|
y

'
A

Freescale Semiconductor
Application Note

Document Number: AN3984
Rev. 0, 02/2010

1.MX35 Board Initialization and Memory
Mapping Using the Linux Target Image

Builder (LTIB)

by Multimedia Applications Division
Freescal e Semiconductor, Inc.
Austin, TX

Thisapplication note providesgeneral information regarding
the board initialization process and the memory mapping
implementation of the Linux kernel using the LTIB in an
i.M X35 Board Support Package (BSP).

The board initialization processis relatively complex and
long. Hence this application note provides a general
overview of board initialization process, while explaining
more about the memory mapping.

The knowledge on these aspects enabl e better understanding
of the BSP structure. When changes such as migrations to
another board or device with different memories and
externa board chips are needed, these are some of the
elements that need to be changed on the software side.

This application note is targeted to the i.MX35 BSPs, but it
is applicable to any i.MX device. The structure and
architecture of the system (software) is the same for all the
i.MX BSPs.

This application note covers information, and the
initialization process flow of aBSP running aLTIB, on an
.M X35 platform. The focus of this application note is on
memory elements and memory mapping, from bootloader
startup to kernel initiaization.

© Freescale Semiconductor, Inc., 2010. All rights reserved.

11
12

2.1
2.2

31
3.2

4.1
4.2.

Contents
Linux BootingProcess ........................ 2
General Bootloader Objectives . ................. 2
Tagsinthe Linux BootingProcess .. ............. 3
Board Initialization Process . ................... 8
MACHINE_START Descriptionand Flow . ....... 8
Board Initialization Function .................. 1
Memory Map ... 13
1/0 Mapping Function Flow and Description . ... . .. 13
Memory Maponi.MX35 ..................... 14
References. ... 16
Freescale Semiconductor Documents . ........... 16
Standard Documents . . ... 16
RevisionHistory .............. .. .. oL 16

freescale"

semiconductor



Linux Booting Process

Thefirst section of this application note explains the general objectives of a standard bootloader, and how
to pass information about the system memory (such as the size and start address) to the kernel.

The second section explainsthe board initialization function. It also explainsthe elementsthat are required
to perform aboard initialization (such as structures, linker sections, and functions), and their place within
the flow of the Linux booting process.

The last section describes the general aspects of memory mapping on the system and the implementation
of the memory map in the BSP.

1 Linux Booting Process

This section describes the main objectives of the bootloader of aLinux system for an ARM device. It also
describes the structures and the flows that the bootloader needs to pass to the kernel.

1.1 General Bootloader Objectives

Even though there are many possibilities, such as loading an initial RAM, this application note explains
only the basic function of the bootloader. There are five minimum steps that any bootloader needs to
follow:

1. Setup and initialize the system RAM—The bootloader finds and initializes the entire RAM to
provide the volatile data storage for the system. The algorithm that is used to locate and set up the
RAM depends on the processor and bootloader designs.

2. Initialize one seria port (optional, but highly recommended)—The bootloader locates and enables
aseria port on the target. Thisallows the kernel serial driver to detect the serial port that is used
later as the kernel console. The bootloader passesthe consol e= expression as akernel parameter,
which is recognized as a part of the tagged list.

3. Detect the machine type—The bootloader detects the type of processor that is running on the
system. Thisinformation is a macro with aname in the form vacH_TYPE_XXX.

4. Setup the kernel tagged list—The bootloader creates and initializes a kernel tagged list that
contains the information such as the size and location of the system memory (RAM). Other
elements such as RAM disk creation or a console value are added to the tagged list. The tagged
list concept and its characteristics are described in the Section 1.2, “ Tagsin the Linux Booting
Process.”

5. Cadl or start the kernel image—The bootloader finally calls the kernel image (a compressed
zlmage), depending on where the zimage is stored. It is possible to call the zimage in Flash
directly or store the zimage in RAM and call there. The following are some of the conditions that
areto be set to call the zZImage:

a) Set the CPU in supervisor mode with IRQ disabled.

b) Turn off the Memory Management Unit (MMU) and Data Cache. The code running in RAM
does not have trand ated addressing yet.

c) Settheregister r0Oto 0, rl tothe ARM Linux machine type, and r2 to the physical address of
the parameter list (tagged list).

i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

2 Freescale Semiconductor



Linux Booting Process

The bootloader isin charge of initializing the process while configuring the RAM for the system. The
kernel does not have knowledge of the RAM configuration beyond what is provided by the bootloader. 1
there is a need to change the RAM of a system, most of the software changes apply to the bootloader.

A small exception is the usage of the machine fixup function (fi xup_nmxc_board). It isnormally stored in

the machine dependant code (1 i nux- 2. 6. 26/ ar ch/ ar nf mach- mx35/ mx35_3st ack. ¢) and it isused inside the
kernel to enable some actions of memory configuration that belong to the bootloader. It alows the user to
statically fill the values of parameters such as memory data.

NOTE

Under normal circumstances, the bootloader fills the values of parameters.
But fixup exists to allow flexibility for exceptions.

1.2 Tags in the Linux Booting Process

The following section provides a more detailed description of the tagged list, with emphasis on the
memory tag.

1.2.1 Tags in the Bootloader Environment

Thetagged list containstheinformation of the physical layout. Theinformation ispassed to the kernel with
the ATAG_MEM parameter. This parameter is a part of the tagged list that is passed from the bootloader
to the kernel. The value is overriden through the kernel command line parameter mem=, and by using this,
the bootloader passes the size of the physical memory.

NOTE

For moreinformation on the syntax of the command line parameters, seethe
documentation located at:
I'i nux- 2. 6. 26/ Docunent ati on/ ker nel - paraneters. t xt

ATAG_MEM isone among a set of parameters passed by the bootloader to the kernel. The parameters
createalist (tagged list) that containsinformation, such asthe command line tag associated with the kernel
command line string, seria console information, RAM disk usage, or initial configuration values for the
framebuffer. Thistagged list (ATAG) isimplemented as a structure and is stored in main memory. The
address of the structure is passed to the register r2 when starting the kernel. However, in many cases, the
kernel findsitin afixed memory location (by default, both the bootloader and the kernel know whereitis).
The following are the most important constraints in the tagged list:

» Thelistisstored in asafe place in RAM. The recommended place isthe first 16 Kbytes of RAM.

NOTE

The list should not be stored where the kernel is decompressed, and where
theinitrd overwriteiit.

» Thelist must not extend beyond the 0x4000 boundary wherethekernel initial translation pagetable
IS created.

* Thelistisaligned to a4 byte boundary.

i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 3



|
y

'
A

Linux Booting Process

» Thelist beginswith atag ATAG_CORE, contain atag ATAG_MEM and end with atag
ATAG_NONE

Each tag in the list contains at ag_header structure that setsthe size of the tag, and atag value that
represents the tag type. In amost all cases, each tag header has more data associated with the type of tag
(except for ATAG_NONE).

Example 1 shows a section of the tag structure containing t ag_header and several different types of tags,
implemented as a union of structures. This structure is from the kernel location:

l'i nux- 2. 6. 26/ i ncl ude/ asm ar mf set up. h. However, the bootloader containsadefinition very similar tothe
following lines of code:

Example 1. Tag Structure

struct tag {
struct tag_header hdr;

uni on {
struct tag_core core;
struct tag_nenB2 mem
struct tag_videotext vi deot ext ;
struct tag_randi sk randi sk;
struct tag_initrd initrd;
struct tag_serialnr seri al nr;
struct tag_revision revi sion;
struct tag_videolfb vi deol f b;
struct tag_cndline cmdl i ne;
(-)

} u

The data associated with each tag (in the union part of the tag structure) contains the information related
to each type. For example, in the case of thet ag_mem(ATAG_MEM), the data is described in the union as
thet ag_memstructure (t ag_nens2 in the kernel example). Thisstructure containstwo fields, onefor the size
of the memory represented in this tag, and another for the physical start addresses of this memory.

Thefollowing lines of code arefrom the i nux- 2. 6. 26/ i ncl ude/ asm ar m set up. h file. The code contains
some definitions of tags, such ast ag_nem and thet ag_header. The bootloader should have an
implementation of tags similar to the following lines of code:

/* The list ends with an ATAG NONE node. */

#def i ne ATAG_NONEOX00000000

struct tag_header {
_u32 size;
__u32 tag;

}
/* The list nmust start with an ATAG CORE node */

#def i ne ATAG_COREOx54410001

struct tag_core {
_u32 flags; /* bit 0 = read-only */
__u32 pagesi ze;

i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

4 Freescale Semiconductor



Linux Booting Process

__u32 rootdev;
b
/* it is allowed to have nmultiple ATAG MEM nodes */
#def i ne ATAG_MEMDx54410002

struct tag_nmenB2 {
_u32 si ze;
_u32 start; /* physical start address */

1.2.2 Tags in the Kernel Environment

From the kernel standpoint, it isimportant to know where the tags are retrieved from, and used for the
kernel internal settings. The system needs tag structures similar to the ones from the bootloader to enable
thisfeature. All the tag structures definitions are provided in 1 i nux- 2. 6. 26/ i ncl ude/ asm ar m set up. h.

The specific function for the tag retrieving processisvoid __init setup_arch(char **cndline_p), (from
thefilelinux2. 6. 26/ arch/ ar m ker nel / set up. ¢). Thisfunction is called from the function asni i nkage
void __init start_kernel (void) (fromthefilelinux-2.6.26/init/min.c).

Thestart_kernel functionis called after all the assembly-oriented section of the kernel initialization is
executed. This process involves the files related to the compressed kernel stage (zlmage). After the
functioniscalled, thekernel relocation follows, and finally, the uncompressed kernel startup (head- arnv. s
file).
The kernel gets the memory configuration information in the following two ways:

» Getting the tagged list that contains the memory tag with the information.

» Getting the information from the kernel command line through the usage of the mem= parameter.
Both cases are described and implemented in the file: 1 i nux- 2. 6. 26/ arch/ ar ml ker nel / set up. c.

1.2.2.1 Retrieving Tag Information

The tag table is built by the linker using the __t agt abl e declarations of each tag in the

l'i nux- 2. 6. 26/ arch/ arnf ker nel / set up. ¢ file. One of these declarationsis the memory tag as follows:
__tagtabl e( ATAG_MEM parse_tag_nmenB2)

The definition of thisline of code isfound inthefileli nux- 2. 6. 26/i ncl ude/ asm ar nf set up. h, and its
meaning is:

#define __tag __used __attribute_ ((__section__(".taglist.init")))
#define _ tagtable(tag, fn) \
static struct tagtable __tagtable ##fn __tag = { tag, fn}

Theresult of thisdeclarationisastruct tagtabl e. The structureisformed by a__32 number and a pointer
to afunction that has:

* A name__tagtabl e_##f n (& concatenation with the name of the function).

* The attribute that assembly functions of code related to this declaration is placed in the section
.taglist.init thatisdefined by thelinker (seevni i nux. | ds), instead of the common text section.

i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 5



3
4

'
A

Linux Booting Process

* The parameter values: t ag (_u32 number, inthiscase ATAG_MEM) and f n (apointer to afunction
that in this caseisthe par se_t ag_mens2 function)

Each declaration generates one st ruct tagt abl e as the following:

Thetag listisretrieved in set up_arch (found in set up. ¢). Thisfunction has a call to the parse_t ags
function. The function parse_t ags parses all the tags contained on the list, by using another function that
parses one tag at atime. This last function takes the tags on the list as input, and calls the parse function
for each input tag that has a match on the tag table.

/*

* Parse all tags in the list, checking both the global and

* architecture specific tag tables.

*/

static void __init parse_tags(const struct tag *t)

{

for (; t->hdr.size; t = tag_next(t))
if (!parse_tag(t))
pri nt k( KERN_WARNI NG

"l gnoring unrecogni sed tag 0x%©8x\n",
t->hdr.tag);

}

* Scan the tag table for this tag, and call its parse function.

* The tag table is built by the linker fromall the __tagtable
* decl arati ons.

*/
static int __init parse_tag(const struct tag *tag)
{
extern struct tagtable __tagtable_begin, _ tagtable_end;
struct tagtable *t;
for (t = & tagtable_begin; t < & tagtable_end; t++)
if (tag->hdr.tag == t->tag) {
t->parse(tag);
br eak;
}
returnt < & _tagtable_end;
}

The function hasthe elements __tagt abl e_begi n and __t agt abl e_end defined in
l'i nux-2. 6.26/ arch/ arnf kernel /vii i nux. | ds (linker file). These are the limits of the tag list in memory.

.init @ { /* Init code and data*/
*(.init.text) *(.cpuinit.text) *(.nmemnit.text)
_einittext = .;
__proc_info_begin = .;
*(.proc.info.init)
__proc_info_end = .;
__arch_info_begin = .;
*(.arch.info.init)
_arch_info_end = .;
__tagtable_begin = .;
*(.taglist.init)

__tagtable_end = .;

= ALI GN\(16) ;

i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

6 Freescale Semiconductor



Linux Booting Process

__setup_start = .;
*(.init.setup)
__setup_end = .;
_early_begin = .;
*(.early_paraminit)
__early_end = .;

()

The space between both elements (begin and end) isthe data and its attributes (tagl i st. i nit ). Thefirst
tag that needs to be parsed and recognized is ATAG_CORE. Thisisthefirst tag found according to the
established protocol.

A memory tag is also found, when the match is done it calls the parse function associated with the tag. In
the case of the memory tag, the parse function iSpar se_t ag_nens2.

static int __init parse_tag_nenB2(const struct tag *tag)
{
if (mem nfo.nr_banks >= NR_BANKS) {
pri nt k( KERN_WARNI NG
"l gnoring menory bank Ox%8x size %KB\n",
tag->u. mem start, tag->u.nmemsize / 1024);
return -ElI NVAL;
}
arm add_menory(tag->u. rem start, tag->u.nemsize);
return O;

}

Near theend, ar m add_nenory iscalled. Thisisthe function that setsthe memory information (start address
and size) in the renbank structure.

static void __init armadd_menory(unsigned |ong start, unsigned |long size)
{
struct menbank *bank;
/*
* Ensure that start/size are aligned to a page boundary.
* Size is appropriately rounded down, start is rounded up.
*/
size -= start & ~PAGE_MASK;
bank = &mem nfo. bank[ mem nfo. nr_banks++];
bank- >start PAGE_ALI GN(start);
bank- >si ze size & PAGE_MASK;
bank- >node PHYS TO NI D(start);

1.2.2.2 Retrieving Memory Information from the Command Line

The other possibility for retrieving the memory information is getting the data from the kernel command
lineand the parameter rem=. Thisprocessissimilar to theretrieving of tag information from the tagged list.
Some characteristics are:

e Startsinsetup_arch and finishesin ar m add_nenory

* Needs aparticular section in memory, also set by the vni i nux. I ds file, but now it is named
early paraminit andthelimitsare early begin __early end

* Instead of theparse_t ags function, there is now aparse_cndl i ne

i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 7



Board Initialization Process

* Thecontent of early_paraminit isfilled by the declaration __ear!y_paran{nem=, early_mem
using the same elementsas__tagtabl e (__attribute__ and aspecial section).

* Insummary the flow isthat the set up_arch function callstheparse_cmdl i ne. When parsing the
command line, and if the mem= parameter isfound, it callsthe ear ! y_memfunction, and the
arm add_nenory to fill the nenmbank Structure.

All the code are found in 1 i nux- 2. 6. 26/ ar ch/ ar ml ker nel / set up. ¢ and definitionsin
l'i nux-2. 6.26/incl ude/ asmarm setup. h (__early_param Or early_paranms Structures).

2 Board Initialization Process

This section explains the process by which the board elements are initialized on a Linux system.

There are some elementsthat are to be set before the board isinitialized. This section describes the
elementsthat are related to the Linux booting process. Some of these are the machi ne_desc structure, or the
process that the kernel usesto confirm the CPU and the machine type used in the system (in the current
board).

This section also explains briefly the contents of the function related to the board (system) initialization.

2.1 MACHINE_START Description and Flow

The macH NE_START definition is the declaration of the machi ne_desc structure holding the name of the
board currently used. Besides having the name of the board in use, it is also set in a particular section
declared inthevni i nux. I ds file. It has the vacH_TYPE and the name of the system as parameters. The
definitionislocated in: Ii nux-2. 6. 26/ i ncl ude/ asm ar m mach/ ar ch. h. The MacH_TYPE parameter passed in
MACHI NE_START isstored in: I i nux- 2. 6. 26/ i ncl ude/ asm ar ni nach_t ypes. h.

#def i ne MACHI NE_START(_type, _nane)\
static const struct nachine_desc __nmach_desc_##_t ype\
__used \
_attribute_ ((__section__(".arch.info.init"))) = {\
.nr MACH_TYPE_##_t ype, \
. hame _naneg,

#def i ne MACHI NE_END \
}s
#endi f

The mACHI NE_START macro becomes a data structure when the compiler buildsthefilethat holdsit. Usually
this structure is declared in afile where the initialization of the current board is made. This meansthefile
isinside the mach-xxx folder. For this application note, the board used isthe i.M X35 PDK. Thefilewhere
the declaration ismadeis: I i nux- 2. 6. 26/ ar ch/ ar nf mach- mx35/ nk35_3st ack. c.

Thismacro is defined as the structure that describes the machine, or the board. It contains more members
than a name and atype. These members are part of the machi ne_desc structure that is declared with the
macro. The definition of the machi ne_desc structure is located in:

l'i nux-2.6.26/include/ asmarm mach/ arch. h.

struct machi ne_desc {
/*

i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

8 Freescale Semiconductor



Board Initialization Process

* Note! The first four elenments are used
* by assenbler code in head.S, head-comon.S

*/
unsi gned int nr; /* architecture nunber*/
unsi gned int phys_i o; /* start of physical io*/
unsi gned int io_pg_offst; /* byte offset for io * page tabe entry*/
const char *nane; /* architecture name*/
unsi gned | ongboot _parans; /* tagged I|ist */
unsi gned intvideo_start; /* start of video RAMF/
unsi gned intvideo_end; /* end of video RAM/
unsi gned intreserve_| p0 :1;/* never has | p0*/
unsigned intreserve_|pl :1;/* never has |pl*/
unsigned intreserve_|p2 :1;/* never has |p2*/
unsi gned intsoft_reboot :1;/* soft reboot*/
voi d (*fixup)(struct machine_desc *, struct tag *, char **, struct neminfo *);
voi d (*map_io)(void); [/* 10 mapping function*/
voi d (*init_irqg)(void);
struct sys_tinmer*tiner; /* systemtick tiner*/
voi d (*init_machine)(void);
b

Asseen, there are several members of the structure, and not all of them arefilledin thefinal MacH NE_START
declaration. For the current system, the declaration is located in:
i nux-2. 6.26/ arch/arm mach- nk35/ nx35_3st ack. c:

/*
* The following uses standard kernel nmacros define in arch.h in order to
* initialize __mach_desc_MX35_3DS data structure.
*/
/* *] NDENT- OFF* */
MACHI NE_START(MX35_3DS, "Freescal e MX35 3-Stack Board")
/* Maintainer: Freescale Sem conductor, Inc. */
.phys_io = Al PS1_BASE ADDR,
.io_pg_offst = ((Al PS1_BASE_ADDR VIRT) >> 18) & Oxfffc,
.boot _paranms = PHYS_OFFSET + 0x100,
.fixup = fixup_nxc_board,
.map_i 0 = nxc_map_i o,
init_irg = mkc_init_irq,
.init_machine = nxc_board_init,
.timer = &mxc_ti mer,
MACHI NE_END

The data obtained from the declaration are as follows:
* The macH_TypPe and architecture number (nr) iS: MACH TYPE_MX35_3DS
* Thename of the mach_desc Structureis. __mach_desc_MX35_3DS
* The name parameter of the mach_desc Structure is: Freescal e MX35 3- Stack Board
* Thephysical address of the I/O bank is (phys_i 0): Al PS1_BASE_ADDR

* Thel/O page offset that allows providing virtual memory is (i o_pg_of f st ):
(( Al PS1_BASE_ADDR VIRT) >> 18) & Oxfffc

i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 9



|
y

'
A

Board Initialization Process

* The boot parameters (address of the tagged list used in the process of retrieving the tagged list for
the kernel) are (boot _par ams): PHYS_OFFSET + 0x100

» Thefixup function referenceis (fi xup): fi xup_mxc_boar d

» The /O memory mapping function is (map_i 0): mxc_map_i o

* ThelRQinitiaization functionis(init_irq): mc_init_irq

* The machineinitialization function (board initialization) is (i ni t _machi ne): mxc_boar d_i ni t
» Thetimer structureis (ti ner): &mxc_ti mer

Some of these elements are extremely important for the development of this application note. For example,
the boot _par ams provide the location of the tag structure created in set up_ar ch function covered in the
Section 1.2.2.2, “Retrieving Memory | nformation from the Command Line,” which passestheinformation
about the memory layout to the system.

Thei ni t _machi ne parameter provides the reference to the function that initializes the system. The
objective of this section isto explain how the Linux booting process gets to that function and describe it
briefly.

The map_i o parameter provides the reference to the function for the memory mapping process. This
function is explained in the following section.

211 Recognizing the CPU and Machine

In the Linux kernel boot, after passing the stage of uncompressing the kernel, the kernel initializes the
hardware using thei ni t _machi ne parameter. Before initializing the hardware, the kernel validatesif it is
running on the CPU that it was compiled for. To know if thisis true, the kernel gets the processor 1D and
compares it to the data contained in the proc. i nfo. i ni t Section (seevni i nux. I ds). Thisverification is
followed by the initialization of caches and the MMU.

The process is accomplished as follows:

* Function set up_processor () iscalled fromsetup_arch(), (file
l'i nux- 2. 6. 26/ ar ch/ ar nf ker nel / set up. c).

* setup_processor Usesfunction _ | ookup_processor_type (located in:
l'i nux- 2. 6. 26/ ar ch/ ar nf ker nel / head- cormon. S) t0 get the processor ID. Theproc. i nfo Sectionis
filled with information from the file 1 i nux- 2. 6. 26/ ar ch/ ar m m pr oc- v6. S, which setsthe
.proc.info.init sectionand contains the processor ID information.

» Thekernel compares the machine ID given by the bootloader to the kernel with the information
contained in . arch.info.init section (seevm i nux. | ds). Thisaso occursinside set up_arch().

» After setup_processor iscalled, the function set up_machi ne( machi ne_arch_type) iscaled (the
parameter holds the machine type obtained from the MacHl Ne_START macro declaration). This

function reaches| ookup_machi ne_t ype (nr) that gets the machine type and comparesit with the
informationin . arch.info.init (filled with the MacH NE_START macro declaration).

i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

10 Freescale Semiconductor



Board Initialization Process

2.2 Board Initialization Function

See Section 2, “Board Initialization Process,” for information about the board initialization function. The
function ismxc_board_init anditisfound inti nux- 2. 6. 26/ arch/ ar m mach- nk35/ nx35_3st ack. c. The
function is also referenced as ndesc- >i ni t _nmachi ne.

2.2.1 Calling the Function

The function is called in a specific way. In thefile1i nux- 2. 6. 26/ arch/ ar m ker nel / set up. c thereisa
function named cust oni ze_machi ne.

static int __init custoni ze_nachine(void)

{

/* custom zes platform devices, or adds new ones */
if (init_machine)

i ni t_machine();
return O;

}

arch_initcall (custom ze_machi ne);
This function containsacal toinit _machi ne(), which is defined as.
static void (*init_nmachine)(void) __initdata;

The relationship between i ni t _machi ne and the board initialization is given inset up_arch() . At theend
of the function, i ni t _machi ne gets areference to the board initialization:

init_machine = ndesc->i ni t _machi ne;

This function gets called in a particular way. This function is a part of a group of functions that get
initialized through a table built by the linker. The group havethe __initcal I s() Or modul e_i ni t () cals.

The function cust oni ze_kernel ispart of the__initcal I group because of theline of codear ch_i ni t cal |
(cust oni ze_machi ne). The definition of arch_i ni tcal I isfound in: Ii nux-2.6.26/incl ude/ Iinux/init. h.
Theresult expandsina__define_initcal |l thatisplacedinthesection".initcall" level ".init",andit
has a value of the function (in this case cust oni ze_nachi ne).

#define arch_initcall (fn)__define_initcall("3",fn,3)

(-)

* initcalls are now grouped by functionality into separate

* subsections. Ordering inside the subsections is determ ned

* by link order.

* For backwards conpatibility, initcall() puts the call in the device init subsection.

* The "id arg to __define_initcall() is needed so that multiple initcalls
* can point at the same handl er w thout causing duplicate-synbol build errors.
*/

#define __define_initcall (level,fn,id) \
static initcall_t __initcall _##fn##id __used \}
_attribute_ ((__section__(".initcall" level ".init"))) = fn

The function is added in the table built by the linker. The following code is an excerpt from:
I'i nux-2.6.26/arch/arm kernel /vm i nux.|ds

i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 11



Board Initialization Process

_initcall_start = .;

*(.initcallO.init) *(.initcallOs.init) *(.initcalll.init)
*(.initcallls.init) *(.initcall2.init) *(.initcall2s.init)
*(.initcall3.init) *(.initcall3s.init) *(.initcall4.init)
*(.initcall4s.init) *(.initcall5.init) *(.initcall5s.init)
*(.initcallrootfs.init) *(.initcall6.init) *(.initcall®6s.init)
*(.initcall7.init) *(.initcall7s.init)

_initcall_end = .;

2.2.2 Board Initialization Content

The content of the board initialization function (mxc_board_i ni t) isaset of initialization routines for the
systems, modules and integrated chips that are on the board. The initialization is not that the driversfor
each module are described and coded in thisfile, but it is actually the opposite. Thisfunction iswhere all
the devicesthat are represented on the board are getting initialized and registered so they are accessible by
the kernel.

The attributes are passed to each device, and the resources are provided. Some important cases are as
follows:

* GPIO are assigned for each module
* Partitionsfor MTD devices are made
» Devicesfor buses are registered (such as| 2Cor SPI)

Most of the routines used by the board initialization function are also defined in
l'i nux- 2. 6. 26/ ar ch/ ar mf mach- mx35/ mx35_3st ack. c. The following function isasummary of the elements
that are enabled on the system, and its characteristics.

static void __init nxc_board_init(void)
{
mxc_cpu_comon_init();
mxc_cl ocks_init();
early_consol e_set up(saved_command_l i ne);
mxc_gpio_init();
mxc_i nit_devi ces();
if (!board_is_nx35(BCARD_REV_2))
mx35_3stack_fixup_for_board_v1();
mx35_3stack_gpio_init();
nxc_init_enet();
mxc_init_nor_ntd();
mxc_init_nand_ntd();
mxc_init_lcd();
mxc_init_fb();
mxc_init_bl();
mxc_sgt 1 5000_init();

i 2c_regi ster_board_info(0, mxc_i 2c_board_i nfo, ARRAY_SI ZE(nmxc_i 2c_board_i nfo));
spi _regi ster_board_i nfo(mxc_spi _board_i nf o, ARRAY_SI ZE( mxc_spi _board_i nfo));
mxc_init_mc();

mxc_init_pata();

nmxc_i nit_bl uetoot h();

mxc_init_gps();

mxc_init_mb();

i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

12 Freescale Semiconductor



Memory Map

3 Memory Map

Linux runsinvirtual address space and hence, the Memory Management Unit (MMU) providesthevirtual
to physical address mapping defined by a memory map page table. This page table is a pre-defined
memory map definition that mapsthe virtual memory to physical memory, so the device driversaccessthe
device registers.

In the i.M X35 platform, the table isdefined in: i nux- 2. 6. 26/ ar ch/ ar m mach- mx35/ nm c. Thislocation is
under machine dependent code (Machine Specific Layer or MSL). The header files that provide macros
for al the I/0O modules (physical and virtual addresses or conversion macros) are stored in

l'i nux-2.6.26/incl ude/ asm arnf hardwar e. h OF /i ncl ude/ asm ar nf ar ch- nxc/ mx35. h.

Thelinux- 2. 6. 26/ arch/ ar m mach- mx35/ mm ¢ file contains the memory map of the system, and the
mxc_map_i o function, which is responsible for 1/0 memory mapping. This function is also found as
ndesc- >map_i o() , iN other words, this function is the 1/0 memory mapping function from the machine
description structure. The following sections explain how to call the I/O mapping function, and describe
the content of the memory map table.

3.1 I/0 Mapping Function Flow and Description

The flow of calling the mxc_map_i o function is asfollows:

» Cadl thefunction pagi ng_i ni t (&memi nfo, mdesc) fromwithin set up_arch() (insidefile
l'i nux- 2. 6. 26/ ar ch/ ar nf ker nel / set up. c).

* Thepaging_i nit function callsdevi cenaps_i ni t (both functions are located in
l'i nux- 2. 6. 26/ ar ch/ ar m/ nm mu. ¢), and from there function the ndesc- >map_i o() is called.

* Thefunction mxc_map_i o() callSi ot abl e_i ni t , which gets the mapping using the cr eat e_nappi ng
function (located in thefile1 i nux-2. 6. 26/ arch/ ar nf nm mu. c).

static void __init devicemaps_init(struct machi ne_desc *ndesc)
{
struct map_desc map;
unsi gned | ong addr;
(-)
/*
* Ask the nachine support to map in the statically napped devices.
*/
if (nmdesc->map_i o)
mdesc->map_i o();

()

/*]

* This function initializes the menory map. It is called during the
* systemstartup to create static physical to virtual menory map for
* the |10 nodul es.

*/
void __init mxc_map_i o(voi d)
{
iotable_init(nxc_io_desc, ARRAY_SIZE(nxc_i o_desc));
}
/*

i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 13



Memory Map

* Create the architecture specific mappings
*/
void __init iotable_init(struct nap_desc *io_desc, int nr)
{
int i;
for (i =0; i <nr; i++)
create_mapping(i o_desc + i);

}

3.2 Memory Map on i.MX35

The memory map isformed by an array of map_desc structures. This structure (map_desc) isdefined in
l'i nux- 2. 6. 26/ i ncl ude/ asm ar m mach/ map. h and containsonly four elements. These elementsareunsi gned
| ong types for avirtua address, length, page frame number, and an unsi gned i nt for the type.
struct map_desc {
unsigned long virtual;
unsi gned | ong pfn;
unsi gned | ong | ength;
unsi gned int type;

b
The information obtained from the memory map are asfollows:
* Thereareeight map_desc structures inside the array.
e The.virtual fieldisthe virtual address where that map_desc is defined.
* The. pfn field isthe address of the map_desc in terms of page frame number. The following code

ISIN: i nux-2. 6. 26/ i ncl ude/ asm ar mf menor y. h. The page frame numbers are the physical
addresses with the offset values taken out, and the page values shifted to the right.

/*

* Convert a physical address to a Page Frame Nunmber and back

*)

#define __ phys_to_pfn(paddr)((paddr) >> PAGE_SHI FT)

#define __ pfn_to_phys(pfn)((pfn) << PAGE_SH FT)

The memory map structure is defined in the following lines of code (it isfound in the file

l'i nux- 2. 6. 26/ ar ch/ ar n{ mach- mx35/ nm c).

* Most of the macros used in the memory map structure is seen in the headers:
I'i nux-2.6.26/incl ude/ asm arnf ar ch- nxc/ nx35. h.

* 1 RAM BASE_ADDR VI RT represents the internal RAM. The virtual address is oxFg400000 (physical
address 0x10000000). The length of the memory represented by the map_desc is 128KB.

* X_MEMC_BASE_ADDR_VI RT represents the control registers of the memory controllers. The virtual
addressisoxFga00000 (physical address 0xBgo00000). Thelength of the memory represented by the
map_desc IS1IMB.

* NFC_BASE_ADDR VI RT represents the NAND flash controller. The virtual addressis 0xFgBo0000
(physical address 0xBB000000). The length of the memory represented by the map_desc is IMB.

* ROWP_BASE_ADDR VI RT represents the platform ROMPATCH. The virtual addressis 0xF8800000
(physical address 0x60000000). The length of the memory represented by the map_desc is IMB.

i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

14 Freescale Semiconductor



Memory Map

* AVIC_BASE_ADDR VI RT represents the platform AVIC. The virtual addressis oxFg900000 (physical
address 0x68000000). The length of the memory represented by the nap_desc is IMB.

* Al PS1_BASE_ADDR VI RT representsthe areafor thefirst section of the ARM IP Bus (AIPS) control
registers. Some of them arefor 12C, UART, SSI, IOMUX, and so on. The virtual addressis
0xF8500000 (physical address ox43F00000) and the length of the memory represented by the
map_desc IS1IMB.

*  SPBAO_BASE_ADDR VI RT representsthe shared peripheral busarbiter (SPBA) registers. Some of them
arefor CSPI, UART, SSI, ATA, and so on. The virtual address is oxrFge00000 (physical address
0x50000000) and the length of the memory represented by the map_desc is IMB.

* Al PS2_BASE_ADDR_ VI RT representsthe areafor the next section of the AIPS control registers. Some
of themarefor GPIO, SDMA, WDOG, CAN, and so on.Thevirtual addressisoxFg7o0000 (physical
address 0x53F00000) and the length of the memory represented by the mep_desc is IMB.

/*This structure defines the M35 nenory nap. */
static struct map_desc nxc_io_desc[] __initdata = {
{
.virtual = | RAM BASE_ADDR VI RT,
.pfn = __phys_to_pfn(l| RAM BASE_ADDR),
.length = | RAM SI ZE,
.type = MI_NONSHARED DEVI CE},

.virtual = X_MEMC_BASE ADDR VI RT,

.pfn = __phys_to_pfn(X_MEMC_BASE_ADDR) ,
.length = X_ MEMC_SI ZE,

.type = MI_DEVI CE},

.virtual = NFC_BASE ADDR VI RT,

.pfn = __phys_to_pfn(NFC_BASE_ADDR),
.length = NFC_SI ZE,

.type = MI_NONSHARED DEVI CE},

.virtual = ROVP_BASE_ADDR VI RT,

.pfn = __phys_to_pfn( ROW_BASE_ADDR),
.length = ROW_SI ZE,

.type = MI_NONSHARED DEVI CE},

.virtual = AVI C_BASE_ADDR VI RT,

.pfn = __phys_to_pfn(AvlI C_BASE_ADDR),
.length = AVI C_SI ZE,

.type = MI_NONSHARED DEVI CE},

.virtual = Al PS1_BASE_ADDR VI RT,

.pfn = __phys_to_pfn(Al PS1_BASE_ADDR),
.length = Al PS1_SI ZE,

.type = MI_NONSHARED DEVI CE},

.virtual = SPBAO_BASE_ADDR VI RT,

.pfn = __phys_to_pfn(SPBA0O_BASE_ADDR),
.length = SPBAO_SI ZE,

.type = MI_NONSHARED DEVI CE},

.virtual = Al PS2_BASE_ADDR VI RT,

.pfn = __phys_to_pfn(Al PS2_BASE_ADDR),
.length = Al PS2_SI ZE,

i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 15



|
y

'
A

References

.type = MI_NONSHARED DEVI CE},

NOTE

The memory mapping represents the static 1/0 section from thefile
l'i nux- 2. 6. 26/ Docunent at i on/ arnf menory. t xt , having vwaLLoc_enp and
feffffff aslimits.

4 References

The following reference documents are used in conjunction with this application note for board
initialization and memory mapping using LTIB.

4.1 Freescale Semiconductor Documents
The following i.MX reference manuals are found at Freescale Semiconductor Inc. World Wide Web site
at http://www.freescale.com.

* i.MX35PDK 1.5 Linux Reference Manual. Chapter 5: Machine Specific Layer, 5.3 Memory Map,
a
http://www.freescal e.com/files/32bit/doc/support_info/PDK_IMX35_LINUXDOCS BUNDLE.zip

* 1.MX35 (MCIMX35) Multimedia Applications Processor Reference Manual (IMX35RM). Chapter
2: Memory Maps.

4.2 Standard Documents

The following standard documentations are used as reference for this application note and are found at
their respective Web sites.

* Booting ARM Linux (June 2004), at
http://www.simtec.co.uk/products/SWLINU X/files/booting_article. ntml#ATAG_MEM#ATAG_MEM

* Booting and Porting Linux and uCLinux on a new Platform (February 2006), at
http://www.ens-lyon.fr/L | P/Pub/Rapports RR/RR2006/RR2006-08. pdf

5 Revision History

Table 1 provides arevision history for this application note.

Table 1. Document Revision History

Rev. Number Date Substantive Change(s)

0 02/2010 Initial release.

i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

16 Freescale Semiconductor


http://www.simtec.co.uk/products/SWLINUX/files/booting_article.html#ATAG_MEM#ATAG_MEM
http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2006/RR2006-08.pdf
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com/files/32bit/doc/support_info/PDK_IMX35_LINUXDOCS_BUNDLE.zip

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 17



) 4

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

18 Freescale Semiconductor



Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 19



How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284

1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 169 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125

support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Document Number: AN3984
Rev. 0
02/2010

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks or registered trademarks
of Freescale Semiconductor, Inc. in the U.S. and other countries. All other

product or service names are the property of their respective owners. ARM
is the registered trademark of ARM Limited. ARMnnn is the trademark of ARM Limited.

© Freescale Semiconductor, Inc., 2010. All rights reserved.

ARMa

freescale"

semiconductor



	i.MX35 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB)
	1 Linux Booting Process
	1.1 General Bootloader Objectives
	1.2 Tags in the Linux Booting Process
	1.2.1 Tags in the Bootloader Environment
	1.2.2 Tags in the Kernel Environment
	1.2.2.1 Retrieving Tag Information
	1.2.2.2 Retrieving Memory Information from the Command Line



	2 Board Initialization Process
	2.1 MACHINE_START Description and Flow
	2.1.1 Recognizing the CPU and Machine

	2.2 Board Initialization Function
	2.2.1 Calling the Function
	2.2.2 Board Initialization Content


	3 Memory Map
	3.1 I/O Mapping Function Flow and Description
	3.2 Memory Map on i.MX35

	4 References
	4.1 Freescale Semiconductor Documents
	4.2 Standard Documents

	5 Revision History
	Table 1. Document Revision History



