

Freescale Semiconductor Application Note

Document Number: AN2178

Rev. 2, 07/2006

MPC8260 SDRAM Timing Diagrams

The MPC8260 PowerQUICCTM II integrated communications processor provides one SDRAM interface for the 60x bus and one for local bus. These interfaces provide the necessary control function and signals for the JEDEC-compliant SDRAM devices.

This application note presents a series of timing diagrams for several SDRAM scenarios. All the timing diagrams are based on simulations.

Contents

1	60x Bus Access
	1.1 Single MPC8260 Bus Mode
	1.2 External Bus Mode (60x-Compatible)11
2	Local Bus Access16
3	Read-Modify-Write Cycle
4	ARTRY Cycle

1 60x Bus Access

60x bus access is partitioned to two sub-groups: single MPC8260 mode and external bus mode (60x-compatible).

1.1 Single MPC8260 Bus Mode

To enter single MPC8260 bus mode, clear the hard reset configuration word, HRCW[EBM], bit during the configuration. In this bus mode, the MPC8260 is the only bus master device in the system. The internal memory controller controls all devices on the external bus. The slave device cannot use all the 60x bus signals because the addresses have memory timing, not address/data tenure timing. See Example 1 and Example 2.

Example 1. Assembly Language Example of a Single-Beat Read/Write

```
# Setup OR1
addis r2,r0,0xfff0
ori r2,r2,0x0c40
addis r1,r0,0x0f01
ori r1,r1,0x010c
stw r2, 0x0000(r1)
# Setup BR1
addis r2,r0,0x0100
ori r2,r2,0x1841
addis r1,r0,0x0f01
ori r1,r1,0x0108
stw r2, 0x0000(r1)
# PSDMR OP = Mode Register Write
addis r2,r0,0x9800
ori r2,r2,0x9602
addis r1,r0,0x0f01
ori r1,r1,0x0100
stw r2, 0x0090(r1)
# first hit to write SDRAM mode
addis r2,r0,0x0100
ori r2,r2,0x0000
stb r1, 0x0008(r2)
```

MPC8260 SDRAM Timing Diagrams, Rev. 2


```
# PSDMR OP = normal
addis r2,r0,0x8000
ori r2,r2,0x9602
stw r2, 0x0090(r1)

# single write to 0x0100_0008
addis r2,r0,0x0100
ori r2,r2,0x0000
stw r1, 0x0008(r2)

# single read from 0x0100_0018
lwz r3, 0x0018(r2)
```

Example 2. Assembly Language Example of a Burst Read/Write by IDMA

```
# Setup OR1
addis r2,r0,0xffff
ori r2,r2,0x2cc0
addis r1,r0,0x0f01
ori r1,r1,0x010c
stw r2, 0x0000(r1)
#Setup BR1
addis r2,r0,0x0100
ori r2,r2,0x1841
addis r1,r0,0x0f01
ori r1,r1,0x0108
stw r2, 0x0000(r1)
# PSDMR OP = Mode Register Write
addis r2,r0,0x9b4c
ori r2,r2,0x9512
addis r1,r0,0x0f01
ori r1,r1,0x0100
stw r2, 0x0090(r1)
```

MPC8260 SDRAM Timing Diagrams, Rev. 2


```
# First hit to write SDRAM mode
addis r2,r0,0x0100
ori r2,r2,0x0000
stb r1, 0x0008(r2)
# PSDMR OP = normal
addis r2,r0,0x834c
ori r2, r2, 0x9512
stw r2, 0x0090(r1)
# PDIRC
addis r2,r0,0x0000
ori r2,r2,0x0100
addis r1,r0,0x0f01
ori r1,r1,0x0d40
stw r2, 0x0000(r1)
# PPARC
addis r2,r0,0x8000
ori r2,r2,0x0300
addis r1,r0,0x0f01
ori r1,r1,0x0d44
stw r2, 0x0000(r1)
# PSORC
addis r2,r0,0x0000
ori r2,r2,0x0300
addis r1,r0,0x0f01
ori r1,r1,0x0d48
stw r2, 0x0000(r1)
# PODRC
addis r2,r0,0x0000
ori r2,r2,0x0200
addis r1,r0,0x0f01
```



```
ori r1,r1,0x0d4c
stw r2, 0x0000(r1)
# RCCR = 0000 0000
addis r2,r0,0x0000
ori r2,r2,0x0000
addis r1,r0,0x0f01
ori r1,r1,0x19c4
stw r2, 0x0000(r1)
# IDMA1_BASE = 1000h
addis r2,r0,0x0000
ori r2,r2,0x1000
addis r1,r0,0x0f01
ori r1,r1,0x87fe
sth r2, 0x0000(r1)
# base address for memory access at r1
addis r1,r0,0x0f01
ori r1,r1,0x1000
# BD start at 2000h
addis r2,r0,0x0000
ori r2,r2,0x2000
sth r2, 0x0000(r1)
# DCM
addis r2,r0,0x0000
ori r2, r2, 0x0070
sth r2, 0x0002(r1)
# IBDPTR
addis r2,r0,0x0000
ori r2,r2,0x2000
sth r2, 0x0004(r1)
```



```
# DPR_BUF
addis r2,r0,0x0000
ori r2,r2,0x4000
sth r2, 0x0006(r1)
#SS_MAX 0x0a
addis r2,r0,0x0000
ori r2,r2,0x0060
sth r2, 0x000a(r1)
# STS 0x0e
addis r2,r0,0x0000
ori r2,r2,0x0060
sth r2, 0x000e(r1)
# DTS 0x16
addis r2,r0,0x0000
ori r2,r2,0x0060
sth r2, 0x0016(r1)
# ISTATE 0x28
addis r2,r0,0x0000
ori r2, r2, 0x0000
sth r2, 0x0028(r1)
# base address for memory access at r1
addis r1,r0,0x0f00
ori r1,r1,0x2000
# BD1
addis r2,r0,0x8868
ori r2,r2,0x1000
stw r2, 0x0000(r1)
```



```
# Data length
addis r2,r0,0x0000
ori r2,r2,0x022a
stw r2, 0x0004(r1)
# source buffer pointer
addis r2,r0,0x0100
ori r2,r2,0x0000
stw r2, 0x0008(r1)
# destination buffer pointer
addis r2,r0,0x0100
ori r2,r2,0x0100
stw r2, 0x000c(r1)
# base address for memory access at r1
addis r1,r0,0x0f00
ori r1,r1,0x4000
# START IDMA1
addis r2,r0,0x1e81
ori r2,r2,0x0009
addis r1,r0,0x0f01
ori r1,r1,0x19c0
stw r2, 0x0000(r1)
```

In summary, the basic steps to program GPCM, as outlined in the MPC8260 PowerQUICC II^{TM} Family Reference Manual, are as follows:

- 1. For 60x bus, program SIUMCR[BCTLC] for $\overline{BCTL0}$ polarity.
- 2. Program ORx for \overline{CS} and \overline{WE} timing.
- 3. Program BRx[MS] to select GPCM and appropriate bus, BRx[PS] for port size, and so on.

Figure 1 shows a single-beat read access to the 60x bus.

PSDMR[ACTTORW] = 011, PSDMR[CL] = 2

Figure 1. 60x Access in Single MPC8260 Mode, Single-Beat Read

Figure 2 shows a single-beat write access to the 60x bus.

PSDMR[ACTTORW] = 011, PSDMR[CL] = 2

Figure 2. 60x Access in Single MPC8260 Mode, Single-Beat Write

Figure 3 shows a burst read access to the 60x bus.

PSDMR[ACTTORW] = 010, PSDMR[CL] = 2, PSDMR[BL] = 1(Busrt Length = 8)

Figure 3. 60x Access in Single MPC8260 Mode, Port Size = 32, Burst Read (Burst Length = 8)

Figure 4 shows a burst write access to the 60x bus.

Figure 4. 60x Access in Single MPC8260 Mode, Port Size = 32, Burst Write (Burst Length = 8)

1.2 External Bus Mode (60x-Compatible)

To enter 60x-compatible bus mode, set the HRCW[EBM] bit during configuration. In this bus mode, the lower bits of the 60x address to memory are controlled by BADDR[27:31]. Note that BADDR[29:31] are multiplexed with other signals. The multiplexing is controlled by SIUMCR[L2CPC]. The BADDR[29:31] function is chosen when the L2CPC bits of hard reset configuration word are configured with a value of 10 during powerup or by programming this value directly to SIUMCR after the configuration.

Additional controls are available in 60x-compatible mode:

- ALE—External address latch enable
- PSDAMUX—External address multiplexing control (asserted=row, negated=column)
- BNKSEL[0-2]—Bank select address to allow internal bank interleaving

For an assembly language example, refer to the GPCM single MPC8260 mode example.

Note that for external bus mode, all the 60x bus signals are shown to illustrate the 60x bus nature of the access most clearly.

MPC8260 SDRAM Timing Diagrams, Rev. 2

Figure 5 shows a single read in 60x-compatible mode.

Figure 5. 60x Bus in 60x-Compatible Mode, Single Read

MPC8260 SDRAM Timing Diagrams, Rev. 2

Figure 6 shows a single-beat write in 60x-compatible mode.

Figure 6. 60x Access in 60x-Compatible Mode, Single-Beat Write

MPC8260 SDRAM Timing Diagrams, Rev. 2

Figure 7 shows a burst read in 60x-compatible mode.

Figure 7. 60x Access in 60x-Compatible Mode, Burst Read (Burst Length=4, Port Size = 64)

MPC8260 SDRAM Timing Diagrams, Rev. 2

Figure 8 shows a burst write.

Figure 8. 60x Access in 60x-Compatible Mode, Burst Write (Burst Length = 4, Port Size = 64)

MPC8260 SDRAM Timing Diagrams, Rev. 2

Local Bus Access

2 Local Bus Access

The local bus access functions the same way for both single-MPC8260 mode and 60x-compatible mode. The local bus has its own signals:

- Local address bus
- · Local data bus
- LSDRAS
- ISDCAS
- <u>LWE</u>
- LDQM

The local address pins are multiplexed with PCI signals. To select the local bus function of these pins, configure HRCW[L2CPC] to a value of 00 during configuration or program them with this value after configuration. Figure 9 shows a single-beat read local bus transaction.

Figure 9. Local Bus Access, Single-Beat Read

Figure 10 shows a local bus single-beat write.

Figure 10. Local Bus Access, Single-Beat Write

Local Bus Access

Figure 11 shows a burst read on the local bus.

Figure 11. Local Bus Access, Burst Read (Burst Length = 8)

Figure 12 shows a burst write on the local bus.

Figure 12. Local Bus Access, Burst Write (Burst Length = 8)

3 Read-Modify-Write Cycle

If the SDRAM is programmed to do read-modify-write parity checking or ECC correction and checking, every write access to memory that is less than the port size automatically causes a read-modify-write cycle. In Figure 13 and Figure 14, the read-modify-write cycle is caused by a 32-bit write to a 64-bit port. In Figure 15, the read-modify-write cycle is caused by a 16-bit write to a 32-bit port.

Read-Modify-Write Cycle

Figure 13 shows a 60x read-modify-write cycle in single-MPC8260 mode.

PSDMR[ACTTORW] = 011, PSDMR[CL] = 2

Figure 13. 60x Access in Single MPC8260 mode, Read-Modify-Write Cycle

Figure 14 shows a 60x read-modify-write cycle in 60x-compatible mode.

Figure 14. 60x Access in 60x-Compatible Mode, Read-Modify-Write Cycle

MPC8260 SDRAM Timing Diagrams, Rev. 2

ARTRY Cycle

Figure 15 shows a read-modify-write cycle on the local bus.

Figure 15. Local Bus Access, Read-Modify-Write Cycle

4 ARTRY Cycle

In 60x-compatible mode, the address transfer can be terminated with the requirement to retry if ARTRY is asserted during the address tenure and through the cycle following AACK. The assertion causes the entire transaction (address and data tenure) to be rerun.

Figure 16 shows an ARTRY cycle in 60x-compatible mode.

Figure 16. 60x Access in 60x-Compatible Mode, ARTRY Cycle

How to Reach Us:

Home Page:

www.freescale.com

email

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 1-800-521-6274 480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor
@ hibbertgroup.com

Document Number: AN2178

Rev. 2 07/2006 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. HyperTransport is a trademark of the HyperTransport Technology Consortium. The PowerPC name is a trademark of IBM Corp. and is used under license. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2004, 2006.

