KxAVcMzQg==
————— END PUBLIC KEY-----

pi@raspberrypi:~/auth_demo $ cat control_unit_pub_key.pem

————— BEGIN PUBLIC KEY-----
MFkwEWYHK0ZIzjOCAQYIK0ZIzjODAQcDQgAEBBWwWwWYI9gnuDFrXwmZp /WIv7k78Vv
0dmViPqUsaPAz6ATYjVak+Cmr8CeHOHq1U/bCUZFo2yILSOHWEWBTKIgwg==
————— END PUBLIC KEY-----

pi@raspberrypi:~/auth_demo %

Figure 19. Device public keys in PEM format

The x509 OpenSSL command also supports to display the public keys contents:
openssl ec -pubin -in machine pub key.pem -text

openssl ec -pubin -in control unit pub key.pem -text

pil@raspberrypi:~/auth_demo $ openssl ec -pubin -in machine_pub_key.pem -text

read EC key

Public-Key: (256 bit)

pub:
04:38:c4:6c:2d:7a:15:15:60:5d:b8:41:e1:d5:08:
41:28:41:5d:41:5d:b6:87:45:d3:49:86:23:4e:48:
22:07:11:ccice:b4:1b:99:d5:T4:fb:c1:15:17:89:
66:73:8f:cB8iefiee:4e:72:79:35:6d:70:41:e8:ac:
40:55:¢3:33:42

ASN1 0ID: prime256v1

NIST CURVE: P-256

writing EC key

————— BEGIN PUBLIC KEY-----

MFkwEwWYHK0ZIz jOCAQYIKoZIz jODAQcDQgAEOMRs LXoVFWBduEHh1QhPKEFAQV22

hOXTSYY]jTkg1BxHMz rQbmdX0+8EVH41m84/T4050cnk1bXBB6KxAVCcMz Qg==

----- END PUBLIC KEY-----

pi@raspberrypii~/auth _demo $ openssl ec -pubin -1in control unit pub key.pem -text

read EC key

Public-Key: (256 bit)

pub:
04:04:15:b0:c1:57:60:9e:e0:c5:ad:7c:26:66:9T:
d6:26:feiedief:c5:67:d1:d9:95:8c:fa:94:bl:a3:
cO:cf:af:1f:162:35:5a:93:e0:a6:af:c0:9e:1c:el:
ea:95:4f:db:09:46:45:a23:6c:88:2d:23:87:c0:4c:
01:4e:42:20:c2

ASN1 0ID: prime256v1

NIST CURVE: P-256

writing EC key

----- BEGIN PUBLIC KEY-----

MFkwEWYHK0Z 17 jOCAQYTKaoZ 1z jODAQcDQgAEBBWwWwWYIgnuDF rXwmZp /WIv7k78Vv

BdmViPglsaPAzBATY jVak+Cmr8CeHOHg1LU/bCUZFo2yIL SOHWEWBTKIgwg==

————— END PUBLIC KEY-----

pi@raspberrypi:~/auth demo $

Figure 20. Content of the device public keys

4.5.3 Create the reference key files for the OpenSSL engine

As already described above, the ECC private keys are securely stored inside the A5000
and cannot be read out like the public certificate or public key. To be able to delegate

a private crypto operation like an ECC signature generation to the A5000 we need to
generate a reference key. Later we use the reference key instead of the private key for
OpenSSL operations.

The following two commands are generating a "machine" and "control unit" reference
key.

ssscli refpem ecc pair 0xF0000000 machine ref key.pem

ssscli refpem ecc pair 0xF0000002 control unit ref key.pem

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
20/ 45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

AN13500

authentication

pi@raspberrypi:~/auth demo $ ssscli refpem ecc pair 0xFBOOOOBO machine ref key.pem
5SS :INFO :atr (Len=35)

01 AG 08 00 03 96 84 03 E8 80 FE 02 0B B3 E8 080

01 00 @8 00 00 64 13 88 QA BB 65 53 45 30 35 31

00 00 00
555 :WARN :Communication channel is Plain.
5SS :WARN :!!!Not recommended for production use.!!!

Created reference key for ECC Pair from KeyID = 0xFO000000
pi@raspberrypi:~/auth demo $ ssscli refpem ecc pair OxFOOEARO2 control unit ref key.pem
555 :INFO :atr (Len=35)

01 AG 08 00 03 96 04 03 EG 60 FE 02 0B 63 E8 00

01 00 00 00 00 64 13 88 QA BB 65 53 45 30 35 31

08 00 ee
55§ :WARN :Communication channel is Plain.
5SS :WARN :!!!Not recommended for production use.!!!

Created reference key for ECC Pair from KeyID = 0xFO000002
pi@raspberrypi:~/auth _demo $

Figure 21. Create the reference key files for the OpenSSL engine

The ssscli commands above are storing the reference keys in PEM format.
cat machine ref key.pem

cat control unit ref key.pem

pi@raspberrypi:~/auth_demo $ cat machine ref key.pem

————— BEGIN EC PRIVATE KEY-----
MHcCAQEEIBAAAAAAAAAAAAAAAAAAAAAAAPAAAACTprW2paalthAAoAoGCCqGSM49
AwEHoUQDQgAEOMRs LXoVFWBAUEHh 1QhPKEFdQV22hOXTSYY j Tkg iBxHMz rQbmdX0
+8EVH41m84/I14050cnk1bXBB6KXAVCcMzQg==

————— END EC PRIVATE KEY-----

pi@raspberrypi:~/auth_demo $ cat control _unit_ref key.pem

————— BEGIN EC PRIVATE KEY-----
MHcCAQEEIBAAAAAAAAAAAAAAAAAAAAAAAPAAAAK  prW2paalthAA0AOGCCqGSM49
AwEHoUQDQgAEBBWwwVanuDFermZp/WJv7k78VdemVjPquaPAzGAijVak+C%
r8CeHOHqLU/bCUZFo2yILSOHWEWBTKIgwg==

————— END EC PRIVATE KEY-----

pi@raspberrypi:~/auth_demo $

Figure 22. Reference private keys in PEM format

In the first glance, the reference key looks like as any other private key, therefore it is
required to use OpenSSL to display the details:

openssl ec -in machine ref key.pem -text

openssl ec -in control unit ref key.pem -text

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
21/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

AN13500

4.6

authentication

pi@raspberrypi:~/auth_demo $ openssl ec -1in machine_ref key.pem -text
read EC key
Private-Key: (256 bit)
priv:
10:00:00:00:00:00:00:00:00:00:00:00:00:00:00:
00:00:00:[f0:00:00:00}a5:a6:b5:b6:a5:a6:b5:b6:

machine private ECC key - object ID = ©xFoeeeeee

04:38:c4:6c:2d:7a:15:15:60:5d:b8:41:e1:d5:08:
41:28:41:5d:41:5d:b6:87:45:d3:49:86:23:4e:48:
22:07:11:cc:ce:b4:1b:99:d5:f4:fb:c1:15:11:89:
66:f3:8T:cB:eB:iee:d4e:72:79:35:6d:70:41:e8:ac:
40:55:c3:33:42
ASN1 0ID: prime256vi1
NIST CURVE: P-256
writing EC key
————— BEGIN EC PRIVATE KEY-----
MHcCAQEEIBAAAAAAAAAAAAAAAAAAAAAAAPAAAACIprW2paalthAA0AOGCCgGSM49
AwEHoUQDQgAEOMRs LXoVFWBduEHh 1QhPKEFdQV22h0XTSYY j Tkg 1BxHMz rQbmdX0
+B8EVH41m84 /14050cnk1bXBBEKXxAVCcMzQg==
————— END EC PRIVATE KEY-----
pi@raspberrypi:~/auth_demo $ openssl ec -in control_unit_ref key.pem -text
read EC key
Private-Key: (256 bit)
priv:
10:00:00:00:00:00:00:00:00:00:00:00:00:00:00:
00:00:00:[f0:00:00:02Fa5:a6:b5:b6:a5:ab6:b5:bb:

10:00 control unit private ECC key - object ID = @xFee0e802

04:04:15:b0:c1:5f:60:9e:eB:c5:ad:7c:26:66:9f:
db:26:feied:ef:c5:67:d1:d9:95:8c:fa:94:b1:a3:
c@:cf:af:1f:62:35:5a:93:eB:ab6:af:cB:9e:1c:el:
ea:95:4f:db:09:46:45:a83:6c:88:2d:23:87:c0:4c:
01:4e:42:20:c2
ASN1 0ID: prime256vi
NIST CURVE: P-256
writing EC key
————— BEGIN EC PRIVATE KEY-----
MHCCAQEEIBAAAAAAAAAAAAAAAAAAAAAAAPAAAAK T priW2paalthAA0A0GCCqGSM49
AwEHoUQDQgAEBBWwwVYIgnuDFrXwmZp /WIv7k78VvOdmViPgUsaPAz6ATYjVak+Cm
r8CeHOH1lU/bCUZFo2yILSOHWEWBT KIgwg==
————— END EC PRIVATE KEY-----
pi@raspberrypi:~/auth_demo %

pub:

pub:

Figure 23. Content of the reference private keys

Instead of a real private ECC device key the reference key contains mainly the

A5000 private key object ID. The remaining bytes are containing a 64-bit "magic
number" (always 0xA5A6B5B6A5A6B5B6). The Plug & Trust Middleware documentation
provides a detailed description of the reference key format.

The NXP OpenSSL engine uses this "magic number" to distinguish a reference key from
a real private key. In case a reference key is passed to the OpenSSL API or command-
line tool the NXP OpenSSL engine will invoke the A5000 to perform the private crypto
operation.

Chain of trust of the pre-provisioned device certificates

A certificate is a digital document that contains a public key and additional information
about the entity associated with it. A certificate also includes a digital signature from the
certificate issuer. In case of the pre-provisioned A5000 certificates the certification issuer
is NXP. The image below shows the complete certification chain of the pre-provisioned
device certificates.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
22/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

authentication
AS5000 device
A5000 device private key certificate
AA5000 device name
Reference
NXP Issuer's (CA) name =R P T T PP =
- Sign . INXP Intermediate
NXP Issuer's (CA) signature & semeeee e NXP Issuer's private key 'certificate
NXP Issuer's name
Verify Signature
Reference
NXP ROt CA'S name  mi b il b T r 1

Sign I NXP Root
T
NXP Root CA signature NXP Root CA private key : certificate
A4
Self-Sign NXP Root CA's name
Verify Signature

L NXP Root CA's signature

Figure 24. Certification chain of the pre-provisioned A5000 device certificates

All pre-provisioned A5000 device certificates are signed with the associated private key
of the NXP intermediate certificate. To verify the validity of the pre-provisined device
certificates we need to download the intermediate certificate.

The NXP intermediate certificate can be downloaded via the following link: https://
www.gp-ca.nxp.com/CA/getCA?caid=63709315060022.

The Linux command wegt can be used to download the NXP intermediate certificate. The
-O parameter is used to specify the filename.

wget https://www.gp-ca.nxp.com/CA/getCA?caid=63709315060022 -0
nxp a5000 intermediate ca.crt

pi@raspberrypi:~/auth_demo $ wget https://www.gp-ca.nxp.com/CA/getCA?caid=63709315060022 -0 nxp_a5000_1intermediate ca.crt
--2022-02-02 13:15:31-- https://www.gp-ca.nxp.com/CA/getCA?cald=63709315060022

Resolving www.gp-ca.nxp.com (www.gp-ca.nxp.com)... 92.121.34.12

Connecting to www.gp-ca.nxp.com (www.gp-ca.nxp.com)|92.121.34.12]:443... connected.

HTTP request sent, awaiting response... 208 0K

Length: 509 [application/x-x509-ca-cert]

Saving to: ‘nxp_a5@00_intermediate_ca.crt’

nxp_a5000_1intermediate_ca.crt 100%(

2022-02-02 13:15:32 (5.78 MB/s) - ‘nxp_a5000_ intermediate_ca.crt’ saved [509/509]

pi@raspberrypi:~/auth_demo $

Figure 25. Download the NXP intermediate certificate

The file nxp_a5000_ intermediate ca.crt contains NXP intermediate

certificate in DER format. For the following OpenSSL command-line examples

it is required to convert the certificate into the PEM formatted certification file

(nxp a5000 intermediate ca.pem). This step can be performed using the following
OpenSSL command:

openssl x509 -in nxp a5000 intermediate ca.crt -inform der -out
nxp a5000 intermediate ca.pem -outform pem

cat nxp a5000 intermediate ca.pem

AN13500 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 1.1 — 14 September 2022

23/45


https://www.gp-ca.nxp.com/CA/getCA?caid=63709315060022
https://www.gp-ca.nxp.com/CA/getCA?caid=63709315060022

NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

AN13500

authentication

pi@raspberrypi:~/auth_demo $ openssl x509 -in nxp_a5000_intermediate_ca.crt -inform der -out nxp_a5000_intermediate_ca.pem -outform pem
pi@raspberrypi:~/auth_demo $ cat nxp_a5080_intermediate_ca.pem
————— BEGIN CERTIFICATE-----
MIIB+TCCAVigAwIBAgIBBTAMBggqghkjOPQQDAQUAMEE xFzZAVBgNVBASMD1Bs dWcg
YW5KIFRydXNOMQwwCgYDVQQKDANOWFAXGDAWBgNVBAMMDOSYUCBSh290Q0F2RTUw
NjALGAByMDIXMTIXNTEXNTYXN1oYDz IwNZExXM]E1MTE 1INjE2W]BWMRcwFQYDVQQL
DA5QbHVNIGFuZCBUcnVzdDEMMAOGA 1UE CgwDT1hQMSOwKwYDVQQDDCROWFAGSWS5
ZXJtZWRpYXR1LUNvbm51Y3Rpdml@eUNBdKUyMDYWWTATBgcqhkjOPQIBBggqhkjo
PQMBBwWNCAAQT7b6gNuRGM21s5psP41ur2xQTiMIToFhzRv26Bz XAmgv iex3pFdzs
FUCA2NBY56M9D38+Z1ZTorFOhhqOKasgoyYwIDASBgNVHRMBATBECDAGAQH/AgEA
MA4GA1UdDwEB/wQEAWIBBj AMBggghkjOPQQDAgUAA4GMADCB1AJCAWX jV7SwdnZY
3vvT+sMuzc2eHc iHWRDUHW112DTM1x+V/gr/3fCLIS1pjV5YTKkKGpnRMFwWU+g3TD
pzC1adR160kPAKIAGrvA23/tonWo10k3fGej imIOGropQHEYhM5yZb97zNNxwy rk
WDdGA21Nc2QxZgPPkUkzBQS8FgI T 1kmHL14LQke=

----- END CERTIFICATE-----

pi@raspberrypi:~/auth_demo $

Figure 26. Convert the NXP intermediate certificate file
nxp_a5000_intermediate_ca.crt” into a PEM formatted file

The NXP intermediate certificate is signed by a NXP root certificate. To be able to verify
the validity of the NXP intermediate certificate you need also to download the NXP root
certificate.

The NXP root certificate can be downloaded via the following link: https://www.gp-
ca.nxp.com/CA/getCA?caid=63709315050010.

We can use again the Linux command wegt to download the certificate:

wget https://www.gp-ca.nxp.com/CA/getCA?caid=63709315050010 -0
nxp a5000 root ca.crt

pi@raspberrypi:~/auth_demo $ wget https://www.gp-ca.nxp.com/CA/getCA?caid=63709315850010 -0 nxp_a5000 root_ca.crt
--2022-02-02 13:21:22-- https://www.gp-ca.nxp.com/CA/getCA?caid=63709315050010

Resolving www.gp-ca.nxp.com (www.gp-ca.nxp.com)... 92.121.34.12
Connecting to www.gp-ca.nxp.com (www.gp-ca.nxp.com)|92.121.34.12|:443... connected.
HTTP request sent, awaiting response... 200 0K

Length: 552 [application/x-x589-ca-cert]
Saving to: ‘nxp_ab5088_root_ca.crt’

nxp_a5000_root_ca.crt 100%[
2022-02-02 13:21:23 (5.90 MB/s) - ‘nxp_a5000_root_ca.crt’' saved [552/552]

pl@raspberrypii~/auth_demo $

Figure 27. Download the NXP root certificate

Finally we also convert the NXP root certificate into a PEM formatted certification file
(nxp_a5000_ root ca.pem).

openssl x509 -in nxp a5000 root ca.crt -inform der -out
nxp a5000 root ca.pem -outform pem

cat nxp a5000 root ca.pem

pi@raspberrypi:~/auth_demo $ openssl x509 -in nxp_a5000_root_ca.crt -inform der -out nxp_a5000_root_ca.pem -outform pem
pi@raspberrypi:~fauth_demo $ cat nxp_a5000_root_ca.pem

————— BEGIN CERTIFICATE-----
MIICIDCCAYOgAWIBAGIBBTAMBggghkjOPQQDBAUAMEE xFz AVBgNVBAsMD1Bsdvcg
YW5KIFRydXNe@MQwwCgYDVQQKDANOWFAXGDAWBgNVBAMMDOSYUCBSh290Q0F2RTUW
NjA1GA8YMDIxMTIXNTExXNDMyN1oYDz IwODExMjE 1IMTE®MzI2WiBBMRcwFQYDVQQL
DA5QbHVNIGFuZCBUcnVzdDEMMAOGA1UECgwWDT LhQMRgwFgYDVQQDDA9OWFAgUmMIv
dENBdkU1MDYwgZswEAYHK0ZIzjOCAQYFK4EEACMDgYYABAB1D63wcZccqOcxdyj+
uW3PLVYE1/0Jgl/wMvdgEhmywny3H00ZGsWTA967gZqydc j6n/AYsc20rVOEGSBN
YUP /HwFmoVPp LTBwTWlu0JIxvnEXuW7179AEenRG+Bo5AInZX/Q1Y6BKKhz jPcc62
Jze9BtOh6gr67RZHBP kL3ler 10M466MjMCEWDWYDVROTAQH/BAUWAWEB/ ZAOBgNY
HQ8BATSEBAMCAQYWDAYIKo0Z1z jOEAWQFAAOB] AAwgYgCQQEIZDKAOF43uv4UT7XE
fnZQuMFnYsN6XaZmvo3R/oW01qad+xTGjITerXubsR1CO7UvaK18uw] 4WTe90K+L
trZr5wlCAdAgKemLF6N] LCSp4wE xudc iPOWIK5CFCH83rYUINSQTkchvxbe /wiX8
HMLekgRYwMapF/dFOvtN/TCNmgE+wPBo

————— END CERTIFICATE-----

pi@raspberrypii~/auth_demo $

Figure 28. Convert the NXP root certificate file "nxp_a5000_root_ca.crt"into a
PEM formatted file

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
2445


https://www.gp-ca.nxp.com/CA/getCA?caid=63709315050010
https://www.gp-ca.nxp.com/CA/getCA?caid=63709315050010

NXP Semiconductors

AN13500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

authentication

4.7 Mutual authentication flow

4.7.1

4711

AN13500

As already described in Section 3 the authentication flow consists of a mutual
authentication procedure. First, the machine will authenticate the control unit. If the
machine was successfully authenticated, the control unit will authenticate the machine.

Control unit authentication

The authentication of the control unit consists of two steps:

¢ Step 1: Control unit device certificate validation
¢ Step 2: Proof of control unit private key possession

The example below will demonstrate the basic principle of the control unit authentication
flow as show in the figure below using the OpenSSL command-line tools .

@l

NXP
Machine Machine NXP Root CA intermediate Control unit Control unit
certificate private key certificate CA certificate certificate private key
| Machine Control unit
ey v e e
0. .
% __________________________ ;
Step 1: Certificate validation Q
Check control unit certificate /'\ Send control unit certificate for validation
signature. Extract unique o N
v public key from certificate Luos®
) Send random challenge for signature ('\ Sign random
p2: p . .
Step 2: Proof of possession S challenge with private
Send control unit Yoo O m

key stored in A5000
967949 0 I

signature (signed

Check control unit signature !
machine random)

with the extracted control unit
publickey « .

Control unit
authenticated!

Figure 29. Control unit authentication flow

Step 1: Control unit device certificate validation

The first step the control unit sends the control unit certificate (control unit.pem)

to the machine for validating the certificate. The OpenSSL verify command-line tools
allows the validation of a certification chain. It is required to provide OpenSSL the NXP
A5000 root CA and the NXP A5000 intermediate CA and the A5000 device certificate to
be validated:

openssl verify -CAfile nxp a5000 root ca.pem -untrusted
nxp a5000 intermediate ca.pem control unit.pem

pi@raspberrypi:~/auth_demo $ openssl verify -CAfile nxp_a5000_root_ca.pem -untrusted nxp_a5000_intermediate_ca.pem control_unit.pem
control_unit.pem: OK
pi@raspberrypi:~/auth_demo $

Figure 30. OpenSSL - Verify control unit device certificate

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
25/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

4.71.2

AN13500

authentication

Note: We assume the NXP root and intermediate CA are already stored in the machine
and control unit.

Note: To simplify the example we do not use the A5000 for validating the control unit
certificate, because the keys of the NXP root and intermediate CA are not stored inside
the A5000 device.

The control unit certificate is valid in case OpenSSL returns OK. This also means, that the
public key included in the control unit certificate can be trusted.

Step 2: Proof of control unit private key possession

In this step, the control unit must prove that it is in possession of the ECC private key.

* For this purpose, the machine uses the A5000 to generate a 16-byte random number
and sends this number to control unit.

* Next the control unit uses A5000 to sign the received random number, using the private
ECC key securely stored inside the A5000.

* The ECC signature (signed random number) is returned to the machine.
¢ The machine verifies the signature with the control unit public key. The control unit is
authenticated in case of successful signature verification.

The following OpenSSL command generates 8-byte random number in HEX format.
Because we did not specify to use the A5000 OpenSSL engine so random numbers are
generated by OpenSSL in software.

openssl rand -hex 8

pi@raspberrypii~/auth_demo $ openssl rand -hex 8
7e07d9f05341e446
pi@raspberrypi:~/auth_demo $

Figure 31. OpenSSL - Random numbers generated by OpenSSL in software

The Plug & Trust Middleware supports the A5000 Secure Authenticator and the SE05x
Secure Element. Both product families are using the same API and the same OpenSSL
engine. The NXP Plug & Trust middleware OpenSSL engine is located in the following
directory:

/usr/local/lib/libsss_engine.so

The corresponding OpenSSL configuration file is located in:
~/se_mw/simw-top/demos/linux/common/openssl sss_se050.cnf

With the help of following the Linux command we can display the relevant default setting:

tail ~/se mw/simw-top/demos/linux/common/opensslll sss _se050.cnf
-n 12

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
26/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

AN13500

authentication

pi@raspberrypi:~/auth_demo $ tail ~/se_mw/simw-top/demos/1inux/common/openssl1l _sss_seB50.cnf -n 12
[nxp_engine]
engines = engine_section

[engine_section]
edsss_seB50 = edsss_se@50_section

[ed4sss seB50 section]

engine id = edsss

dynamic_path = /usr/local/lib/libsss_engine.so
init = 1

default_algorithms = RAND,RSA,EC

pil@raspberrypi:~/auth_demo $

Figure 32. Plug & Trust Middleware OpenSSL engine default configuration

Note: The A5000 does not support RSA, there it is recommended to remove the entry
RSA from the default algorithmus entry.

We can keep the default settings unmodified. To overrule the default OpenSSL
configuration, we can temporally assign the path to the openss111l_sss_se050.cnf
file by setting the Linux environment variable OPENSSL CONF. This step is performed
with the help of the shell's export command.

export OPENSSL CONF=~/se mw/simw-top/demos/linux/common/
opensslll sss se050.cnf

Now we can use the same OpenSSL command to delegate the random numbers
generation to the A5000. The console output includes P&T MW default log messages.

openssl rand -hex 8

pi@raspberrypi:~/auth_demo $ export OPENSSL_CONF=~/se_mw/simw-top/demos/linux/common/openssl11_sss_se05@.cnf
pi@raspberrypi:~/auth_demo $ openssl rand -hex 8
ssse-flw: EmbSe Init(): Entry
App :INFO :If you want to over-ride the selection, use ENV=EX SSS BOOT_SSS_PORT or pass in command line arguments.
555 :INFO :atr (Len=35) %

01 AD 00 0@ 03 96 04 03 E8 00 FE 02 0B ©3 E8 0@

01 00 00 0@ 00 64 13 88 OA 00 65 53 45 30 35 31

00 00 00
sSS :WARN :Communication channel is Plain.
SSS :WARN :!!!Not recommended for production use.!!!

ssse-flw: Version: 1.0.5

ssse-flw: EmbSe_Init(): Exit

ssse-flw: EmbSe Rand invoked requesting 8 random bytes
random numbers generated by A5000
ssse-flw: EmbSe_Finish(): Entry

ssse-flw: EmbSe_Finish(): Exit

ssse-flw: EmbSe Destroy(): Entry
pi@raspberrypi:~/auth_demo $

Figure 33. OpenSSL - Random number generated by A5000

Next in our example, the machine generates a 256-byte random number and stores it
into a text file. The random number is send to the control unit.

openssl rand -out machine random.txt -hex 256

cat machine random.txt

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
27145



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

authentication

pi@raspberrypi:~/auth_demo $ openssl rand -out machine_random.txt -hex 256
ssse-flw: EmbSe_Init(): Entry
App :INFO :If you want to over-ride the selection, use ENV=EX_SSS_BOOT_SSS_PORT or pass
SSS :INFO :atr (Len=35)
01 A0 00 00 03 96 04 63 E8 00 FE 02 0B 03 E8 00
01 00 00 00 00 64 13 88 BA 80 65 53 45 38 35 31

00 00 00
5SS :WARN :Communication channel 1is Plain.
SSS :WARN :!!!Not recommended for production use.!!!

ssse-flw: Version: 1.0.5

ssse-flw: EmbSe_Init(): Exit

ssse-flw: EmbSe Rand invoked requesting 256 random bytes

ssse-flw: EmbSe Finish(): Entry

ssse-flw: EmbSe_Finish(): Exit

ssse-Tlw: EmbSe_Destroy(): Entry

pi@raspberrypi:~/auth_demo $ cat machine_random.txt
ef6021c9a6d1c54284bd3823ee8f7e6d885¢36873094b3104960577e3b5464b94T0Tel117b27d376d24e8T4ba77
bdc443a61535bfB80e1717T3d780fa712796128aba8fa%1acc7124a3d88fecd33ath9a27f7ce8eac51882b21d36
1dBadfc539408caf4b97eed467421efee30b31dT05T36eb8704934797447hdaed408d3173a34f4a3b1751d3a7a83
pi@raspberrypi:~/auth_demo $

Figure 34. OpenSSL - A5000 random numbers are stored in a text file

The control unit uses the A5000 to generate the ECC signature using standard
OpenSSL commands. This is performed by providing a control unit reference key
(control unit ref key.pem)instead of a private key. The signature is stored in the
sig machine random.sha256 in binary format.

openssl dgst -sha256 -sign control unit ref key.pem -out
control unit signature.sha256 machine random.txt

pi@raspberrypi:~fauth_demo $ openssl dgst -sha256 -sign control_unit_ref_key.pem -out control_unit_signature.sha256 machine_random.txt
ssse-flw: EmbSe_Init(): Entry
App :INFO :If you want to over-ride the selection, use ENV=EX_SSS_BOOT_SSS_PORT or pass in command line arguments.
sss :INFO :atr (Len=35)
01 AD 00 00 03 96 04 03 E8 00 FE 02 0B 03 E8 00
01 00 00 00 00 64 13 88 QA 00 65 53 45 30 35 31
00 00 00
SSS :WARN :Communication channel is Plain.
SsS :WARN :!!!Not recommended for production use.!!!
ssse-flw: Version: 1.0.5
ssse-flw: EmbSe_Init(): Exit
ssse-dbg: Using keyId=0xFROOA002
ssse-dbg: shaAlgo: 771
ssse-flw: [SSS based sign (keyId=0xFO00O002, dgstlen=32)
ssse-flw: |SSS based sign called successfully (sigDERLen=71)
ssse-flw: EmbSe_CCDSA_DO_S1ign success.
ssse-flw: EmbSe_Finish(): Entry
ssse-flw: EmbSe_Finish(): Exit
ssse-flw: EmbSe_Destroy(): Entry
pi@raspberrypi:~/auth_demo $

Figure 35. OpenSSL - The A5000 signs the random numbers with the private ECC
key stored inside the A5000

We can use the following Linux command to display the binary signature value.

xxd -c¢ 16 -g 1 -u control unit signature.sha256

pi@raspberrypi:~/auth _demo $ xxd -c 16 -g 1 -u control_unit_signature.sha256
0000000 30 45 02 20 76 DO FE B1 39 04 A4 62 E4 A4 93 2B OBE. v...9..b...+
000EE010: E4 54 43 2F 55 8A 22 D1 44 B3 36 8E FB 10 DB 61 .TC/U.".D.6....a

00000020: F7 F4 60 B1 02 21 00 EC AF EE CE D6 3B 29 72 62 .. ..l...... ;Irb
000EEe30: 0C 8B DO EB DC 25 OE 8B 82 44 EE D2 BA F2 4C B3 ..... %...D... L
00000040: A8 2A F4 34 48 TF 10 LFU4HL .

pi@raspberrypi:~/auth_demo $

Figure 36. Control unit signature

The machine extracts the unique control unit public key from certificate using the
following OpenSSL command:

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
28/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

AN13500

4.7.2

authentication

openssl x509 -in control unit.pem -pubkey -noout >
control unit pub.pem

Finally, the machine verifies the signature with the control unit public key
control unit pub.pem. Because we are using the public key of another entity, this
step is performed by the OpenSSL engine in software.

openssl dgst -sha256 -verify control unit pub.pem -signature
control unit signature.sha256 machine random.txt

pi@raspberrypi:~/auth_demo $ openssl x509 -in control_unit.pem -pubkey -noout > control_unit_pub.pem
pi@raspberrypi:~/auth_demo $ openssl dgst -sha256 -verify control_unit_pub.pem -signature control_unit_signature.sha256 machine_random.txt
ssse-flw: EmbSe_Init(): Entry
App +INFO :If you want to over-ride the selection, use ENV=EX_SSS_BOOT_SSS_PORT or pass in command line arguments.
555 :INFO :atr (Len=35)
01 A0 0@ 0o @3 96 04 03 E8 @0 FE 02 0B 03 E8 00
91 00 0@ 0O @0 64 13 88 0A @0 65 53 45 30 35 31
00 00 00
5SS :WARN :Communication channel is Plain.
sss :WARN :!!!Not recommended for production use.!!!
ssse-flw: Version: 1.8.5
ssse-flw: EmbSe_Init(): Exit
ssse-flw: Inveking EmbSe ECDSA_Do_Verify(..)
ssse-dbg: ====>SIGNATURE (len=71)
ssse-dbg:
30 45 02 20 76 DO FE Bl 39 04 A4 62 E4 A4 93 2B
E4 54 43 2F 55 8A 22 D1 44 B3 36 8E FB 10 DB 61
F7 F4 60 B1 02 21 00 EC AF EE CE D6 3B 29 72 62
0C 8B DO EB DC 25 OE 8B 82 44 EE D2 BA F2 4C B3
A8 2A F4 34 48 7F 10
ssse-dbg: ====>DIGEST
4C EO C3 A6 68 DD 3D 8E CC 63 43 73 OF C8 1D 35
4A 1C 3B 91 C3 D3 CE 4A 0B 56 CO 55 F8 A3 40 FF
ssse-flw: No matching key in Secure Element. Invoking OpenSSL API: ECDSA do_verify
ssse-flw: Verification by OpenSSL PASS
Verified OK
ssse-flw: EmbSe_Finish(): Entry
ssse-flw: EmbSe_Finish(): Exit

ssse-flw: EmbSe_Destroy(): Entry
pi@raspberrypi:~/auth_demo $

Figure 37. OpenSSL - Verify control unit signature

The control unit is authenticated in case OpenSSL returns verified OK.

Machine authentication

The authentication of the machine also consists of two steps. In principle the steps
are vice versa compared to the control unit authentication. The steps are briefly
demonstrated for completeness:

¢ Step 1: Machine certificate validation
» Step 2: Proof of machine private key possession

The example below will demonstrate the basic principle of the machine authentication
flow as shown in the figure below using the OpenSSL command-line tools .

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
29/45



NXP Semiconductors

AN13500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

AN13500

4.7.21

authentication
7 J Q 7
NXP
Machine Machine NXP Root CA intermediate Control unit Control unit
certificate private key certificate CA certificate certificate private key
Machine Control unit
E ﬁ
Q Step 1: Certificate validation
Send machine certificate for validation Check machine certificate
M signature. Extract unique
“e.s* public key from certificate v
Sign random Send random challenge for signature i i
C challenge with private .f \ Step 2: Proof of possession
key stored in A5000 “e,.* Send machine
signature (signed 578795 O Check machine signature
control unit random) : : with the extracted control
%e..* unit public key
Machine
authenticated!
Figure 38. Control unit authentication flow

Step 1: Machine device certificate validation

The first step the machine sends the machine certificate (machine.pem) to the control

unit for validating the certificate. We use again the OpenSSL verify command-line tools
to validate the certification chain.

openssl verify -CAfile nxp a5000 root ca.pem -untrusted
nxp a5000 intermediate ca.pem machine.pem

All information provided in this document is subject to legal disclaimers.

Application note

© NXP B.V. 2022. All rights reserved.

Rev. 1.1 — 14 September 2022
30/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

4.7.2.2

AN13500

authentication

pi@raspberrypi:~/auth_demo $ openssl verify -CAfile nxp_a5600_root_ca.pem -untrusted nxp_a5000_intermediate_ca.pem machine.pem
ssse-flw: EmbSe_Init(): Entry
App :INFO :If you want to over-ride the selection, use ENV=EX_SSS_BOOT_SSS_PORT or pass in command line arguments.
5SS :INFO :atr (Len=35)
01 A@ 00 00 03 96 04 03 E8 @0 FE 02 OB 03 E8 00
01 9@ 00 00 00 64 13 88 0A @0 65 53 45 30 35 31

00 00 00
555 :WARN :Communication channel is Plain.
sss  :WARN :!!!Not recommended for production use.!!!

ssse-flw: Version: 1.0.5

ssse-flw: EmbSe Init(): Exit

ssse-flw: Invoking EmbSe ECDSA Do_Verify(..)
ssse-dbg: ====>SIGNATURE (len=139)

ssse-dbg:

30 81 88 02 42 01 6C 63 57 B4 BO E2 76 58 DE FB
D3 FA C3 2E CD CD 9E 1D C8 87 C1 10 D4 1F 0D 75
D8 37 CC D7 1F 95 FE OA FF DD F® 8B 21 28 A9 8D
5E 58 B6 42 86 A6 74 4C 17 05 3E 82 34 C3 A7 30
B5 69 D4 75 E8 E9 OF 02 42 00 D2 B5 40 DB 7F ED
A2 75 A8 8B 49 37 7C 67 23 8A 62 OE 1A BF 69 40
71 18 84 CE 72 65 BF 7B CC D3 71 C3 2A CA 58 37
46 03 69 4D 73 64 31 66 ©3 CF 91 49 33 05 04 BC
16 ©2 5F 96 49 87 2E 5E 0B 42 4D

ssse-dbg: ====>DIGEST

76 6E 71 6F 6F 36 33 DD 65 7D 22 AB 1F DO 69 A6
0D ED 28 CC C1 E1 65 A6 40 3F 04 03 1F 8D 79 02
ssse-flw: No matching key in Secure Element. Invoking OpenSSL API: ECDSA_do_verify.
lssse-flw: Verification by OpenSSL PASS
lssse-flw: Invoking EmbSe ECDSA Do Verify(..)
ssse-dbg: ====>SIGNATURE (Tlen=/1)

ssse-dbg:

30 45 02 20 4F F1 97 EO 88 EF 6C 4B 1A 7D E9 44
48 84 4E B6 D4 C3 7F 3D 68 66 3C 78 37 10 94 FB
7C 35 06 BC 02 21 00 DC F9 4F 1A 98 CE 10 08 F2
5F ©7 26 B4 0B 9F FE 2D 75 3D 4B 2A 44 76 AB 35
6C B7 FF CA 61 AC F2

ssse-dbg: ====>DIGEST

98 31 55 B6 C6b A0 E5 63 38 51 26 5F AE 00 D2 16
B5 A9 B9 3D 58 17 5E D@ A9 B9 91 B4 A2 48 73 E9
ssse-flw: No matching key in Secure Element. Invoking OpenSSL API: ECDSA_do_verify.
ssse-flw: Verification by OpenSSL PASS
machine.pem: OK

ssse-flw: EmbSe_Finish(): Entry

ssse-flw: EmbSe_Finish(): Exit

ssse-flw: EmbSe Destroy(): Entry
pi@raspberrypi:~/auth_demo $

Figure 39. OpenSSL - Verify machine certificate

Note: We assume the NXP root and intermediate CA are already stored in the machine
and control unit.

Note: To simplify the example we do not use the A5000 for validating the machine
certificate, because the keys of the NXP root and intermediate CA are not stored inside
the A5000 device.

The machine certificate is valid in case OpenSSL returns OK. This also means, that the
public key included in the machine certificate can be trusted.

Step 2: Proof of control unit private key possession

In this step, the machine must prove that it is in possession of the ECC private key.

Note: We assume the Linux environment variable OPENSSL CONF was already set as
described in Section 4.7.1.2.

The control unit generates a 256-bytes random number and stores it into a text file. The
random number is sent to the machine.

openssl rand -out control unit random.txt -hex 256

cat control unit random.txt

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
31/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

authentication

pi@raspberrypi:~/auth_demo $ openssl rand -out control_unit_random.txt -hex 256
ssse-flw: EmbSe_Init(): Entry
App :INFO :If you want to over-ride the selection, use ENV=EX SSS BOOT SSS PORT or pass
555 :INFO :atr (Len=35)
01 AG 00 00 03 96 04 03 E8 00 FE 02 0B 03 E8 00
01 00 @0 60 00 64 13 88 DA 00 65 53 45 30 35 31

00 00 B0
5SS :WARN :Communication channel is Plain.
555 :WARN :!!!Not recommended for production use.!!!

ssse-flw: Version: 1.0.5

ssse-flw: EmbSe_Init(): Exit

ssse-flw: EmbSe_Rand invoked requesting 256 random bytes

ssse-flw: EmbSe_Finish(): Entry

ssse-flw: EmbSe_Finish(): Exit

ssse-flw: EmbSe_Destroy(): Entry

pi@raspberrypi:~/auth demo $ cat control unit random.txt
83ceBd10eeB8b20ac3b81562a60597d9066021b906367810b9be319b5e5bb988675F4fcebc74afalebbd1b5b210
cceB@da92at3b3b9bb9b22a732635ba2cdB88854ff41abablafceB4b56636861a0Y%eef698a83f /c2dad 741855329
576alb8fc984fhecBed987/7/84cal3aadb439e99cTT547/bed4d4BccccBb3d9cet19¢c2abcbbTd8ad49t527b3b154d94
pi@raspberrypi:~/auth_demo $

Figure 40. OpenSSL - A5000 random numbers are stored in a text file

The machine uses the A5000 to generate the ECC signature. This is performed by
providing a machine reference key (machine ref key.pem)instead of a private key.
The signature is stored in the sig control unit random.sha256 in binary format.

openssl dgst -sha256 -sign machine ref key.pem -out
mashine signature.sha256 control unit random.txt

pi@raspberrypi:~/auth_demo $ openssl dgst -sha256 -sign machine_ref_key.pem -out mashine_signature.sha256 control_unit_random.txt
ssse-flw: EmbSe_Init(): Entry
App :INFO :If you want to over-ride the selection, use ENV=EX_SSS_BOOT_SSS_PORT or pass in command line arguments.
555 :INFO :atr (Len=35)
01 AD 00 00 03 96 04 03 E8 00 FE 02 0B 03 E8 00
01 00 00 00 00 64 13 88 0A 00 65 53 45 30 35 31
00 00 00
sSS :WARN :Communication channel is Plain.
sSS :WARN :!!!Not recommended for production use.!!!
ssse-flw: Version: 1.6.5
ssse-flw: EmbSe_Init(): Exit
ssse-dbg: Using keyId=0xFOOOO00O
ssse-dbg: shaAlgo: 771
Esse—ﬂw: SSS based sign (keyId=0xFO0@000O, dgstlen=32)

sse-flw: SSS based sign called successfully (sigDERLen=70)
sse-flw: EmbSe ECDSA Do Sign success.

ssse-flw: EmbSe_Finish(): Entry

ssse-flw: EmbSe_Finish(): Exit

ssse-flw: EmbSe_Destroy(): Entry
pi@raspberrypi:~/auth_demo $

Figure 41. OpenSSL - The A5000 signs the random numbers with the private ECC
key stored inside the A5000

We can use the following Linux command to display the binary signature value.

xxd -c¢ 16 -g 1 -u mashine signature.sha256

pi@raspberrypi:~/auth_demo $ xxd -c 16 -g 1 -u mashine_signature.sha256

00000000: 30 44 02 20 1A D9 1F 44 D6 87 27 22 5B 7D E9 31 0D. ...D..'"[}.1
00000010: A3 46 3A 5D B2 95 E2 22 B9 OF 07 AC 10 6D 34 6D .F:]..."..... mé.
00000020: 09 16 FA 4E 02 20 67 E8 FF AB ED 74 62 8A CF DE ...N. g....th...
00000030: BB 2E AF EF BE 93 2D 81 03 75 26 56 OA 99 7B 20 ...... -..ubv. . o{
00000040: 65 19 74 5C DD 21 e t\.!

pi@raspberrypi:~/auth_demo $%

Figure 42. Machine signature

The control unit extracts the unique machine public key from certificate using the
following OpenSSL command:

openssl x509 -in machine.pem -pubkey -noout > machine pub.pem

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
32/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

AN13500

4.8

4.8.1

authentication

Finally, the control unit verifies the signature with the machine public key
machine pub.pem.

openssl dgst -sha256 -verify machine pub.pem -signature
mashine signature.sha256 control unit random.txt

pi@raspberrypii~/auth_demo $ openssl x509 -1in machine.pem -pubkey -noout > machine_pub.pem
pi@raspberrypi:~/auth_demo $ openssl dgst -sha256 -verify machine_pub.pem -signature mashine_signature.sha256 control_unit_random.txt
ssse-Tlw: EmbSe_Init(): Entry
App :INFO :If you want to over-ride the selection, use ENV=EX_SSS_BOOT_SSS_PORT or pass in command line arguments.
sss  :INFO :atr (Len=35)
01 AD 00 00 03 96 04 03 E8 00 FE 02 0B 03 E8 00
01 00 00 00 00 64 13 88 GA 00 65 53 45 30 35 31

00 0o oo
SSS :WARN :Communication channel 1is Plain
555 :WARN :!!!Not recommended for production use.!!

ssse-Tlw: Version: 1.0.5

ssse-flw: EmbSe_Init(): Exit

ssse-Tlw: Invoking EmbSe ECDSA_Do_Verify(..)
ssse-dbg: ====>SIGNATURE (1en=70)

ssse-dbg:

30 44 02 20 1A D9 IF 44 D6 87 27 22 5B 7D E9 31
A3 46 3A 5D B2 95 E2 22 B9 OF 07 AC 10 6D 34 0D
09 16 FA 4E 02 20 67 E8 FF AB ED 74 62 8A CF DE
BB 2E AF EF BE 93 2D 81 03 75 26 56 QA 99 7B 20
65 19 74 5C DD 21

ssse-dbg: ====>DIGEST

4D 5B E5 5B 20 B2 EB CC 5C 14 DO 82 9A 60 F9 OE
63 2F 01 91 3E 3C 04 28 A2 B2 4E 4A CE CO 87 1A

Esserflw: No matching key in Secure Element. Invoking OpenSSL API: ECDSA_do_verify.
sse-flw: Verification by OpenSSL PASS

Verified 0K

ssse-flw: EmbSe_Finish(): Entry
ssse-Tlw: EmbSe_Finish(): Exit
ssse-Tlw: EmbSe_Destroy(): Entry
pi@raspberrypi:~/auth_demo $

Figure 43. OpenSSL - Verify machine signature

The machine is authenticated in case OpenSSL returns Verified OK.

Binding A5000 to a host MCU/MPU using Platform SCP

Binding is a process to establish a pairing between the loT device host MPU/MCU and
A5000, so that only the paired MPU/MCU is able to use the services offered by the
corresponding A5000 and vise versa.

A mutually authenticated, encrypted channel will ensure that both parties are indeed
communicating with the intended recipients and that local communication is protected
against local attacks, including man-in-the-middle attacks aimed at intercepting the
communication between the MPU/MCU and the A5000 and physical tampering attacks
aimed at replacing the host MPU/MCU or A5000 .

A5000 natively supports Global Platform Secure Channel Protocol 03 (SCP03) for this
purpose. PlatformSCP uses SCP03 and can be enabled to be mandatory.

This chapter describes the required steps to enable Platform SCP in the middiware for
A5000.

The following topics are discussed:

¢ Section 4.8.1Introduction to the Global Platform Secure Channel Protocol 03 (SCP03)
¢ Section 4.8.2 How to enable Platform SCP in the Plug & Trust Middleware

» Section 4.8.3 How to configure the A5000 product specific SCP keys in the Plug &
Trust Middleware

Introduction to the Global Platform Secure Channel Protocol 03 (SCP03)

The Secure Channel Protocol SCP03 authenticates and protects locally the bidirectional
communication between host and A5000 against eavesdropping on the physical 12C
interface.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
33/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device
authentication

AS5000 can be bound to the host by injecting in both the host and A5000 the same unique
SCPO03 AES key-set and by enabling the Platform SCP feature in the Plug & Trust
Middleware. The AN12662 Binding a host device to EdgelLock SE05x describes in detail
the concept of secure binding.

SCPO03 is defined in Global Platform Secure Channel Protocol '03' - Amendment D v1.2
specification.

SCPO03 can provide the following three security goals:

¢ Mutual authentication (MA)
— Mutual authentication is achieved through the process of initiating a Secure
Channel and provides assurance to both the host and the A5000 entity that they are
communicating with an authenticated entity.

* Message Integrity
— The Command- and Response-MAC are generated by applying the CMAC according
to NIST SP 800-38B.

» Confidentiality
— The message data field is encrypted across the entire data field of the command
message to be transmitted to the A5000, and across the response transmitted from
the A5000.

The SCPO03 secure channel is set up via the A5000 authenticator application using the
standard 1ISO7816-4 secure channel APDUs.

The establishment of an SCP03 channel requires three static 128-bit AES keys shared
between the two communicating parties: Key-ENC, Key-MAC and Key-DEK.

Key-ENC and Key-MAC keys are used during the SCP03 channel establishment to
generate the session keys. Session Keys are generated to ensure that a different set of
keys are used for each Secure Channel Session to prevent replay attacks.

Key-ENC is used to derive the session key S-ENC. The S-ENC key is used for
encryption/decryption of the exchanged data. The session keys S-MAC and R-MAC are
derived from Key-MAC and used to generate/verify the integrity of the exchanged data
(C-APDU and R-APDU).

Key-DEK key is used to encrypt new SCP03 keys in case they get updated.

Table 2. Static SCP03 keys

Key Description Usage Key
Type
Key-ENC |Static Secure Channel Generate session key for Decryption/ AES
Encryption Key Encryption (AES) 128
Key-MAC |Static Secure Channel Generate session key for Secure Channel AES
Message Authentication authentication and Secure Channel MAC 128
Code Key Verification/Generation (AES)
Key-DEK |Data Encryption Key Sensitive Data Decryption (AES) AES
128

The session key generation is performed by the Plug & Trust Middleware host crypto.

AN13500 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 1.1 — 14 September 2022

34/45


https://www.nxp.com/docs/en/application-note/AN12662.pdf
https://globalplatform.org/specs-library/secure-channel-protocol-03-amendment-d-v1-2/

NXP Semiconductors

AN13500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

Table 3. SCP03 session keys

authentication

Key Description Usage Key
Type
S—-ENC Session Secure Channel Used for data confidentiality AES
Encryption Key 128
S-MAC Secure Channel Message | Used for data and protocol integrity AES
Authentication Code Key for 128
Command
S-RMAC Secure Channel Message | User for data and protocol integrity AES
Authentication Code Key for 128
Response

Note: For further details please refer to Global Platform Secure Channel Protocol '03' -
Amendment D v1.2.

Host

A5000 Authentication

GP INITIALIZE UPDATE Command

A5000

>

Host Challenge
GP INITIALIZE UPDATE Response

Host Authentication

Card Challenge | Card Auth. Cryptogram

GP EXTERNAL AUTHENTICATE Command

[C-MAC

GP EXTERNAL AUTHENTICATE Response

-~

OK or Error Code

Figure 44. SPC03 mutual authentication — principle

Plain communication

Command Command data
040022 03410103

| I—

MAC

v

v

encrypt

.

040022 18D1198@CCAD159963483172A4858E@2DE'

SCPO03 protected communication

CLA 80 = unencrypted
CLA 84 = encrypted

Figure 45. SPC03 Encryption and MACing principle

I 1
C36703B133EE13A8

AN13500

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022

35/45


https://globalplatform.org/specs-library/secure-channel-protocol-03-amendment-d-v1-2/
https://globalplatform.org/specs-library/secure-channel-protocol-03-amendment-d-v1-2/

NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device
authentication

4.8.2 How to enable Platform SCP in the Plug & Trust Middleware

To enable Platform SCP it is required to rebuild the Plug & Trust Middleware with the
following CMake setting:

* Select SCP03_SSS for the CMake option PTWM_SCP.
¢ Select PlatfSCP03 for the CMake option PTWM_SEO05X_Auth.

The project settings can be specified dynamically using the CMake GUI. The figure below
shows a CMake GUI screenshot with the required project settings.

A CMake 3.16.3 - fhomafpifse_mwisimw—top_buiIdfraspbian_na#va_saOSO_ﬂ oidc - [m] X
File Tools Options Help

Where is the source code: |1hnmeipi,’5e_mw,fsimw-top | ‘ Browse Source... |
Where to build the binaries: |fhome/pifse_mw/simw-top_build/raspbian_native_se050_tloi2c - | ‘ Browse Build... |
Search: | | | Grouped | | Advanced |III Add Entry ‘ ‘ 3 Remove Entry |
Name Value E

SESESEEE N

]
]
|

Press Coenfigure to update and display new values in red, then press Generate to generate selected build files.

Dpen Froect Current Generator: Unix Makefiles

Figure 46. A5000 CMake options to enable Platform SCP

Run the following commands to update the CMake settings and rebuild the Plug & Trust
Middleware:

cd ~/se mw/simw-top build/raspbian native se050 tloi2c

AN13500 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. Al rights reserved.

Application note Rev. 1.1 — 14 September 2022

36/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

AN13500

4.8.3

authentication

cmake-gui

Update the CMake settings as explained above. Press first the Configure button and
second the Generate button and close the CMake GUI.

cmake --build
sudo make install
sudo ldconfig /usr/local/lib/

Note: The AN12570 "Quick start guide with Raspberry Pi" describes how to build the
Plug & Trust Middleware in detail (see chapter 3.3. Build EdgeLock SE Plug & Trust
Middleware test examples).

How to configure the A5000 product specific SCP keys in the Plug & Trust
Middleware

A5000 is delivered with the default A5000 Platform SCP keys as shown in the table
below.

Table 4. 128-bit AES Default Platform SCP keys
‘Configuration ENC (hex) MAC (hex) DEK (hex)

A5000R c9118500b5f£fald3 29d2fe28f7feeblb 6124d38402118060
3a50226£489%a0aab 3068be381f61bc01 ed910360£fc5a4278

By default the Plug & Trust Middleware is configured with default Platform SCP keys for
a different product. Therefore, it is required to change the default settings. For evaluation
purpose the MW supports to store the Platform SCP key in a plain text file. For further
details see Plug & Trust Middleware documentation chapter 71.70 Using own Platform
SCPO03 keys.

In this example we use the Linux environment variable EX SSS BOOT SCP03 PATH to
define the Platform SCP key textfile (filename and location).

The following Linux commands can be used to create the Platform SCP key file
(a5000_scp_keys.txt):

echo ENC c9118500b5ffal433a50226£f48%a0aa5 > a5000 scp keys.txt
echo MAC 29d2fe28f7feebl53068be381f6lbc0l >> a5000 scp keys.txt
echo DEK 6124d38402118060ed910360£fc5a4278 >> a5000 scp keys.txt
Check the a5000 scp_ keys.txt file content:

cat a5000_scp_ keys.txt

pi@raspberrypi:~/auth demo $ echo ENC c9118500b5ffal433a50226f489a0aa5 > ab000 scp keys.txt
pi@raspberrypi:~/auth_demo $ echo MAC 29d2fe28f7feeb153068be381f61bcOl >> ab000_scp_keys.txt
pi@raspberrypi:~/auth_demo $ echo DEK 6124d38402118060ed910360fc5a4278 >> a5000 scp_keys.txt
pu@raspberrypi:~/auth_demo $ cat a5000_scp_keys.txt

ENC ¢9118500b5ffal433a50226f48%a0aas

MAC 29d2fe28f7feeb153068be381f61bcO1

DEK 6124d38402118060ed910360fc5a4278

pi@raspberrypi:~/auth_demo $

Figure 47. A5000Platform SCP plain text key file

Note: In this example the Raspberry Pi is used for evaluation purpose only. Because
different host MCU/MPU platforms are providing different hardware security mechanisms

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
37145


https://www.nxp.com/docs/en/application-note/AN12570.pdf

NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

AN13500

authentication

to protect keys it is not in the scope of this document to demonstrate how to store the
Platform SCP shared binding keys securely. For commercial deployment the secure
storage of Platform SCP keys must be adapted accordingly.

In the next step we can verify if we successfully configured the enviroment to support
Platform SCP. For this purpose we use again the OpenSSL command rand and
delegate the random number generation to A5000.

export OPENSSL CONF=~/se mw/simw-top/demos/linux/common/
opensslll sss se050.cnfexport EX SSS BOOT SCP03 PATH=~/
device to device auth demo/a5000 scp keys.txt

openssl rand -hex 8

Different to the examples in the previous chapters the bidirectional communication
between host and A5000 is protected with Platform SCP.

pil@raspberrypi:~/auth_demo $ export OPENSSL CONF=~/se mw/simw-top/demos/linux/common/opensslll sss_se@5@.cnf
pi@raspberrypi:~/auth_demo $[export EX SSS BOOT SCPO3 PATH=~/auth demo/a5000 scp keys.txt]
pl@raspberrypi:~/auth_demo $ openssl rand -hex 8

ssse-flw: EmbSe Init(): Entry

App :INFO :If you want to over-ride the selection, use ENV=EX SSS BOOT SSS PORT or pass in command Lline arguments.
Bpp :WARN :Using SCP®3 keys from:'/home/pi/auth demo/a5000 scp keys.txt' (ENV=EX SSS BOOT SCP@3 PATH)

sss  :INFO :atr (Len=35)

01 AD 00 0O 03 96 04 03 E8 0@ FE 02 0B 03 E8 @0
01 00 00 0O 00 64 13 88 GA 00 65 53 45 30 35 31
00 00 00

ssse-flw: Version: 1.0.5

ssse-flw: EmbSe_Init(): Exit

5e28858cccfal8el

ssse-flw: EmbSe_Finish(): Entry

ssse-flw: EmbSe_Finish(): Exit

ssse-flw: EmbSe Destroy(): Entry

pi@raspberrypi:~/auth_demo $

Figure 48. A5000 CMake options to enable Platform SCP

The Plug & Trust Middleware provides the following additional examples to rotate the
PlatformSCP Keys and to mandate Platform SCP.

* SE05X Rotate PlatformSCP Keys example: Showcases authentication with
default Platform SCP keys and the rotation (update) of those keys with user
defined keys. The example documentation is available in the EdgeLock SE05x
Plug & Trust Middleware documentation (simw-top/doc/demos/se05x/
se05x_ RotatePlatformSCP03Keys/Readme.html). The example source code is
available at /simw-top/demos/se05x/se05x RotatePlatformSCP03Keys.

¢ SE05X Mandate SCP example: Showcases how to make Platform SCP authentication
mandatory in EdgeLock SE05x. The example documentation is available in the
EdgelLock SE05x Plug & Trust Middleware documentation (/simw-top/doc/demos/
se05x/se05x MandatePlatformSCP/Readme.html). The example source code is
available at /simw-top/demos/se05x/se05x MandatePlatformSCP

* SE05x AllowWithout PlatformSCP example: This project demonstrates how
to configure SE05X to allow without platform SCP. The example documentation
is available in the EdgeLock SE05x Plug & Trust Middleware documentation (~/
se mw/simw-top/doc/demos/se05x/se05x AllowWithoutPlatformSCP/
Readme.html). The example source code is available at ~/se mw/simw-top/
demos/se05x/se05x AllowWithoutPlatformSCP

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022
38/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device
authentication

4.9 Manage access from multiple Linux processes to the A5000

The Plug & Trust Middleware provides the Access Manager to support concurrent
access from multiple linux processes to the A5000 authenticator application. The Access
Manager can establish a connection to the A5000 authenticator application either as a
plain connection or using Platform SCP.

Client processes are connecting over the JRCPv1 protocol to the Access Manager.

Please refer to the Plug & Trust Middleware documentation chapter 5.4.3. Access
Manager for more details.

AN13500 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 1.1 — 14 September 2022

39/45



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device
authentication

5 A5000 secure provisioning

The IoT device identity should be unique, verifiable and trustworthy so that device
registration attempts and any data uploaded to the OEM's servers can be trusted.

The A5000 is designed to provide a tamper-resistant platform to safely store keys and
credentials needed for device authentication and registration to OEM's cloud service.
Leveraging the A5000 security IC, OEMs can safely authenticate their devices without
writing security code or exposing credentials or keys.

The following options are available for provisioning the EdgeLock A5000 security IC:

* EdgeLock 2GO Ready: Every EdgelLock A5000 product variant comes pre-provisioned
with keys which can be used for all major use cases, including device-to-device
authentication.

* EdgeLock 2GO Custom: NXP offers a customization service for injecting the
credentials that you need during the A5000 IC manufacturing. Please contact NXP for
more information on this service.

* EdgeLock 2GO Managed: NXP offers a cloud service for remotely configurating your
A5000. EdgelLock 2GO Managed is a secure and flexible way for provisioning the keys
and certificates required on your devices and to manage the lifecycle of your device
credentials.

You can find more information and request an evaluation account at www.nxp.com/
EdgelLock2GO .
* EdgeLock SE05x provisioning by OEMs, distributors or third-party partners:

OEMs can provision EdgelLock A5000 on their own or select a distributor or third-party
partner for provisioning the A5000 .

AN13500 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 1.1 — 14 September 2022

40/ 45


http://www.nxp.com/EdgeLock2GO
http://www.nxp.com/EdgeLock2GO

NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device
authentication

6 References

* DS6676xx, A5000 EdgelLock Secure Authenticator Product data sheet. Available
under: https://www.nxp.com/docs/en/data-sheet/A5000-DATASHEET. pdf

* AN12570, EdgelLock SE05x Quick start guide with Raspberry Pi. Available under:
https://www.nxp.com/docs/en/application-note/AN12570.pdf

AN13500 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 1.1 — 14 September 2022

41/ 45


https://www.nxp.com/docs/en/data-sheet/A5000-DATASHEET.pdf
https://www.nxp.com/docs/en/application-note/AN12570.pdf

NXP Semiconductors

AN13500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

7 Legal information

authentication

7.1 Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in madifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

7.2 Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not

give any representations or warranties, expressed or implied, as to the
accuracy or completeness of such information and shall have no liability
for the consequences of use of such information. NXP Semiconductors
takes no responsibility for the content in this document if provided by an
information source outside of NXP Semiconductors. In no event shall NXP
Semiconductors be liable for any indirect, incidental, punitive, special or
consequential damages (including - without limitation - lost profits, lost
savings, business interruption, costs related to the removal or replacement
of any products or rework charges) whether or not such damages are based
on tort (including negligence), warranty, breach of contract or any other
legal theory. Notwithstanding any damages that customer might incur for
any reason whatsoever, NXP Semiconductors’ aggregate and cumulative
liability towards customer for the products described herein shall be limited
in accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes

no representation or warranty that such applications will be suitable

for the specified use without further testing or modification. Customers

are responsible for the design and operation of their applications and
products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications
and products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with
their applications and products. NXP Semiconductors does not accept any
liability related to any default, damage, costs or problem which is based
on any weakness or default in the customer’s applications or products, or
the application or use by customer’s third party customer(s). Customer is
responsible for doing all necessary testing for the customer’s applications
and products using NXP Semiconductors products in order to avoid a
default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this
respect.

AN13500

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of
non-infringement, merchantability and fitness for a particular purpose. The
entire risk as to the quality, or arising out of the use or performance, of this
product remains with customer. In no event shall NXP Semiconductors, its
affiliates or their suppliers be liable to customer for any special, indirect,
consequential, punitive or incidental damages (including without limitation
damages for loss of business, business interruption, loss of use, loss of
data or information, and the like) arising out the use of or inability to use

the product, whether or not based on tort (including negligence), strict
liability, breach of contract, breach of warranty or any other theory, even if
advised of the possibility of such damages. Notwithstanding any damages
that customer might incur for any reason whatsoever (including without
limitation, all damages referenced above and all direct or general damages),
the entire liability of NXP Semiconductors, its affiliates and their suppliers
and customer’s exclusive remedy for all of the foregoing shall be limited to
actual damages incurred by customer based on reasonable reliance up to
the greater of the amount actually paid by customer for the product or five
dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall
apply to the maximum extent permitted by applicable law, even if any remedy
fails of its essential purpose.

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

Security — Customer understands that all NXP products may be subject

to unidentified or documented vulnerabilities. Customer is responsible

for the design and operation of its applications and products throughout
their lifecycles to reduce the effect of these vulnerabilities on customer’s
applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use

in customer’s applications. NXP accepts no liability for any vulnerability.
Customer should regularly check security updates from NXP and follow up
appropriately. Customer shall select products with security features that best
meet rules, regulations, and standards of the intended application and make
the ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may
be provided by NXP. NXP has a Product Security Incident Response Team
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation,
reporting, and solution release to security vulnerabilities of NXP products.

7.3 Trademarks

Notice: All referenced brands, product names, service names and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.
EdgeLock — is a trademark of NXP B.V.

© NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022

4245



NXP Semiconductors AN1 3500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

authentication
Tables
Tab. 1. Pre-provisioned certificates and keys used Tab. 3. SCPO03 session KeYS ......ceeeeeeiiiiiiieeeiiieee e 35
by the example ..., 16 Tab. 4. 128-bit AES Default Platform SCP keys .......... 37
Tab. 2. Static SCPO3 keys .....ccoeviiiiiieeee 34
AN13500 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.
Application note Rev. 1.1 — 14 September 2022

4345



NXP Semiconductors

AN13500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

authentication

Figures
Fig. 1. Device-to-device authentication scenario .......... 3 Fig. 28. Convert the NXP root certificate file "nxp_
Fig. 2. Certificate chain of trust ...............ccooiiiiiiinins 4 a5000_root_ca.crt"into a PEM formatted
Fig. 3. Certificate hierarchy ... 5 file e 24
Fig. 4. Machine and control unit credentials ................. 5 Fig. 29.  Control unit authentication flow ....................... 25
Fig. 5. Control unit authentication flow ........................ 7 Fig. 30. OpenSSL - Verify control unit device
Fig. 6. Machine authentication flow ...................ccccec.. 8 certificate ....cooveiiii e 25
Fig. 7. A5000 CMake options .........cccceeeeeiiiiieeaeeee. 11 Fig. 31.  OpenSSL - Random numbers generated by
Fig. 8. Principle of the OpenSSL engine ................... 12 OpenSSL in software ......ccccvveeveeeeiieieeiiiiie, 26
Fig. 9. Check the installed OpenSSL version ............. 13 Fig. 32.  Plug & Trust Middleware OpenSSL engine
Fig. 10.  ssscli help ..o 14 default configuration .............cccciiiii. 27
Fig. 11.  ssscli connect help .......oooiiiiiiiiiiie 14 Fig. 33. OpenSSL - Random number generated by
Fig. 12.  ssscli se05X help .......cccoeieiiiiiiiiiee e, 15 AB000 ... 27
Fig. 13.  ssscli readidlist ........cccoooiiiiiiiie 15 Fig. 34. OpenSSL - A5000 random numbers are
Fig. 14. Retrieve the pre-provisioned A5000 device stored in a textfile ....ccccccoeoiiiiiiiiii 28
certificats ......oociiiii 17 Fig. 35. OpenSSL - The A5000 signs the random
Fig. 15. Device certificats in PEM format ..................... 17 numbers with the private ECC key stored
Fig. 16.  Content of the machine certificate ................... 18 inside the A5000 .........ccceeeriiiiiieee e 28
Fig. 17.  Content of the control unit certificate ............... 19 Fig. 36.  Control unit signature ............ccccceeiiiiiiiennnine 28
Fig. 18.  Retrieve the pre-provisioned A5000 device Fig. 37. OpenSSL - Verify control unit signature .......... 29
certificate's public keys ........cccocciiiiiiiinniies 19 Fig. 38.  Control unit authentication flow ....................... 30
Fig. 19. Device public keys in PEM format ................... 20 Fig. 39. OpenSSL - Verify machine certificate .............. 31
Fig. 20. Content of the device public keys ................... 20 Fig. 40. OpenSSL - A5000 random numbers are
Fig. 21.  Create the reference key files for the stored in a textfile ... 32
OpenSSL engine ........cccceeeviiiiiieiiiieee e 21 Fig. 41. OpenSSL - The A5000 signs the random
Fig. 22. Reference private keys in PEM format ............ 21 numbers with the private ECC key stored
Fig. 23. Content of the reference private keys ............. 22 inside the A5000 .........cccceeeiiiiiiiee e 32
Fig. 24.  Certification chain of the pre-provisioned Fig. 42. Machine signature ...........cccccooiiiiiiiiiiiiieees 32
A5000 device certificates .........ccccceeeeiiieeneenns 23 Fig. 43. OpenSSL - Verify machine signature .............. 33
Fig. 25. Download the NXP intermediate certificate ..... 23 Fig. 44. SPCO03 mutual authentication — principle ......... 35
Fig. 26.  Convert the NXP intermediate certificate Fig. 45. SPCO03 Encryption and MACing principle ........ 35
file nxp_a5000_intermediate_ca.crt" into a Fig. 46. A5000 CMake options to enable Platform
PEM formatted file ........ccooeeviiiiiies 24 SCP 36
Fig. 27. Download the NXP root certificate .................. 24 Fig. 47.  A5000PIatform SCP plain text key file ............. 37
Fig. 48. A5000 CMake options to enable Platform
SCP 38
AN13500 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 1.1 — 14 September 2022

44145



NXP Semiconductors

AN13500

EdgeLock A5000 Secure Authenticator for electronic anti-counterfeit protection using device-to-device

authentication

Contents
1 Device-to-device authentication ........................ 3
2 Certificate chain of trust .............ccccriiiiiiineeee 4
3 Mutual authentication flow ...........cccoccoeimiiiiiiecs 6
3.1 Control unit authentication ...............cccccceeiineee. 6
3.2 Machine authentication ..............ccccooiiiiiinien. 7
4 Evaluating A5000 for anticounterfeit
protection ... 9

4.1 Hard- and software setup ......ccccccceveveeeeiiiiiiinnn, 9
4.2 OpenSSL engine overview ............cccccocceeeennn. 11
4.3 Plug & Trust Middleware ssscli tool

introduction .........ccoooiii 13
4.4 Pre-provisioned A5000 device certificates

used by the example ..........ccccooiiiiiiiiiiine. 15
4.5 Retrieve the pre-provisioned A5000

credentialS ..o 16
451 Retrieve the pre-provisioned A5000 device

certificates ......ccoiiiiiii 16
452 Retrieve the pre-provisioned A5000 device

certificates public keys .........cccoooviiiiiiii, 19
453 Create the reference key files for the

OpenSSL engine .......ccccceeevviiieiiiiiiiiee e 20
4.6 Chain of trust of the pre-provisioned device

certificates ... 22
4.7 Mutual authentication flow ...............cccocciiiiie 25
471 Control unit authentication ................cccccceeiie 25
4711 Step 1: Control unit device certificate

validation ... 25
4.71.2  Step 2: Proof of control unit private key

POSSESSION .....evvvvirreeeeeeennnn.
4.7.2 Machine authentication
4.7.2.1 Step 1: Machine device certificate

validation ... 30
4.7.2.2  Step 2: Proof of control unit private key

POSSESSION ...evviiiiiiiiiiieieeeeeee e e eeee e 31
4.8 Binding A5000 to a host MCU/MPU using

Platform SCP ..., 33
481 Introduction to the Global Platform Secure

Channel Protocol 03 (SCPO03) .......ccceeeeeennneen. 33
48.2 How to enable Platform SCP in the Plug &

Trust Middleware ............cccciiiiiiiiiiieeeee 36
48.3 How to configure the A5000 product

specific SCP keys in the Plug & Trust

Middleware ..........coooiiiie e 37
4.9 Manage access from multiple Linux

processes to the A5000 .............ocoeeeiiiiiininnns 39
5 A5000 secure provisioning .........ccccceeceerireeeeens 40
6 References ... 41
7 Legal information ... 42

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© NXP B.V. 2022. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 14 September 2022
Document identifier: AN13500



	1  Device-to-device authentication
	2  Certificate chain of trust
	3  Mutual authentication flow
	3.1  Control unit authentication
	3.2  Machine authentication

	4  Evaluating A5000 for anticounterfeit protection
	4.1  Hard- and software setup
	4.2  OpenSSL engine overview
	4.3  Plug & Trust Middleware ssscli tool introduction
	4.4  Pre-provisioned A5000 device certificates used by the example
	4.5  Retrieve the pre-provisioned A5000 credentials
	4.5.1  Retrieve the pre-provisioned A5000 device certificates
	4.5.2  Retrieve the pre-provisioned A5000 device certificates public keys
	4.5.3  Create the reference key files for the OpenSSL engine

	4.6  Chain of trust of the pre-provisioned device certificates
	4.7  Mutual authentication flow
	4.7.1  Control unit authentication
	4.7.1.1  Step 1: Control unit device certificate validation
	4.7.1.2  Step 2: Proof of control unit private key possession

	4.7.2  Machine authentication
	4.7.2.1  Step 1: Machine device certificate validation
	4.7.2.2  Step 2: Proof of control unit private key possession


	4.8  Binding A5000 to a host MCU/MPU using Platform SCP
	4.8.1  Introduction to the Global Platform Secure Channel Protocol 03 (SCP03)
	4.8.2  How to enable Platform SCP in the Plug & Trust Middleware
	4.8.3  How to configure the A5000 product specific SCP keys in the Plug & Trust Middleware

	4.9  Manage access from multiple Linux processes to the A5000

	5  A5000 secure provisioning
	6  ​R​e​f​e​r​e​n​c​e​s​​
	7  Legal information
	Tables
	Figures
	Contents

