wr
PRt

Freescale Semiconductor
Application Note

Document Number: AN3659
Rev. 2, 06/2012

Booting from On-Chip ROM (eSDHC or eSPI)

This document describes on-chip ROM booting from an
SD card/MMC or from an EEPROM under a Linux
operating system on the following devices:

« MPC8536E
« MPC8569E
* P2020
 P1011
 P1012
* P1013
* P1020
 P1021
* P1022

NOTE

Theterm‘EEPROM'’ referstoaseria flash or
an EEPROM memory device with an SPI
interface in this document.

© 2012 Freescale Semiconductor, Inc. All rights reserved.

g A WD R

N o

Contents
What doestheon-chipROM do? 2
Building a Cconfigurationfile 2
Building a RAM-based U-Boot under Linux 15
Preparing theimage using boot_format 18
Required POR configurations for booting from on-chip ROM
20
Booting from on-chip ROM on an MPC8536DS 21
Booting to Linux froman SD card/MMC 25
Revisionhistory oL 28

@,

> freescale

|
y

'
A

What does the on-chip ROM do?

1 What does the on-chip ROM do?

The on-chip ROM includes both an eSDHC device driver and an eSPI driver. Thedriver code copies data
from either an SD card/MMC or from an EEPROM with an SPI interface to atemporary memory location
(see Section 2.4, “ Choosing the temporary memory location™).

The on-chip ROM isinternally mapped to OxFFFF_EO00O when booting from either an SD card/MMC or
from an EEPROM .The on-chip boot ROM code uses the information from the SD card/MMC or the
EEPROM to configure atemporary memory, such asthe L2 cache or a DDR, before it copies a U-Boot
imageto thistemporary memory. After SD card/MM C- or EEPROM -specific configurationsare set up and
all the image code is copied, the €500 core jumps to the address specified at offset 0x60 in the
configurations and starts to execute the code from the temporary memory.

1.1 Avoiding on-chip ROM configuration issues using TLB1

The on-chip ROM code configures the first entry of the table lookaside buffer 1 (TLB1) to access up to
4 Ghytes starting from address 0x0000. Although the user configuration easily copies the image to any
specified temporary memory location, it may conflict with the U-Boot configuration. This table shows
how the MASO-3 registers are set.

Table 1. TLB1 MASO0-3 register values

Register Value
MASO 0x1000_0000
MAS1 0xC000_0B00
MAS2 0x0000_000E
MAS3 0x0000_0015

Note: MAS4-7 and TLB1CFG are at their reset values.

2 Building a Cconfiguration file

2.1 Boot location-specific data structures

A special datastructure specific to each booting location providesthe configurationsand other information
related to the booting image (see Section 2.5.1, “ SD Card/MMC data structure,” and Section 2.6.1,
“EEPROM data structure”). A configuration file must be created to implement everything in the data
structure except the user code (which is most often a U-Boot image under Linux).

2.2 Requirements for configuration files

CAUTION

Improperly using configuration files may overwrite the content of the
configuration, control, and status base address register (CCSRBAR),
causing the boot process to hang.

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

2 Freescale Semiconductor

Building a Cconfiguration file

The dataformat of a configuration file is offset/address: data-based, which means that the first data value
is the offset/address, and the second data is the actual data value. Note the following requirements for
creating configuration files:

* The colon must be used between the offset address and the data value at every line.
» Thevaue for the offset is a hex-based number.

» The 32-bit data must be in hexadecimal format.

» The configuration data must be put on the first 24 blocks of an SD card/MMC.

» The configuration data must be put on the first block of an EEPROM.

NOTE
For the eSDHC interface, the address may be an offset.

2.3 Definition of an address/data pair

An address/data pair consists of a configuration offset/address and configuration data. Table 3, “SD
Card/MMC data structure definition and address/data pairs,” and Table 5, “eSPI EEPROM data structure
definition,” group the data into pairs using shading.

The configuration words section consists of address/datapairs of adjacent 32-hit fields. These address/data
pairs are typically used to configure the local access windows (LAWS) and the temporary memory’s
configuration registers.

NOTE

For aDDR memory, these register values may be system-dependent,
because a different DDR memory requires a different set of configuration
parameters in a particular system.

24 Choosing the temporary memory location

Use either DDR or L 2 cache asthe temporary memory location. Using L2 cacheisideal becauseitismore
reliable and easier to configure and to debug than DDR.

However, if the size of the U-Boot exceeds the size of the L2 cache, DDR must be used. Use thistable to
determine whether DDR or L2 cache should be used as the temporary memory for your device.

Table 2. Temporary memory location

Device’s L2 Cache Size | U-Boot Size | Temporary Memory Devices
256 Kbytes 512 Kbytes DDR P1xxx
512 Kbytes 512 Kbytes L2 cache MPC8536E, MPC8569E, P2020

2.5 Building an SD Card/MMC configuration file

NOTE

Keep in mind that only 1-bit mode is used for booting from an
SD card/MMC (to support booting from different types of cards).

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 3

Building a Cconfiguration file

2.5.1 SD Card/MMC data structure

An SD card/MMC used for booting contains aspecific data structure that consists of control words, device
configuration information, and a boot loader, such as a U-Boot image. This figure shows the SD
card/MMC boot data structure’s sections.

0x00

Reserved
Ox3F
0x40

Control words

0x63
0x64

Reserved
Ox7F
0x80

Configuration words
Source address

A

User’s code

Figure 1. SD Card/MMC data structure

Figure 1 NOTES:
' The length of the control words is fixed.

2 The maximum length of configuration words is 40 pairs due to the FAT16/FAT32 file system support if the data is copied to the
first block of an SD card/MMC.

3 The length of the user code is limited by the length of the 32-bit address or the size of the SD card/MMC memory. Normally,
the length of the user code is the size of the U-Boot (512 Kbytes).

This table describes the SD card/MM C data structure. Note that address/data pairs are delineated by
shading.

Table 3. SD Card/MMC data structure definition and address/data pairs

Address Data bits [0:31]

0x00-0x3F | Reserved

0x40-0x43 | BOOT signature

This location should contain the value 0x424f_4f54, which is the ascii code for BOOT. The boot loader code
searches for this signature.

If the value in this location does not match the BOOT signature, the SD card/MMC does not contain a valid user
code. The boot loader code disables the eSDHC and issues a hardware reset request of the SoC by setting
RSTCR[HRESET_REQ)].

— Reserved

0x48-0x4B | User’s code length <= 2 Gbytes
Number of bytes in the user’s code to be copied, which must be a multiple of the SD card/MMC’s block size (and
the user’s code zero-padded if necessary to achieve that length).

0x4C—-0x4F |Reserved

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

4 Freescale Semiconductor

Building a Cconfiguration file

Table 3. SD Card/MMC data structure definition and address/data pairs (continued)

Address Data bits [0:31]

0x50-0x53 | Source address

Contains the starting address of the user’s code as an offset from the SD card/MMC starting address.

* In standard capacity (SD) cards/MMCs, the 32-bit source address specifies the memory address in byte
address format, which must be a multiple of the SD card/MMC’s block size.

* In high capacity SD (SDHC) cards (>2 Gbytes), the 32-bit source address specifies the memory address in
byte address format. However, it must be a multiple of block length, which is fixed to 512 bytes as per the
SDHC specification.

0x54—-0x57 | Reserved

0x58-0x5B | Target address
Contains the target address in the system’s local memory address space in which the user’s code is copied to.!

0x5C—0x5F |Reserved

0x60-0x63 | Execution starting address
Contains the jump address in the system’s local memory address space into the user’s code first instruction to
be executed.’

0x64—0x67 | Reserved

0x68-0x6B | N
Number of configuration data pairs
Must be 1<=N<=1024, but is recommended to be as small as possible.

0x6C—0x7F |Reserved

0x80-0x83 | Configuration address 1

0x84—-0x87 | Configuration data 1

0x88-0x8B | Configuration address 2

0x8C—-0x8F | Configuration data 2

0x80 Configuration address N
+8*(N—-1)
0x80 Configuration Data N
+8*(N-1)+4
— User code
Note:

' This is a 32-bit effective address. The e500 core is configured in such a way that the 36-bit real address is equal to this (with
the 4 msbs = 0).

See Section “eSDHC Boot,” in the applicable chip reference manual for more information.

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 5

Building a Cconfiguration file

2.5.2 Building an SD card/MMC configuration file

Control words and configuration words must beincluded in the SD card/MMC configurationfile, but other

sections of the data structure can also be included.

Theinitial six address/data pairsin the configuration file are control words of afixed length. The number
of configuration words can be varied depending on the system. However, it must be 1<=N<=1024, and is
recommended to be as small as possible, because rest of the configurations can be accomplished by aboot
loader such as the U-Boot.

This example shows an annotated SD card/MMC configuration file using DDR asthe temporary memory,

and Example 2 shows the configuration file using L2 cache.

Example 1. Configuration file for SD card/MMC using DDR

40:424f4f54
44:00000000
48:00080000
4¢:00000000
50:00001000
54:00000000
58:11000000
5c: 00000000
60:1107f000
64:00000000
68:00000010
80:ff702110
84:42000000
88:ff702000
8c:0000001f
90:ff702080
94:80010202
98:f702104
9c: 00260802
a0:ff702108
a4:3935d322
a8:ff70210c
ac:05105408

16 address/data pairs of configuration words

DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor

b0: ff702114
b4:24401000
b8:ff702118
bc: 00400432
c0:ff702124
c4:06db03e8
c8:ff702128
cc: deadbeef
d0:ff702130
d4:03800000
d8:40000001
dc: 00000100
€0:ff702110
e4:¢3008000
€8:ff700C08
ec: 00000000
f0:ff700C10
f4.:80F0001D
f8: efefefef

DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
Delay

0x100 = 256 of 8 CCB clocks delay
DDR configuration parameters
DDR configuration parameters
Configuration parameters of LAW 0
Configuration parameters of LAW 0
Configuration parameters of LAW 0
Configuration parameters of LAW 0
End of configuration words

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Building a Cconfiguration file

Freescale Semiconductor

Building a Cconfiguration file

This example shows an SD card/MMC configuration file using L2 cache.

Example 2. Configuration file for SD card/MMC using L2 cache

40:424f4t54
44:00000000
48:00080000
4c: 00000000
50:00001000
54:00000000
58:18f80000
5¢:00000000
60:f8fff000
64:00000000
68:00000006
80:ff720100
84:18f80000
88:f720e44
8c¢:0000000c
90:ff720000
94:80010000
98:ff72e40c
9c¢:00000040
a0:40000001
a4:00000100

6 address/data pairs of configuration words
L2/SRAM configuration parameters
L2/SRAM configuration parameters
L2/SRAM configuration parameters
L2/SRAM configuration parameters
L2/SRAM configuration parameters
L2/SRAM configuration parameters
eSDHC configuration parameters
eSDHC configuration parameters
Delay

0x100 = 256 of 8 CCB clocks delay

a8:80000001End of configuration words

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor

Building a Cconfiguration file

This table shows additional details on how to define the configurations shown in Example 1 and

Example 2.
Table 4. SD card/MMC configuration file details
Value at Description Comments/Requirements
offset(s): P q
0x40 Booting signature This value should be the first data and must be an offset of 0x40 from the
0x240 start address of the first 24 blocks (each block being 512 bytes).
0x440
0x2E40
0x48 Booting image code length in bytes | The length of RAM-based U-Boot image. A value of 0x0008_0000 means
that the U-Boot has at most 524288 bytes.
This value must be a multiple of the SD card/MMC'’s block’s size (512 bytes).
It should be zero-padded, if necessary.
0x50 Source address This value indicates the starting address of the special U-Boot code as an
offset from the SD card/MMC starting address. For all SD card/MMCs, the
32-bit source address specifies the memory address in byte address format.
This value must be a multiple of the SD card/MMC’s block’s size (512 bytes).
0x58 Address in DDR memory where a | If using the default Freescale LTIB or BSP package, keep this value
booting image and the RAM-based |unchanged in the configuration file.
U-Boot code are copied to. This value should match the U-Boot configuration, and is the first
data/instruction location of the U-Boot.
0x60 Execution starting address This value is the first instruction of the U-Boot to be executed.
0x68 Number of configuration data pairs —
in the subsequent data structure
section
Note:

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor

Building a Cconfiguration file

2.6 Building an EEPROM configuration file

2.6.1 EEPROM data structure

The basic eSPI driver code on the on-chip ROM performs reads from an EEPROM. An EEPROM used
for booting contains a specific data structure that consists of control words, device configuration
information, and a boot image. This figure shows the EEPROM boot data structure’s sections.

0x00

Reserved
Ox3F
0x40

Control words

0x63
0x64

Reserved
Ox7F
0x80

Configuration words
9 Source address

A

User’s code

Figure 2. eSPI EEPROM data structure

Figure 2 NOTES:

' The length of the control words is fixed.

2 The maximum length of configuration words is limited by the 16- or 24-bit address.

3 The length of the user code is limited by the length of the 32-bit address or the size of the EEPROM.

This table describes the EEPROM data structure’'s bits [0:31]. Note that address/data pairs are delineated
by shading.

Table 5. eSPI EEPROM data structure definition

Address Data Bits [0:31]

0x00—-0x3F | Reserved

0x40-0x43 | BOOT signature

This location should contain the value 0x424f_4f54, which is the ascii code for BOOT. The eSPI loader code
searches for this signature, initially in 24-bit addressable mode. If the value in this location doesn't match the
BOOQOT signature, then the EEPROM is accessed again, but in 16-bit mode. If the value in this location still does
not match the BOOT signature, it means that the eSPI device doesn't contain a valid user code. In such case the
eSPI loader code disables the eSPI and issues a hardware reset request of the SoC by setting
RSTCR[HRESET_REQ].

0x44—0x47 | Reserved

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

10 Freescale Semiconductor

Building a Cconfiguration file

Table 5. eSPI EEPROM data structure definition (continued)

Address Data Bits [0:31]

0x48-0x4B | User’s code length
Number of bytes in the user’s code to be copied.
Must be a multiple of 4. (4 <= User’s code length <= 2 Gbytes)

0x4C—0x4F | Reserved

0x50-0x53 | Source address
Contains the starting address of the user’s code as an offset from the EEPROM starting address. In 24-bit
addressing mode, the 8 most significant bits of this should be written to as zero, because the EEPROM is
accessed with a 3-byte (24-bit) address. In 16-bit addressing mode, the 16 most significant bits of this should be
written to as zero.

0x54-0x57 | Reserved

0x58-0x5B | Target address
Contains the target address in the system’s local memory address space in which the user’s code is copied to.
This is a 32-bit effective address. The core is configured in such a way that the 36-bit real address is equal to this
(with 4 most significant bits zero).

0x5C—-0x5F | Reserved

0x60-0x63 | Execution starting address
Contains the jump address in the system’s local memory address space into the user’s code first instruction to
be executed. This is a 32-bit effective address. The core is configured in such a way that the 36-bit real address
is equal to this (with the 4 msbs = zero).

0x64-0x67 | Reserved

0x68—-0x6B |N
Number of configuration data pairs
Must be <=1024 (but is recommended to be as small as possible).

0x6C—0x7F | Reserved

0x80-0x83 | Configuration address 1

0x84—-0x87 | Configuration data 1

0x88-0x8B | Configuration address 2

0x8C—0x8F | Configuration data 2

0x80 + Configuration address N
8*(N-1)
0x80 + Config data N (final configuration data N optional)
8*(N-1)+4

User code

See Section “eSPI Boot,” in the applicable device reference manual for more information.

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 11

Building a Cconfiguration file

2.6.2 Building an EEPROM eSPI configuration file

The configuration address field has two modes that are selected by thelsb in thefield (CNT). If the CNT
bit is clear, then the 30 most significant bits are used to form the address pointer and the Configuration
Data contains the data to be written to this address. If the CNT bit is set then the 30 most significant bits
are used for control instruction. This flexible structure allows the user to configure any 4-byte-aligned
memory mapped register, perform control instructions, and specify the end of the configuration stage.

The value of 424f4t54 isthe booting signature, which must be thefirst data at the offset 0x40 from the start

address.

This example shows an EEPROM configuration file using DDR, and Example 4 shows the configuration
fileusing L2 cache. Note that Example 1 isidentical to Example 3 except for the differences shown in red.

Example 3. Configuration file for EEPROM using DDR

40:424f4t54
44:00000000
48:00080000
4c: 00000000
50:00000400
54:00000000
58:11000000
5¢: 00000000
60:1107f000
64:00000000
68:00000012
80:ff702110
84:42000000
88:f702000
8c:0000001f
90:f702080
94:80010202
98:f702104
9c:00260802
a0:ff702108
a4:3935d322
a8:ff70210c

<= Source address is 0x400 instead of 0x1000 for SOD/MMC

<= Total of 18 pairs of configuration words

DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

12

Freescale Semiconductor

ac:05105408
b0: ff702114
b4:24401000
b8:ff702118
bc: 00400432
c0:ff702124
c4:06db03e8
c8:ff702128
cc: deadbeef
do:ff702130
d4:03800000
d8:40000001
dc: 00000100
€0:ff702110
e4:¢3008000
€8:ff700C08
ec: 00000000
f0:ff700C10
f4.:80F0001D
f8:20000001
fc:21172210

100:40000001
104:00000001

108: efefefef

Building a Cconfiguration file

DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
DDR configuration parameters
Delay

0x100 = 256 of 8 CCB clocks delay
DDR configuration parameters
DDR configuration parameters
Configuration parameters of LAW 0
Configuration parameters of LAW 0
Configuration parameters of LAW 0
Configuration parameters of LAW 0
<= Change the SPI interface frequency

<= Delay

This example shows an EEPROM configuration file using L2 cache. Note that Example 2 isidentical to
Example 4 except for the differences shown in red.

Example 4. Configuration file for booting using the L2 cache

40:424f4t54

44:00000000
48:00080000
4c: 00000000
50:00000400

<= Source address is 0x400 instead of 0x1000 for SOD/MMC

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 13

Building a Cconfiguration file

54:00000000
58:f8f80000
5¢:00000000
60:f8fff000
64:00000000
68:00000008 <= Total of 8 pairs of configuration words
80:ff720100 L2/SRAM configuration parameters
84.18f80000 L2/SRAM configuration parameters
88:ff720e44 L2/SRAM configuration parameters
8c:0000000c L2/SRAM configuration parameters
90:ff720000 L2/SRAM configuration parameters
94:80010000 L2/SRAM configuration parameters
98:ff72e40c eSDHC configuration parameters
9c¢: 00000040 eSDHC configuration parameters
a0:40000001 Delay
a4:00000100 0x100 = 256 of 8 CCB clocks delay
a8:20000001 <= Change the SPI interface frequency
ac:21172210
b0:40000001 <= Delay
b4:00000001
b8:80000001
This table shows additional details on how to define the configurations shown in Example 3 and
Example 4.
Table 6. EEPROM configuration file details
;l;:::sast: Description Comments/Requirements
0x40 Booting signature This value should be the first data and must be an offset of 0x40 from the

start address of an EEPROM.

0x48 Booting image code length in bytes | The length of RAM-based special U-Boot image. A value of (0x0008_0000)

means that the U-Boot has at most 524288 bytes.
This value must be a multiple of 4 bytes.

0x50 Source address This value indicates the starting address of the special U-Boot code as an

offset from the EEPROM starting address.
This value must be a multiple of 4 bytes.

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

14

Freescale Semiconductor

Building a RAM-based U-Boot under Linux

Table 6. EEPROM configuration file details (continued)

Value at Description Comments/Requirements
address:
0x58 Address in DDR memory where a | If using the default Freescale LTIB or BSP package, keep this value
booting image and the RAM-based |unchanged in the configuration file.
U-Boot code are copied to. This value should match the U-Boot configuration, and is the first
data/instruction location of the U-Boot.
0x60 Execution starting address This value is the first instruction of the U-Boot to be executed.
0x68 Number of configuration data pairs —
in the subsequent data structure
section
Note:
3 Building a RAM-based U-Boot under Linux

Both SD card/MM C and EEPROM booting use the same RAM-based U-Boot image. A RAM-based
U-Boot is different from a NOR Flash-based U-Boot in the following ways:

A NOR Flash can perform random accesses, but an SD card/MMC or EEPROM cannot be
accessed directly.

The starting address of the RAM-based U-Boot is different than a NOR Flash-based U-Boot.After
copying the U-Boot image to offset 0x58 in the control words section of the data structure, the
on-chip ROM jumps to the location specified at offset Ox60.

The requirements for building a RAM-based U-Boot under Linux are as follows:

Use a compile time header file to assign the starting location for a U-Boot. For example, in the
MPC8536E BSP, file u-boot.lds ensures that the U-Boot starts running from the location at
OxF8FF_F000; in this case, the value OxF8FF_F000 must therefore be stored at offset 0x60 in an
SD card/MMC or EEPROM.

Theinitialization code for the U-Boot must be changed to fit the different U-Boot options. Dueto
thefirst entry of TLB1 configuration already in the boot ROM code, the RAM-based U-Boot may
need to manage different TLBs or need to change the first entry of the TLB1, if necessary.

The U-Boot environment variables must be saved to an SD card/MMC or an EEPROM, and the
corresponding code dealing with the environment must be changed to save the variables Note that
in the Freescale BSP, cmd_nvedit.c and env_common.c are changed, and env_sdcard.cis added to
handle the environment variables.

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 15

Building a RAM-based U-Boot under Linux

This example shows the procedure for building a RAM-based U-Boot using the MPC8536E BSP aready
installed on a Linux system.

Example 5. Building a RAM-based U-Boot on the MPC8536E BSP

1. Goto theltib directory.

2. Type /ltib -c to bring up the “Freescale MPC8536D S PowerPC Developement Board
Configuration” window.

3. Select the “u-boot target board type” menu (shown in Figure 3).

=== LTIE settings

Sys em features -—-->
——= Choose the target C library type

arget C library type (glibc) -——>

library package (from toolchain only) -—-—->

oolchain component options -—-—->
=== Topolchain selection.

oolchain (gec-4.3.2 eglibe-2.8 single library eS500v2 toolchs

=== HBOOT loader
[*] uild a boot loader

u=-boot target board type (Booting from SD card) -
=== Choose wour FKernel

ernel (Linux 2.6.32 + NPCB536DS patch) --->

[*] lways rebuild the kernel

roduce cscope index

erne
== e Use the arrow keys to navigate this window or press t
[1 -onfi the item you wish to select followed by the <SPACE E!
[1 ‘eavs <?> for additional information about this option.

—-—— Packa
acka { } eneral
=== Targe jooting from 35

et = P mmmdmas M RT DI ==k

Figure 3. Finding “u-boot target board type”

4. Select “Booting from SD card” or “Booting from SPI Flash.”
Exit the window.

6. The U-Boot image file (u-boot.bin) is under the directory ./rootfs/boot after completing the build
process properly.

o1

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

16 Freescale Semiconductor

Building a RAM-based U-Boot under Linux

Perform the following sequence of tasks to generate a RAM-based U-Boot to boot from an SD card
without a BSP:

Example 6. Building a RAM-based U-Boot from an SD card

1. Add mpcss36DS_SDCARD config \ after the MPcas36DS NAND config \ to the Makefile.
2. Include #define CONFI G MK_SDCARD 1 before #i ncl ude <confi gs/ MPC8536DS. h> in file
Jinclude/config.h.
3. Add the following to file ./include/config¥mpc8536ds.h:
#i f def CONFI G_MK_SDCARD
#defi ne CONFI G_RAVMBOOT_SDCARD 1
#defi ne CONFI G_RAMBOOT_TEXT_BASE 0Oxf 8f 8000
#endi f
4. Appendthefollowing totheline#it defined (CONFI G sysy_spl) || defined
(CoNFI G_RAMBOOT_NAND) in file ./include/configs/mpc8536ds.h:
|| defined (CONFI G RAMBOOT SDCARD) and beforeline #define CONFI G_SYS_ RAMBOOT
5. Add the following to file ./board/freescale/mpc8536ds/config.mk beforei f ndef TEXT_BASE
i feq ($(CONFI G_MK_SDCARD),)
TEXT_BASE = $(CONFI G_RAMBOOT_TEXT_BASE)
RESET_VECTOR_ADDRESS = Oxf8fffffc
endi f
6. Analiasof thefollowing is used to make the build process easier:
al i as 85xxmake=' make CROSS_COWPI LE=power pc- | i nux- gnuspe- ARCH=ppc'
7. Typethe following commands:
85xxmake distcl ean
85xxmake MPC8536DS_SDCARD confi g
85xxmake
8. Usethe U-Boot image in the current directory to boot from an SD card/MMC.

Example 7. Manually building a RAM-based U-Boot from an EEPROM

To manually build a RAM-base U-Boot to boot from an EEPROM, use the procedure in Example 6, but
replace “SDCARD” with“ SPIFLASH".

TIP

Check the mkconfig file under the Itib directory to find out more about the
make process.

Example 8. Building a regular U-Boot

To build aregular U-Boot, use the procedure in Example 6, but replace “Mpcgs536Ds_SDCARD_confi g” with
“85xxmake MPC8536DS config”.

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 17

Preparing the image using boot_format

4 Preparing the image using boot format

boot_format is a booting utility application.

* When booting froman SD card/MMC, boot_for mat putsthe configuration file and the RAM-based
U-Boot image on the card (Section 4.3, “ Putting a boot image on an SD card/MMC”).

* When booting from an EEPROM, boot_format generates a binary image that is used to boot from
this EEPROM (Section 4.4, “Generating a binary file for eSPI booting,” and Section 4.5, * Putting
aboot image on an EEPROM”).

boot_format runs under aregular Linux machine and requires a super user mode to run. After typing
boot_format, the following information displays:

[root @08938-02 new_tool]# ./boot_format
Usage: ./boot_format config file image -sd dev [-0 out_config] | -spi out_imge
Wher e:
config_file: includes boot signature and configurati on words
i mage: the U-Boot inmmge for booting from eSDHC/ eSPI
dev: SDCard’ s device node (e.g. /dev/sdb, /dev/nmmtbl k0)
out _i nage: boot inmage in SPI nopde
out _config: nodified configure file for SD node
There are two available revisions of boot_format:

* boot_format Rev. 1.0 (see Section 4.1, “boot_format rev. 1.0 considerations”)
* boot_format Rev. 1.1 (see Section 4.2, “boot_format rev. 1.1 considerations”)

NOTE
The source address valueis changed by boot_format. Its programmed value
on an SD card/MMC is usually not the same value as in the configuration
file. boot_format Rev. 1.1 may give a different source address value from
Rev 1.0.

NOTE

boot_format adjuststhe starting address of the space based on the size of the
boot loader image and the size of thefirst partition. As such, boot_format
changes the source address value to be larger than the first partition size.

4.1 boot format rev. 1.0 considerations

TROUBLE

boot_format Rev 1.0 has a known bug that usually prevents the generated
binary image from working when booting from the EEPROM.

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

18 Freescale Semiconductor

Preparing the image using boot_format

The requirements for using boot_format Rev. 1.0 when booting from an SD card/MMC are as follows:

» Two partitions should be created for an SD card/MMC before using boot_format Rev. 1.0 to put a
boot image on the card. Of these partitions, the first must be a FAT16 or FAT32 file system with a
size less than 2 Ghytes. The most common use case is to have two partitions, as follows:

— One FAT16 or FAT32 file system with a size of approximately 300 Mbytes
— One Ext2 or Ext3 file system of a much larger size than the FAT file system’s size

The different images are usually partitioned as follows:

» Theboot |oader image (which includesthe configuration information) isstored in the address space
between the first partition and the second partition, or appended right after the first partition.

» TheLinux kernel image and the flat device tree file are on the first partition.
* The Linux root file system image is on the second partition.

4.2 boot format rev. 1.1 considerations

The requirements for using boot_format Rev. 1.1 when booting from an SD card/MMC are as follows:
» Two partitions must be created for an extended capacity SD card (SDXC), because boot_format
Rev. 1.1 does not work with the exFAT file system.
* Thefirst partition must be a FAT16 or a FAT32 file system.

» Ifthesizeof thefirst partition is smaller than 2 Gbytes, partition the different images the same way
as Rev. 10.

» Ifthesizeof thefirst partitionislarger than 2 Gbytes and lessthan 32 Gbytes, boot_format changes
the source address value to 4608. Thisis areserved area based on SD Specifications Part 2, File
System Version 3.0.

4.3 Putting a boot image on an SD card/MMC

NOTE
boot_format can only run on aregular Linux machine or aLinux based
board that has either an SD card/MMC interface or aUSB interfacewith an
SD card/MM C-to-USB converter.
Perform the following sequence of tasks to put a boot image on an SD card/MMC using boot_format:
1. Insert an SD card/MMC to the Linux machine.

2. Check whether it isin /dev/sdx (x should be a character of a, b, c,...) or /dev/mmcblkO if using a
Freescale BSP.

3. Copy the application boot_format to a directory on the Linux machine.

4. Copy the SD card/MMC configuration file and the U-Boot image to the same directory as
boot_format.

5. If not logged in as a super user, switch to super user mode using su.

6. Type ./boot_format config_fileimage -sd /dev/sdx
or
/dev/mmcebl kO (depending on where the card found in step 2).

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 19

Required POR configurations for booting from on-chip ROM

NOTE
This utility may change the source address value at offset 0x50.

4.4 Generating a binary file for eSPI booting

Perform the following sequence of tasks to generate a binary file using boot_format:
1. Copy the application boot_format to adirectory on aLinux machine.

2. Copy the EEPROM configuration file and the U-Boot image to the same directory as
boot_format.

3. If not logged in as a super user, switch to super user mode using su.

Type ./boot_format config_file image -spi out_image.

5. Generate the booting image “out_image’ that is put on the EEPROM in one of the following
ways.
— Use the EEPROM writer, which is supplied from EEPROM manufacture or atool supplier.

— Write the booting image to an EEPROM under the Linux environment after booting from
another method first.

H

4.5 Putting a boot image on an EEPROM

Section 6.2, “EEPROM booting on an MPC8536DS,” gives an example of how to enable the eSPI Linux
driver. The property for the node of the eSPI EEPROM must be changed so that it can be writeable.
Perform the following sequence of tasks to put the booting image on an EEPROM:
1. Configure the Linux image with the eSPI driver enabled.
Build a device tree including a node for EEPROM (an mtd device).
Boot to Linux prompt.
Check the mtd device to see the EEPROM.
Mount the EEPROM.
Copy the booting image to a directory.
Erase the beginning part of the EEPROM.
Copy the booting image to the EEPROM.

O N O~ WWDN

5 Required POR configurations for booting from on-chip
ROM

The on-chip ROM code does not set up any local access windows (LAWS). Access to the CCSR address
gpace or the L2 cache does not require aLAW. It isthe user’s responsibility to set up a LAW through a
control word address/data pair for the desired target address and execution starting address (which is
typicaly in either DDR or local bus memory space).

Asshown in Example 1 and Example 3, at least one LAW must be configured for successful booting using
DDR as the temporary memory.

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

20 Freescale Semiconductor

Booting from on-chip ROM on an MPC8536DS

Note that any such LAW configured must have the 4 Mbits of the address due to the 512-Mbyte U-Boot.

5.1

Required configurations for SD card/MMC booting

The configuration settings required to boot from an SD card/MMC are as follows:

5.2

Ensure that cfg_rom _loc[0:3] (Boot_Rom_L oc) are driven with a value of 0b0111.

Only one core can bein booting mode. If your device has multiple cores, all other coresmust bein
aboot hold-off mode. The CPU boot configuration input, cfg_cpux_boot, should be 0, where x is
from 1 to n (n = the number of cores).

Booting from the eSDHC interface can occur from different SD card dotsif multiple SD card slots
are designed on the board. In this case, ensure the appropriate SD card/MMC is sel ected.
For example, on the MPC8536D S board, bit 7 of the SW8 is used to select which SD/MMC dlot is
used. If SW8[7] =1, an SD card/MMC must be put to the external SD card/MMC slot (J1).

TIP

The polarity of the SDHC_CD signal should be active-low.

Required configurations for EEPROM booting

The configuration settings required to boot from an EEPROM are as follows:

6

6.1

Ensure that cfg_rom_loc[0:3] (Boot_Rom_Loc) are driven with a value of 0b0110.

Only one core can bein booting mode. If your device has multiple cores, all other coresmust bein
aboot hold-off mode. The CPU boot configuration input, cfg_cpux_boot, should be 0, where x is
from 1 to n (n = the number of cores).

The eSPI chip select 0 (SPI_CS[0]) must be connected to the EEPROM that is used for booting.
No other chip select can be used for booting. This is because during booting, the eSPI controller is
configured to operate in master mode. Booting from the eSPI interface only workswith SPI_CS[0].

Booting from on-chip ROM on an MPC8536DS

SD card/MMC booting on an MPC8536DS

Perform the following sequence of tasks to boot from an SD card/MMC on an MPC8536DS:

1.

o 0k wbN

Plug the SD card/MMC in the externa SD slot (slot 0).

Change bit 5678 of SW2 to 0xBO111.

Change hit 1 of SW3to 0.

Change bit 7 of SW8to 1.

Keep the default reset of the software setting.

Turn on the power; the U-Boot comes up if everything is done properly.

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 21

Booting from on-chip ROM on an MPC8536DS

6.2 EEPROM booting on an MPC8536DS

6.2.1 Putting the booting image on the EEPROM

Perform the following sequence of tasks to put a booting image on an EEPROM on an MPC8536DS:
1. Configurethe Linux kernel to turn on the eSPI driver asfollows:

— SPI support
— CONFIG_SPI Y
— CONFIG_SPI_BITBANG Y
— CONFIG_FSL_ESPI Y
— Memory technology device (MTD) support:
— CONFIG_MTD Y
— CONFIG_ MTD_PARTITIONS Y
— CONFIG_MTD_OF PARTS Y
— CONFIG_MTD_CHAR Y
— CONFIG_MTD_BLOCK Y
— Self-contained MTD device drivers:
— CONFIG MTD_FSL_M25P80 Y
— CONFIG_M25PXX_USE_FAST _READ Y

Use thistable to ensure the required properties have the proper descriptionsto achieve devicetree binding.

Table 7. Required device tree binding settings

Property Type Required description
Compatible String | fsl,espi
Mode (spi node) String | cpu
Mode (fsl_m25p80 node) Integer |0
Modal String | s25s1128b
Clock-frequency Integer | Not beyond <80000000>

The default node is as follows:

spi @000 {
cell -index = <0>;
#address-cell s = <1>;
#size-cells = <0>;
conpatible = "fsl,espi";
reg = <0x7000 0x1000>;
interrupts = <59 0x2>;

interrupt-parent = <&npic>;

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

22 Freescale Semiconductor

espi, numss-bits = <4>;

nmode = "cpu”;

fsl _nm25p80@ {
#address-cel | s = <1>;
#si ze-cell s = <1>;
conpatible = "fsl, espi-flash";
reg = <0>;

l'inux, modalias = “fsl_n25p80~;

spi - max- frequency = <40000000>; /* input clock

partition@-boot-spi {
| abel = “u-boot-spi”;
reg = <0x00000000 0x00100000>;

b

partition@ernel {
I abel = "kernel -spi";
reg = <0x00100000 0x00500000>;
read-onl y;

b

partition@thb {
| abel = "dtb-spi";
reg = <0x00600000 0x00100000>;
read-onl y;

b

b

fsl _n25p8o@ {
conpatible = "fsl, espi-flash";
reg = <1>;
l'inux, nmodalias = “fsl_nR25p80~;
spi - max- frequency = <40000000>;

b
fsl _nm25p80@ {
conpatible = "fsl, espi-flash";
reg = <23
l'inux, nmodalias = “fsl_n25p80~;
spi - max- frequency = <40000000>;
b

fsl_ne5p80@ {

conpatible = "fsl, espi-flash";

*/

Booting from on-chip ROM on an MPC8536DS

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor

23

Booting from on-chip ROM on an MPC8536DS

reg =

l'i nux,

<3>;

nodal i as

= “fsl _n25p80~;
spi - max- frequency = <40000000>;

2. Remove the read-only property on the mpc8536ds.dts.

w

4. Check the mtd device:

/root # cat /proc/ntd

dev: size erasesize nane

nt do:
nmdil:
nm d2:
n d3:
nt d4:
nt d5:
/ root

00100000
00500000
00100000
01000000
01000000
01000000
#

00010000

00010000 "

00010000
00010000
00010000
00010000

Boot the MPC8536DS system until login.

"u-boot -spi "
kernel -spi "

"dt b-spi "

"spi 32766. 1"
" spi 32766. 2"
"spi 32766. 3"

5. Put the boot image to a directory:
a) Set up the Ethernet port and gateway:

/ boot #
/ boot #

ifconfig ethO down

ifconfig ethO XX.XXX.XXX. XXX

b) Start the TFTP server on a PC and put the image file on the TFTP root directory.
c) Start the TFTP client in the MPC8536DS system:

/'j zhao
/tftp>
/tftp>

tftp yyy.yyy.yyy.vyyy

get out

qui t

i mge

6. Mount and write the boot image to the EEPROM:
/root # flash_eraseall /dev/ntdO

/root # cat outinmage > /dev/ndO

Use the Linux command dd to check whether the image has been written to the EEPROM, if desired:

6.2.2

dd if=/dev/ntd0 of =al bs=256 count=2;

od —x al

Booting from the EEPROM on an MPC8536DS

Perform the following sequence of tasks to boot from an EEPROM on an MPC8536DS:
1. Change bit 5678 of SW2 to 0xB0110.

2. Keep the default reset of the software setting.
3. Turn on the power; the U-Boot comes up if everything is done properly.

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

24

Freescale Semiconductor

7

Booting to Linux from an SD card/MMC

Booting to Linux from an SD card/MMC

To boot to Linux from an SD card/MMC, it is assumed that all following configuration files for booting
arein the same directory under aLinux machine:

RAM -based U-Boot image (u-boot.bin)
Kernel image (ulmage)

Flat device treefile (mpc8536ds.dtb)
Root file syste (rootfs.ext2.gz.uboot)
Latest boot-format

Perform the following sequence of tasks to boot to Linux from an SD card/MMC,; note that the
MPCB8536DS system is used as an example:

1
2.

N o g s~

10.

11.

12.

13.
14.

Plug an empty SD card/MMC into the Linux machine.

Use Linux command fdisk to create two partitions: one 512-Mbyte FAT 16 and one ext2/ext3 with
remainder of the available disk size.

Use Linux command mkfs to create the FAT file system for the first partition.

Use mkfs to create the ext2/ext3 file system for the second partitions

Follow the procedure in Section 4.3, “Putting a boot image on an SD card/MMC.”
Use boot_format to put the boot image on the card.

Put the root file system (rootfs.ext2.gz.uboot) on the second partition using the following
commands:

— dd if=rootfs.ext2.gz.uboot of=rootfs.gz bs=64 skip=1
— gunzp rootfs.gz

— dd if=rootfs of=/dev/sdc2

Mount the FAT system (mount /dev/sdcl /mnt/tmp).

Copy thekernel file (cp ulmage /mnt/tmp) and flat device treefile (cp mpc8536ds.dtb /mnt/tmp) to
theroot directory of the FAT system.

Unmount the FAT system (umount /mnt/tmp).

TIP
After step 9 isperformed properly, al the required filesand information are
on the SD card/MMC.
If aLinux desk PCis used:
a) Unplug the SD card/MMC from this PC.
b) Plug the SD card/MMC into a system that is going to boot from this card.

Configure the system to boot from an SD card/MM C (see Section 6.1, “ SD card/MM C booting on
an MPC8536DS")

Stop the U-Boot before it loads the Linux kernel by typing any key.
Change the bootcmd parameter by typing the following:

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 25

V¥ ¢
i

Booting to Linux from an SD card/MMC

setenv sdboot ‘ setenv bootargs root=/dev/mmchblkOp2 rw rootfstype=ext2 rootdelay=5
console=ttyS0,115200; mmcinfo; fatload mme 0:1 1000000 /ulmage; fatload mmc 0:1 cO0000
/mpc8536ds.dtb; bootm 1000000 - cO0000’

15. Save the bootcmd parameter by typing save.
16. Continue to boot the system to the Linux prompt by entering run sdboot.
If the system boots properly, the login screen shows the following information. Note that thisisonly some
of the information displayed:
Devi ce: FSL_ESDHC
Manufacturer ID: 3
CEM 5344
Name: SD02G
Tran Speed: 25000000
Rd Bl ock Len: 512
SD version 2.0
H gh Capacity: No
Capacity: 2032664576
Bus Wdth: 4-bit

readi ng /ul mage. 8536

3173024 bytes read
readi ng / mpc8536ds. dtb

12433 bytes read

WARNI NG adj usting avail able menory to 30000000

Booting kernel from Legacy |Inmage at 01000000 ...
I mage Nane: Li nux- 2. 6.32-rc5
| mage Type: Power PC Li nux Kernel |nmage (gzip conpressed)
Data Size: 3172960 Bytes = 3 MB
Load Address: 00000000
Entry Point: 00000000
Verifying Checksum... K

Flattened Device Tree blob at 00c00000
Booting using the fdt blob at 0xc00000
Unconpressing Kernel Inmage ... K

Usi ng MPC8536 DS machi ne description

Mermory CAM nmappi ng: 256/ 256/ 256 My, residual: 256M

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

26 Freescale Semiconductor

h

Booting to Linux from an SD card/MMC
Li nux version 2.6.32-rc5 (jzhao@eon2) (gcc version 4.3.2 (GCC)) #8 Fri COct 22 08:13:08
CDT 2010
boot consol e [udbgO] enabl ed
setup_arch: bootnem

nmpc8536_ds_set up_ar ch()

sdhci: Secure Digital Host Controller Interface driver
sdhci: Copyright(c) Pierre Ossman
mc0: SDHCI controller on ffe2e000.sdhci [ffe2e000.sdhci] using DVA

/bin/ntpclient: option requires an argunment -- 'h'

Usage: /bin/ntpclient [-c count] [-d] [-g goodness] -h hostname [-i interval]
[-1] [-p port] [-r] [-s]

rebui |l di ng rpm dat abase

PHY: mdi 0@ fe24520: 01 - Link is Up - 1000/ Full

ADDRCONF(NETDEV_CHANGE) : et hO: |ink becones ready

Wel cone to the LTIB Enbedded Li nux Environnment

The default password for the root account is: root
pl ease change this password using the 'passwd' command

and then edit this nessage (/etc/issue) to renove this nessage

nmpc8536ds | ogi n: root

Passwor d:

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 27

Revision history

8

Revision history

Thistable provides arevision history for this document.

Table 8. Document revision history

Rev.

number

Date

Substantive change(s)

2

06/2012

In step 7 in Section 7, “Booting to Linux from an SD card/MMC,” changed the first command to: “dd

if=rootfs.ext2.gz.uboot of=rootfs.gz bs=64 skip=1".

11/2010

» Editorial changes throughout
» Updated Freescale BSP information throughout.

* Added additional devices that this document supports.

* Added Section 1, “What does the on-chip ROM do?”

* Added Section 2, “Building a Cconfiguration file”

* Added Section 2.4, “Choosing the temporary memory location.”
Address description, and added a footnote.

* Modified Example 1, “Configuration file for SD card/MMC using DDR””

¢ Added Example 2, “Configuration file for SD card/MMC using L2 cache.”
* Modified Example 3, “Configuration file for EEPROM using DDR”

* Added Example 4, “Configuration file for booting using the L2 cache””

* Updated Section 2.6, “Building an EEPROM configuration file.”

¢ Added Section 7, “Booting to Linux from an SD card/MMC.”

* Added Section 4.1, “boot_format rev. 1.0 considerations”

* Added Section 4.2, “boot_format rev. 1.1 considerations.”

In Table 3, “SD Card/MMC data structure definition and address/data pairs,” updated Source

12/2008

Initial release

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

28

Freescale Semiconductor

How to Reach Us:
Home Page:
freescale.com

Web Support:
freescale.com/support

Document Number: AN3659
Rev. 2
06/2012

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:
http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm.

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,
Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert,
QorlQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,
CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorlQ Qonverge, QUICC
Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are
trademarks of Freescale Semiconductor, Inc. All other product or service names are
the property of their respective owners. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© 2012 Freescale Semiconductor, Inc.

BUILTON

@,

> freescale

	Booting from On-Chip ROM (eSDHC or eSPI)
	1 What does the on-chip ROM do?
	1.1 Avoiding on-chip ROM configuration issues using TLB1
	Table 1. TLB1 MAS0-3 register values

	2 Building a Cconfiguration file
	2.1 Boot location-specific data structures
	2.2 Requirements for configuration files
	2.3 Definition of an address/data pair
	2.4 Choosing the temporary memory location
	Table 2. Temporary memory location

	2.5 Building an SD Card/MMC configuration file
	2.5.1 SD Card/MMC data structure
	Figure 1. SD Card/MMC data structure
	Table 3. SD Card/MMC data structure definition and address/data pairs

	2.5.2 Building an SD card/MMC configuration file
	Table 4. SD card/MMC configuration file details

	2.6 Building an EEPROM configuration file
	2.6.1 EEPROM data structure
	Figure 2. eSPI EEPROM data structure
	Table 5. eSPI EEPROM data structure definition

	2.6.2 Building an EEPROM eSPI configuration file
	Table 6. EEPROM configuration file details

	3 Building a RAM-based U-Boot under Linux
	Figure 3. Finding “u-boot target board type”

	4 Preparing the image using boot_format
	4.1 boot_format rev. 1.0 considerations
	4.2 boot_format rev. 1.1 considerations
	4.3 Putting a boot image on an SD card/MMC
	4.4 Generating a binary file for eSPI booting
	4.5 Putting a boot image on an EEPROM

	5 Required POR configurations for booting from on-chip ROM
	5.1 Required configurations for SD card/MMC booting
	5.2 Required configurations for EEPROM booting

	6 Booting from on-chip ROM on an MPC8536DS
	6.1 SD card/MMC booting on an MPC8536DS
	6.2 EEPROM booting on an MPC8536DS
	6.2.1 Putting the booting image on the EEPROM
	Table 7. Required device tree binding settings

	6.2.2 Booting from the EEPROM on an MPC8536DS

	7 Booting to Linux from an SD card/MMC
	8 Revision history
	Table 8. Document revision history

