|
y

'
A

Freescale Semiconductor
Application Note

Document Number: AN4026
Rev. 0, 12/2009

Communicating via HDLC over a TDM
Interface with a QUICC Engine™ UCC

by: Freescale Semiconductor, Inc

Freescale Semiconductor offers many devices with the
QUICC Engine™ technology, a high-performance,
multiprotocol processing block. A common use of the
QUICC Engine block isto establish an HDLC
communication path over a TDM interface, suichasaT1 or
E1 link. This application note describes the various
sub-blocks used in the QUICC Engine communications
engine for this application, discusses how the sub-blocks
interoperate with each other, describes how to initialize them
for the HDL C communication path, and provides a software
demonstration of HDLC mode viaa TDM interface using
on-chip loopback.

The examplesand demonstration softwarein thisapplication
note were developed and verified using the MPC8360E
devicein a MPCB8360E-RDK system. This note applies to
any MPC83xx or MPC85xx device with aQUICC Engine
block, although small differencesin device and system
configuration will require minor changes to the software.

To locate any published errata or documentation updates
issued after this note was released, please refer to the

Freescale website listed on the back cover of this document.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

Contents
Introduction

2. QUICC Engine Sub-blocks Needed for a Single Channel

b

>0 oo wm

of HDLC over TDM
QUICC Engine Control
QUICC Engine Baud Rate Generates and Clock
Routing
Timeslot Assigner Description/Configuration 10
UCC Description/Configuration
Conclusion
Revision History
Code Listing

freescale"

semiconductor

|
y

'
A

Introduction

1 Introduction

The Freescale QUICC Engine block is a high-performance multiprotocol processing block availablein
many microprocessor devices. Because of the many different protocols and interfaces that the QUICC
Engine block supports, it has a high degree of programmability. Depending on the protocol and interface
required for an application, the number of sub-blocks used and the amount of initialization required can
be significant. However, onceinitialized, the QUICC Engine block handles most of the protocol work,
freeing the CPU to handle higher level tasks.

QUICC Engine communication channels are commonly used as an HDLC controller using atime slot on
aTDM interfacesuchasaTl or E1line. Thefollowing subsections provide the basic information required
to configure a QUICC Engine block-enabled device for this application.

To demonstrate how an HDL C channel can be used over TDM on an MPC8360, a software demonstration
example accompanies this applications note. As later sections introduce the sub-blocks of the QUICC
Engine block, descriptions of how the example code configures and uses the sub-blocks are also provided.
The software itself is both included in Appendix A of this document and available as a Freescale
CodeWarrior project in an accompanying download.

1.1 Introduction to the MPC8360E

Figure 1 provides a block diagram of the MPC8360E. The MPCB8360E consists of three main functional
blocks: an €300c1 Power Architecture™ core, asysteminterface unit (SIU), and the QUICC Engine block.
The €300 core is the main CPU of the system and is responsible for running all user code. The
demonstration code provided in this application note runs on the e300 core. The system interface unit
provides the memory interfaces and system glue logic required to create a complete system on a chip.

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev. 0

2 Freescale Semiconductor

Introduction

Although a detailed understanding of both the e300 core and system interface unit are required for use of
the MPC8360, the focus of this applications note is on the QUICC Engine block.

Security Engine

System Interface Unit
(SIV)

A

Y

Memory Controllers
GPCM/UPM/SDRAM

A

e300c1 Core
32 KB 32 KB
I-Cache D-Cache
Classic G2 MMUs
FPU Mar?;gg?;ent
JTAG/COP Timers

32/64 DDR2 Interface Unit

32 DDR2 Interface Unit

QUICC Engine™ Block

Y N

A

Local Bus

Baud Rate
Generators

Accelerators

Interrupt Controller

Serial DMA

PCI Bridge

Parallel 1/10

Timers

Dual 32-bit RISC CP

48 KB Multiuser RAM

Bus Arbitration

48 KB Instruction RAM

DUART

MCC
UCCH1
ucc2
UCC3
ucc4

UCC5
uccCe
uccz
uccs
uSsSB
SPI1

Time Slot Ass

igner

SPI2

Dual 12C

4 Channel DMA

Interrupt Controller

Parallel 1/0

Protection & Configuration

A

A A

(

v

v v

System Reset

8 TDM Ports

8 MIl/
RMII/NMSI

2 GMII/
RGMII/TBI/RTBI

2 UTOPIA/POS-PHY
(MPHY 124 Ports)

Clock Synthesizer

<—>
DDRC1

>
DDRC2

e S
Local Bus

<>
PCI

Figure 1. MPC8360E Block Diagram

Note that other QUICC Engine block-based devices from Freescale have a similar architecture, with
different CPU cores and/or speed options, different system interface options, and different QUICC Engine
block performance and 1/0 options.

1.2

Review of TDM and HDLC

A time division multiplexed (TDM) busis commonly used in telecommunication systems. A T1 lineisa
type of TDM interface devel oped for digital transmission of voice between telephone switching officesin

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev. 0

Freescale Semiconductor

|
y

'
A

Introduction

North America; E1 lines are similar links used primarily outside of North America. The example codein
thisnoteisbasedonaTl line.

1 TDM Sync J_|

QUICC Engine
uccz ucct
TSAl«——> TDM
TDMTx | [[Slot 3] [Slot NJ |
TDMRx | [[Slot 3] [Slot NJ |
uccz ucct

Figure 2. Simple TDM Example

The physical interfaceto aT1 or E1 line is handled by a device called a framer, which handles data and
clock recovery from the physical line. Thisdevice presentsa TDM bus to the MPC8360E. This TDM bus
consists of afixed rate clock, two datalines (receive and transmit), and a fixed rate frame sync. With T1
and E1 lines, theframe sync isexactly 8 kHz. The period between frame syncsiscalled aframe. A T1line
isdesigned to carry 24 voice channels and one control channel. Each voice channel requires eight bits of
data every frame. The control channel uses a single bit per frame, and is often call aframing bit. Thus, a
T1line has 193 bits of data per frame (eight bits per channel x 24 channels + one control bit). Each
consecutive eight bits of the data line is considered one channel and is called atimeslot. The frame sync
indicates the start of the frame.

The data clock of aT1lineis 1.544 Mhz (193 bits per frame x 8 kHz).

Unlike Ethernet, clocks and data are always running on a TDM bus. There is no hardware signaling to
indicatewhen dataisvalid or not. Thisis desirable for avoice connection, asthe digitized voiceisflowing
at a constant rate. However, if a TDM channel isto be used for a data connection, a higher level control
mechanism must be used. The high level data link control, or HDLC, is a protocol commonly used on
TDM buses for data transmission (see Figure 3).

Opening Flag Address Control Information (Optional) CRC Closing Flag

8 Bits 16 Bits 8 Bits 8n Bits 16 Bits 8 Bits

Figure 3. HDLC Framing Structure

HDLC isan OSl layer 2 protocol first designed to run over timedots (or even sub-timeslots) of a TDM
link. While it can be and is used without a TDM link, this note discusses how to use it with a TDM link.
HDLC isdesigned for use with physical channels that continuoudly transmit data. It sends a specificidle
pattern when no data isready for transmission. When datais ready, it first sends a specific flag pattern to
signal valid data. Thisisfollowed by an address byte, a control byte, the data bytes, a CRC, and aclosing
flag. This sequence allows receivers to detect when alineisno longer idle, determine whether the datais
addressed to them, verify the data has not been damaged, and determine when the line has returned to an
idle state. The QUICC Engine block’s UCC handles all HDLC processing.

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev. 0

4 Freescale Semiconductor

QUICC Engine Sub-blocks Needed for a Single Channel of HDLC over TDM

InaT1 line, the control channel is sometimes managed directly by the framer device. When using such a
device, the TDM interface in the MPC8360E should be programmed to skip the framing bit. If the
application requires that the MPC8360E terminate the control channel, the TDM interface can be
programmed to route the framing bit to the appropriate resource inside the QUICC Engine block.

1.3 Required Documentation

At the time of thiswriting, the following documents were the most current MPC8360 documentation.
Please consult these for further details. For your convenience, the document order numbers are included
in parentheses. Please consult the Freescal e website for updated documents or errata.

Note that the information about the QUICC Engine bl ock in the separate QEIWRM manual supersedesthe
information in the MPC8360RM.

* MPC8360 PowerQUICC I Pro Integrated Communications Processor Family Reference Manual,
revision 2 (MPC8360ERM)

. UICC Engine™ Block Reference Manual with Protocol Interworking, revision 2 (QEIWRM
g

* MPCB8360E/MPC8358E Power QUICC Il Pro Processor Revision 2.x TBGA Slicon Hardware
Specifications, revision 2 (MPC8360EEC)

2 QUICC Engine Sub-blocks Needed for a Single Channel
of HDLC over TDM

Part of the complexity of using the QUICC Engine block stems from the many different sub-blocks
involved in aparticular application. However, thiscomplexity isprimarily limited to theinitialization steps
needed to setup a protocol. Once running, the QUICC Engine block handles much of the protocol
processing leaving the CPU to handle higher-level tasks.

The QUICC Engine block bundles together a microcoded communications processing block with the
necessary hardware to implement avariety of communication protocols. Within the QUICC Engine block,
the sub-blocks relevant to this note are the communications processing block, baud rate generators, time
dot assigner, and unified communication controllers (UCCs).

Note that this applications note is focused on terminating a single channel of HDL C traffic on asingle
UCC. If more channels are needed, multiple UCCs can be used. However, if the number of HDLC
channelsislarge, the QUICC Engine has amultichannel controller (M CC) designed to handle up to 256
channels of HDLC traffic. Refer to the QEIWRM for more details on the MCC. The sections of this note
describing the time slot assigner will be helpful to the MCC user.

The communications processing sub-block is the core of the QUICC Engine block. In the MPC8360E, it
consists of two RISC communication processors (CP). Other QUICC Engine devices use different
numbers of RISC coresto provide different levels of protocol processing performance. The RISC CPsrun
in real time using code from an on-chip ROM. e300 core software interacts with the CPs via shared
memory that appears in the core’s memory map. The CP sub-block is documented in the “ Configuration”
chapter of the QEIWRM. The complete MPC8360 memory map is documented in the “Memory Map”
chapter of the MPC8360RM.

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev. 0

Freescale Semiconductor 5

QUICC Engine Sub-blocks Needed for a Single Channel of HDLC over TDM

The QUICC Engine block on the MPC8360E has eight UCCs. A UCC isahardware block that is
controlled by the RISC CPs to implement one of many available protocols. In thisnote, aUCC is
configured to terminate a single HDLC channel. Each UCC has control structures in the shared memory.
The e300 software must set up and manage some of these structures and registersin order to configure the
UCC for the desired protocol. Each UCC has an independent hardware interface that can be internally
connected to the time slot assigner or directly to external pins. UCCs are documented in a variety of
chaptersin the QEIWRM reference manual. The “Unified Communication Controllers (UCCs)” chapter
provides common information for all UCC modes. The “UCC for Fast Protocols’ chapter documents the
common features when a UCC is used with afast protocol (such as HDLC). Each protocol hasits own
chapter.

The time slot assigner (TSA) on the MPC8360E provides eight TDM interfaces. Each interface has
independent set of pins. The hardware interface supports a broad range of TDM buses, including T1, E1,
T3, E3, PCM highways, and ISDN buses as well as user-defined buses. The TSA includes programmable
memory that is used to establish connections between timeslots on the TDM interfaces and the UCCs. The
time slot assigner and clock multiplexing are documented in the “ Serial Interface with Time-Slot
Assigner” chapter of the QEIWRM.

The baud rate generators (BRG) are sub-blocks within the QUICC Engine block that are used to generate
clocksfor avariety of uses. Each BRG uses either an internal clock or one of several clock input pinsasa
reference clock. The BRGs have ahighly programmable divider that can produce a wide range of output
clocksfromtheinput reference. The output of the BRGs can be used by many of the QUICC Engine blocks
including the UCCsand TSA.

In this example, two BRGs are used to generate clocks that are similar in frequency toaT1 line's clock
and frame sync. In areal system, these clocks would be provided by the framer or other external hardware.
The BRGs are used in this note to allow a self-contained example to be demonstrated. The BRGs are
documented in the “ QUICC Engine Multiplexing and Timers" chapter of the QEIWRM.

2.1 Summary of QUICC Engine Sub-Blocks and Documentation

The following list provides a summary of the chapters in the MPC8360E Reference Manual, Rev 2 and
the QEIWRM, Rev 2 that are relevant to this application note:

» MPC8360RM Chapter 2: Memory Map—provides a complete listing of internal resources and
their associated locations in memory.

* QEIWRM Chapter 4: QUICC Engine Block Control—discusses how to initialize the
communication processors in the QUICC Engine.

* QEIWRM Chapter 5: QUICC Engine Multiplexing and Timers—discusses the baud rate
generators, selection of UCC connections (through the TDM bus or direct) and connects clocksto
TDM interfaces.

* QEIWRM Chapter 6: Unified Communication Controllers (UCCs)—discusses common features
of the UCCsfor al modes and protocols.

* QEIWRM Chapter 7: UCC for Fast Protocols—discusses features of the UCC when used for fast
protocols, such asHDLC.

* QEIWRM Chapter 14: HDLC Controller—discusses features of the UCC when used for HDLC.

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev. 0

6 Freescale Semiconductor

QUICC Engine Control

* QEIWRM Chapter 21: Serial Interface with Time-Slot A ssigner—discusses the operation of the
TSA and TDM hardware interface options.

3 QUICC Engine Control

The QUICC Engine RISC processors can be monitored and controlled by the e300 CPU. Thisis
accomplished through the QUICC Engine command register (CECR). Thisregister allows the CPU to
issue commands to the RISC processors and monitor for completion of commands. Some of the common
commands allow the CPU to initialize, start, or stop an individual UCC’s receivers and transmitters. A
reset bit allows the CPU to reset the entire QUICC Engine block.

In the example code, the CECR isused after all QUICC Engine and UCC data structures are set up. Then,
an “initialize RX & TX parameters” command is issued to the UCC. This command causes the QUICC
Engineto set up all of itsinternal data structuresbased on the values set up by the user. After thiscommand
completes, the UCC is ready for work.

The CECR has many uses besides initialization as shown in this example. The available commands differ
depending on the protocol used. Some common commands are “ graceful stop transmit,” which is used
when atransmitter is to shut down at the end of the current frame; “stop transmit,” which aborts
transmission as soon as the FIFOs are empty; and “restart transmission,” which resumes data transmission
at the point previously stopped. These commandsallow individual UCCsto be stopped and started without
affecting other UCCs or going through a complete re-initialization sequence.

Other commands provide support for handling error conditions and additional protocol controls. The
“Configuration” chapter of the QEIWRM provides the full list of commands.

The QUICC Engine block contains a block of memory called the multiuser RAM, or MURAM. The
MURAM isvisibleto both the QUICC Engine RI SC processors and the €300 core. Each UCC has ablock
inthe MURAM called the parameter RAM. Thisblock isused for avariety of general and protocol specific
settings. In certain modes (including HDL C), the UCC uses another block of MURAM for avirtua FIFO.
Buffer descriptors, which are used to control receive and transmit data, can be located in MURAM or in
main memory.

Each UCC has a et of registers within the QUICC Engine block’s memory map. These registers provide
control of mode selections, interrupts, status, and more. These registers are not part of the MURAM space.

4 QUICC Engine Baud Rate Generates and Clock Routing

The QUICC Engine block providesagreat deal of flexibility in clock sourcesand clock users. Clocks used
by the UCCs and TSA can be provided externally on avariety of clock pinsor produced internally by the
baud rate generators. In the MPC8360, there are 16 baud rate generators and 24 external clock inputs. A

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev. 0

Freescale Semiconductor 7

http://e-www.motorola.com/webapp/sps/library/docu_categories_help.jsp

QUICC Engine Baud Rate Generates and Clock Routing

“bank of clocks’ logic block provides the multiplexing options between the various clock sources and
clock users, as shown in Figure 4.

BRG1 BRG2 (X X BRG16

>»BRGO1
>BRGO2
°
°
.
Rx[< e
UCC1 [—_ >BRGO16
TX[< Y Y Y
Rx
UCC2 [—
TX<—|—
— CLK1
Rx|< ~<— CLK2
UCC3 == «— CLK3
< <— CLK4
.
ucc4 Lk :
Tx[< Bank of Clock PY
Selection Logic :
UCC5 Rxi= .
— °
Tx|= (Partially filled cross-switch logic .
programmed in the CMX registers.)
= «— CLK23
X[€ lc——
uccs I CLK24
Tx[<
Rx<
uccr Tl <«—UCC1 GRX CLK
<«—UCC2 GRX CLK
Rx<
UCC8—_ «—UCC1 TBI RX CLK1
Tx[< <«—UCC2 TBI RX CLK1
IR|Rx|< <«— RTC CLK
UPC1
Tx[<
UPC2 IR =
Tx[<
uUSB Axt=
TX[<
Time stamps 1,2 | \ V} Y ¢
ce timerand RTC| Rx] Tx °e Rx [Tx
clocks TDMA1 TDMH1

Figure 4. Bank of Clocks

In atypical TDM application, an external source would provide both the data clock and the frame sync.
The bank-of-clockslogic is used to connect the appropriate clock pinsto the TDM logic. For thisexample,

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev. 0

8 Freescale Semiconductor

QUICC Engine Baud Rate Generates and Clock Routing

two baud rate generators are used to produce a data clock and aframe sync in order to avoid requiring an
external clock source. The bank-of-clocks logic makesthis easy by routing the two baud rate generators
used to the TDM interface.

The baud rate generators work by dividing a source clock to a user programmable frequency. The source
clock can be one of the external clock pins or the internal QUICC Engine clock. This choice of clock
sources for the 16 BRGs provides significant flexibility in clock generation.

In this example, the QUICC Engine clock is used as the input for the two of the BRGs. Thisclock is
referred to asthe CE_CLK in MPC8360 Reference manua and the BRGCLK in the QEIWRM.
CE_CLK/BRGCLK isgenerated by the QUICC Engine PLL, which is clocked by the PCI bus clock or
CLKIN depending on system configuration. On the MPC8360-RDK, CE_CLK/BRGCLK is 250 MHz.

Figure 5 shows a baud-rate generator block diagram.

EXTC DIV 16 CD[0-11]
Y Y Y

CLK Pin x —>

Clock ivi Prescaler BRGOn Clock ,
CLK Piny —>»| Source > D1|V|de1 by > 12-Bit Counter > To Pin and/or

MUX or 16 1-4 096 Bank of Clocks
BRGCLK —> ’

A
ATB
Y
Autobaud
RXDn Control
BRGn

Figure 5. Baud-Rate Generator (BRG) Block Diagram

The baud rate generators consist of a pre-divider followed by a 12 bit divider. The predivider can divide
the clock by one (i.e. no change) or 16. Thedivider'srangeisfromoneto 4,096. (Notethat programming
the divider register to zero resultsin divide by one in the hardware.) Using both gives a division range of
one to 65,536 (16 x 4,096).
In this example, the two BRGs are setup as follows:
« BRG3
— Divide by 16 turned off (BRGC3[DIV6] bit = 0)
— Counter = 161 (BRGC[CD] = 0xAO0).
— BRG3 output = 250 MHz + (1 x 161) = 1.552 MHz.
« BRGI11
— Divide by 16 turned on (BRGC3[DIV 6] bit = 1)

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev. 0

Freescale Semiconductor 9

|
y

'
A

Timeslot Assigner Description/Configuration

— Counter = 1,953 (BRGC[CD] = 0x7A0).
— BRG11 output = 250 MHz + (16 x 1,953) = 8.0005 kHz.

These clock frequencies are close to, but not exactly equal to, therates used by a T1 line, which are 1.544
MHz for the data clock and 8.000 kHz for the frame sync. Theratio of data clock to frame sync is exactly
193 onaT1line. Inthisexample, the data clock is slightly faster with aratio of 194.09. Thisallowsfor a
close simulation of aT1 clock.

The QUICC Engine routing logic alows each UCC to be connected to its own set of independent pins or
to aninternal TDM bus. The independent mode is used for interfaces such as a UART or a Ethernet PHY
port and is called non-multiplexed mode. The connection to the TDM internal bus is called multiplexed
mode. The CMXUCRX registers documented in the “Multiplexing and Timers” chapter of the QEIWRM
are used to make the selection between multiplexed and non-multiplexed mode. In this example,
multiplexed mode is used.

A complete discussion of the UCC multiplexing, bank-of-clocks logic, and baud rate generators can be
found in the “Multiplexing and Timers’ chapter of the QEIWRM.

5 Timeslot Assigner Description/Configuration

Thetime slot assigner (TSA) is an interesting block that is often misunderstood. The source of this
misunderstanding is the assumption that the TSA isan intelligent block with processing capability. It is
not. The sole purpose of the TSA isto route clocks and data between the MPC8360’seight TDM interfaces
and the eight UCCs and two M CCs (multichannel controllers). It doesthis on aclock-by-clock basisbased
on the values programmed into the TSA'sRAM.

The TSA does have alarge degree of flexibility and anumber of options, which can seem likeintelligence.
However, the TSA ismore accurately thought of as a simple state machine clocked by the TDM frame
sync and TDM clock. State transitions occur at fixed times as programmed by the user in the TSA RAM.
These fixed time periods define the time slots used by the system. Other options allow for selections of
clock edges, delays between frame syncs and clocks, and more.

5.1 TSA RAM

The TSA RAM isthe heart of the block. Each entry in the TSA RAM represents atime dlice of the TDM
bus. The entry itself defines how many clock periods it represents; this can vary from one to sixty-four. A
frame sync causes the TSA to reset to the first entry in the RAM. The TSA steps through the entriesin
sequence until another frame sync occurs or an entry is programmed as “last.” There are no looping or
repeat capabilitiesin the TSA.

Eachentry inthe TSA RAM contains achannel selection field. Thisfield tellsthe TSA which UCC should
be connected to the TDM bus during the time dlice defined by the RAM entry. A “null” selection can also
be used, which allows unused time dots to skipped.

The RAM entry can define from one to eight bits with single clock resolution, or one to eight bytes with
8-clock resolution. Consecutive RAM words can route the same UCC to allow for awide variety of
timedot sizes. For example, a15 bit timeslot could be created by a one byte RAM word followed by a
seven bit RAM word.

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev. 0

10 Freescale Semiconductor

Timeslot Assigner Description/Configuration

The TSA RAM has separate banks for receive and transmit. This allows different routing between receive
and transmit. It also means that in system with identical receive and transmit routing, both banks must be
programmed the same.

The TSA RAM can aso be further divided into active and shadow banks, which allows dynamic changes
to TSA RAM programming. When used, the TSA hardware switches the active and shadow banks on a
frame sync for a seamless switchover. Thismode is not used in this example.

The TSA block isresponsible for the TDM hardware interfaces. As mentioned above, this includes edge
and level selections and frame sync delays. Another important function supported by the TSA isdiagnostic
loopback. L oopback allows the TDM transmit pin to be connected to the receive pin. Thisis programmed
in SDMx bits of the “SI MODE register” of the appropriate TDM interface. This mode is independent of
the loopback mode in the UCC, and is the mode closest to the pins.

Thisexample uses TDM loopback to demonstrate acommunication path from a UCC transmitter, through
the TDM transmit times ot assignment, back through the TDM receive timeslot assignment, and then
finally back to the UCC receiver.

The TSA RAM hasalinesizeof 32 bits. TSA entriesare 16 bits wide, thusthe RAM holds two entries per
line. In the QEIWRM, TSA memory maps are shown as 32-bits wide with two 16 bit entries per line. The
reader is advised to pay attention to this nomenclature to avoid confusion.

A TSA RAM entry has the following fields, as shown in Figure 6:

Access: Read/Write

0 1 2 3 4 5 6 7 ‘ 10 11 13 14 15
R
MCC |[SWTR SSEL | SSEL | SSEL | SSEL SGS CSEL CNT BYT | LST
W 1 2 3 4
Reset All zeros

Figure 6. S| RAM Entry for UCC

Thefields are as follows:

MCC: 1-bit that defines if an MCC is used. Set to 0 (no MCC) for this example.

SWTR: 1-bit to switch Tx and Rx lines for special hardware. Set to O (normal) for this
example.

SSEL [1-4]: Four bits to control external strobes. Often used with custom hardware. All are 0
(no strobes) for this example.

SGS: 1 bit to select which strobe group (14 or 7-8) SSELX refer to. Set to 0. Not used
for this example.

CSEL: 4 bitsthat select the UCC connected to thistimeslot. Set to either 0000b (NULL)
or 0100b (UCCS) in this example.

CNT[2-0]: 3 bits that specify the length of thistimesot in bits or bytes. Set to 1 byte in the
example.

BYT: 1 bit that specifiesif CNT isinbitsor BYTEs. Setto 1 (BYTE) in this example.

LST: 1 bit that identifiesthelast entry inthe RAM table. Inthisexample, al but the last

entry areset to 0. The last entry isset to 1.

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev. 0

Freescale Semiconductor 11

Timeslot Assigner Description/Configuration

The TSA entries for both Rx and Tx RAM are identical in this example. They are programmed to create
24 one-byte entries. Thisissimilar toa T1 line. The entries used in this example are as shown in Table 1:

Table 1. Example Entries

Entry Number

CSEL

CNT

BYT

-
(0]
|

0

0

1

—_

0100b (UCCB8)

1

0

Ol N|Oo|lo|] W| DN

-
o

—_
—_

-
N

-
w

—_
N

-
(¢)]

-
(o]

-
~

-
o]

-
©

N
o

\o]
e

I\
\V]

1

1

o|lo|o|lo|lo|]o|]o|lojlo|o|l]o|lo|j]o|]o|l]o|lo|]o|o|lo|lo|]o|o| oo

23

o|lo|o|lo|lo|]ol]o|lo|lo|]o|l]o|lo|j]o|l]o|lo|lo|]o|jl]o|o| o] oo

1

1

—_

Asno time slots after the second dot are used in this example, it could work with the second entry having
itsL ST bit set. However, if another time slot were to be used, additional entries would need to be added.
This, too, could be done differently, by modifying the CNT field in thefirst entry to skip unused timesl ots.
However, this example allows easy changes on atimesl ot-by-timesl ot basis without having to change the
overall TSA RAM setup. If an application requires the ability of alowing configurable timesl ot
programming, the above approach simplifies software management of the TSA RAM.

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev. 0

12

Freescale Semiconductor

Timeslot Assigner Description/Configuration

5.2 TSA Mode Register Settings

The TSA has several registersthat must be understood and programmed for proper operation. Of particul ar
importance is the mode register. Each of the eight TDM interfaces has an independent mode register, as
shown in Figure 7.

Access: Read/Write

0 3 4 5 6 7 8 9 10 11 12 13 14 15
R
W SAD SDM RFSD — | CRT | SL CE FE GM TFSD
Reset All zeros

Figure 7. SI Mode Register (SIxMR)

The SIXMR registers are used to assign a portion of the TSA RAM to each TDM interface, control
diagnostic modes, set clock edges and levels and frame sync delays. This example usesthe TDM C
interface. The settings used for SICMR are asfollows:

SAD 0 = Use entries 0-31 of the TSA RAM. If other TDM interfaces are used, this
must be different than the other interfaces.
SDM 11b = Loopback enabled. TDMC’'s Tx signal isinternally connected to its Rx

signal. The external Tx pinisinactive. Thisis used to provide a stand alone
example. In area application, these bits would be set to 00b.

RFSD 00b = No delay from frame sync to first Rx bit. Some external hardware may
require adelay between frame sync and thefirst bit of the frame, thisfield allows
for delays of up to three clocks.

CRT 1 = common sync and clock for Rx and Tx. If an application has separate clocks
and frame syncs for receive and transmit, this bit must be cleared.

SL 0 = active high sync. This bit selects the signal level for the frame sync. Set to
match external hardware.

CE 1=Tx onfailing edge, Rx onrising edge. This bit selects the clock edges used to

transmit and receive. Most external hardware requiresthis setting. If an IDL link
is used, a setting of zero should be used.

FE 1 = frame sync on rising edge. This bit selects the clock edges used for the frame
sync. Most external hardwarerequiresthissetting. If an IDL link isused, asetting
of zero should be used.

GM 0 = no grant mode used. This bit is set for IDL mode. Grant mode is not used in
most TDM applications.

TFSD 00b = No delay from frame sync to first Tx bit. Some external hardware may

require adelay between frame sync and thefirst bit of the frame, thisfield allows
for delays of up to three clocks.

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev. 0

Freescale Semiconductor 13

|
y

'
A

UCC Description/Configuration

6 UCC Description/Configuration

With the TSA and its clock sources setup, the last step isto configure the UCC for HDLC mode. UCCs
have many registers and data structures that must be configured. Because of the flexibility of the UCCs,
these settings are documented across many chapters in the reference manual. The appropriate chapters
depend on the protocol used.

UCCsrequire severa data structures for operation. They are as follows:
» UCC registers located within the QUICC Engine memory map.
* UCC Parameter RAM located within MURAM.
» Virtual FIFOs (fast mode only) located within MURAM
* Rxand Tx buffer descriptors located within MURAM or main memory.
* Rxand Tx bufferslocated in main memory.

6.1 Common UCC Settings

The * Unified Communications Controllers (UCCs)” chapter in the QEIWRM iscommon to all protocols.
It provides an overview of UCC operation, documents registers common to al modes, provides memory
offsets for each UCC’s memory block, and describes interrupt operation. This chapter is required reading
for any use of the UCC.

Of particular note in this chapter isthe “ General UCC extended mode register,” section or GUEMR. UCC
protocolsare divided into two groups: fast and slow. A UART isasow protocol while Ethernetand HDLC
are fast protocols. The overview section of this chapter provides the complete list of slow and fast
protocols. Each UCC's GUEMR is used to select between fast and slow protocols. Furthermore, this
selection is made separately for Rx and Tx directions, although in most cases the same protocol isrun on
both directions.

In this example, GUEMR of UCCS8 has both the URMODE and UTMODE bits set, which selects afast
protocol. Note that this does not select the actual protocol.

6.2 Fast Mode UCC Settings

Once the selection of afast mode protocol is made, the “UCC for Fast Protocols’ chapter should be
reviewed. This chapter documents UCC registers when a fast protocol is used. While all registers should
be reviewed, this note will discuss one register in particular and the virtual FIFOs.

In fast mode, UCCs implement virtual FIFOsin MURAM. The user must select an available block of
MURAM for the FIFOs and set various size and threshold parameters. This example shows how the
VFIFOs should be set for HDL C. For other protocols, section 7.5 of the “UCC for Fast Protocols’ chapter
in the QEIWRM provides the proper settings.

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev. 0

14 Freescale Semiconductor

UCC Description/Configuration

The General UCC moderegister (GUMR, not to be confused with GUEMR), shown in Figure 8, provides
detailed control over the UCC's hardware interface. Thisinterface is either the external pins
(non-multiplexed mode) or the TSA (multiplexed mode). In this example, the internal TDM bus is used.

Access: Read/Write

0 1 2 3 4 5 6 7 8 9 ‘ 13 14 15
Vl\ql DIAG TCl |TRX| TTX CDP CTSP CDS |CTSS — TXSY |RSYN
Reset All zeros
16 17 18 19 20 21 22 23 24 25 26 27 | 28 31
Vl\ql SYNL |RTSM RENC REVD TENC TCRC |ENR|ENT MODE
Reset All zeros

Figure 8. General UCC Mode Register (Fast Protocols)

Fast mode GUMR (documented in section 27.4.2.1) is set in this example as follows:

DIAG
TCI:
TRX

TTX

CDP

CTSP
CDS
CTSS
TXSY:
RSYN
SYNL
RTSM
RENC
REVD
TENC
TCRC
ENR

ENT

00b = Normal mode. UCC loopback could be used here for diagnostic purposes.
0 =normal. Thisbit must be cleared when the TSA is used.

0 =normal. When set, the receiver runs in transparent mode while the transmitter
runsin the programmed protocol. Thisbit isset for unique applications or testing.

0 =normal. When set, the transmitter runs in transparent mode while the receiver
runsin the programmed protocol. Thisbit isset for unique applications or testing.

0=normal. Thisbit must be cleared when the UCC is used with the TSA and
HDLC.

1 = pulse mode. This bit must be set when the TSA is used.

1 = CD synchronous with data. This bit must be set when the TSA is used.
1 = CTS synchronous with data. This bit must be set when the TSA is used.
0 = no synchronization between Rx and Tx.

0 = normal mode. Thisfield applies only in totally transparent mode.

00b = external sync. Thisfield appliesonly in totally transparent mode.

1 = send flags/syncs between frames.

00b = Receiver uses NRZ decoding. Typical setting for HDLC.
0=normal. Thisfield applies only in totally transparent mode.

00b = Transmitter decoding. Typical setting for HDLC.

00b = 16 bit CRC. Thisfield applies only in totally transparent mode.

0 = Rx disabled/1 = Rx enabled. During initialization, thisbit is cleared. Itisset
when initialization is complete.

0= Tx disabled/1 = Tx enabled. During initialization, thisbit is cleared. Itis set
when initialization is complete.

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev. 0

Freescale Semiconductor

15

Description of Example Code

MODE 0000b = HDLC. HDLC mode is selected for this UCC.

There are many other UCC registers and parameter RAM entries that must be set up for proper operation.
The example code provides details on how they are set.

6.3 UCC Buffers and Buffer Descriptors

All UCCs, regardiess of protocol, use buffer descriptors (BDs) to manage data buffers. An overview of
buffer descriptorsis provided in chapter 24, “UCC as Slow Communications Controllers.” Although
HDLC isafast protocol, the overview in thischapter ishelpful for understanding how BDswork. The key
difference for afast protocol isthat BDs do not have to residein MURAM. Section 14.2.2 of the“HDLC
Controller” chapter in the QEIWRM provides the detail s about buffer descriptors as used by an UCC in
HDLC mode.

UCCsoperate with a chain of receive and transmit BDs. A chain can be as small asone entry. For HDLC,
the maximum sizeis limited only by available memory. Each BD contains a pointer to the buffer used to
hold transmit or receive data. A status bit in the BD determines whether the UCC can use the BD to read
or write data or if the e300 core controls the data. WWhen reception or transmission is complete, the UCC
changes this bit to indicate €300 core control.

Thelast entry in thechain of BDsisindicated by a“last” bit in the statusfield. Thistellsthe UCCto return
to the first BD in the chain. A field in the parameter RAM specifies the starting address of the buffer
descriptor chain.

A transmit BD has a status bit that indicates the associated buffer should be transmitted continuously. In
this case, the UCC does not clear the “ready” status bit in the BD after transmission is complete. I nstead,
it restarts transmission using the same BD. This causes the datain the associated buffer to be continuously
transmitted. If the UCC is set up to create aframe on every buffer, each transmission will appear as one

frame. This example utilizes this setup to create a continuous stream of transmit frames.

To smplify thisexample, asinglereceive BD and receive buffer are used. A singletransmit BD and single
transmit buffer are used aswell. Both BDs are alocated in MURAM, while the buffersreside in main
memory.

7 Description of Example Code

The accompanying software example shows how to configure an MCP8360 for HDL C communication
over aTDM link. The demonstration uses the TSA's diagnostic loopback feature to operate without any
externa hardware. The software provides the details needed for initialization and operation of an HDLC
channel on the MPC8360.

This demonstration does not implement functions that would most likely be used in real application. In
particular, the following functions would need to be added:

* Interrupt generation and handling

» Multiple buffer descriptors

» Data buffer management

» Error management and recovery

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev. 0

16 Freescale Semiconductor

Conclusion

The demonstration runs on the M PC8360E-RDK, which isadevelopment board availablefrom Freescale.
The only connections needed to the board are a JTAG debugger (the Freescale USBTAP was used for this
example), an RS-232 serial port, and power. The MPC8360E-RDK hastwo serial ports; thisexample uses
the upper port. If connecting to a PC, a null-modem cable must be used. The serial port is configured to
run at 57600 bps, eight bits, no parity, one stop bit (57600-8N1).

When run, the software sets up UCCS8 to continuoudly transmit an HDLC frame with a text message
through atimeslot on TDMC. It then monitors UCCS for receive data and displays this data on the serial
port. If left to run with no breakpoints, the text message will repeat forever on the serial port. Using a
debugger, a breakpoint set at the printf function call allows the user to observe each receive event.

The software is built using Freescale's CodeWarrior for Power Architecture, version 8.8. CodeWarrior
includes a template for use on the MPC8360E-RDK. The template is accessed by creating a new project
in CodeWarrior and using the “New Project Wizard.” The template includes the debugger scripts that
initialize the system memory and simple startup software. The code used in this example replaces the
“main.c” file used in the template created by the new project wizard.

8 Conclusion

The MPC8360 and other QUICC Engine block-based devices from Freescale offer awide variety of
protocol processing and connectivity options. The QUICC Engine block includes many different
functional sub-blocksto provide thisflexibility. Understanding how these sub-blocks interact and how to
use each of these sub-blocks to meet applications’ requirements will speed development. Although this
note focused on the use of the MPCB8360 for the specific task of HDLC over a TDM line, the concepts
covered here are applicable to many other applications and protocols.

9 Revision History

Table 2 provides arevision history for this application note.

Table 2. Document Revision History

Rev. _
Number Date Substantive Change(s)
0 12/2009 Initial Public Release

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev. 0

Freescale Semiconductor 17

Code Listing

Appendix A Code Listing

/**/

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Applications Note AN4026 Example Code

This file contains an example of how to setup an UCC in the MPC8360 to
operate in HDLC mode using the Time Slot Assigner (TSA). This

code has been written to run on the MPC8360E-RDK board. This code was
developed starting with the MPC8360E-RDK project wizard available in
CodeWarrior for Power Architecture. This code assumes the board has
been configured using the initialization file associated with the default

CodeWarrior project.

This demo programs the UCC for HDLC mode through the TSA, and sets up the
TSA to operate similar to a Tl line. The TSA is configured in loopback
mode. The code then shows how a transmit buffer is setup and sent. As

the TSA is in loopback, the receive process is demonstrated as well.

To avoid dependence on an external clock for the simulated Tl interface,
the MPC8360's baud rate generators are used to produce a pseudo frame

sync and a clock. On the MPC8360-RDK, the QUICC Engine (QE) is clocked

at 250 MHz. One baud rate generator (BRG) is set to divide by 161,
yielding a 1.552 MHz clock which is used as the data clock. Another BRG
uses a divider of 31,248 resulting in a 8.0005 kHz clock for use as a frame
sync. Even though these clocks are not exactly Tl rates, they are close
enough that they demonstrate the behavior of the system. If available,

external clocks could be used.

Note that references to specific sections of the "QUICC Engine Block
Reference Manual with Protocol Interworking" (QEIWRM) revision 2, are

included in the comments. They appear as "RM section X.Y.Z".

/**/

#include <stdio.h>

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev. 0

18

Freescale Semiconductor

Code Listing

#include <string.h>

// The following defines establish the memory location of several key

// blocks inside the MPC8360.

// The IMMR setting is the base address of all internal chip memory.

// IMMR is set by hardware at reset, and can be changed by software.

// This define must be set to the same value as the hardware or initialization
// sets. In the case of the MPC8360E-RDK, CodeWarrior and the board set
// IMMR to O0xE0000000.

// If the hardware settings or the init file are changed, this define must
// be updated manually.

#define IMMR (0xE0000000)

// The following defines are offsets from IMMR. The do not change. They
// can be verified by reviewing the chapter 3 of the MPC8360E

// reference manual.

#define QEBASE (IMMR + 0x00100000)

#define MURAMBASE (QEBASE + 0x00010000)

#define UCC8_ PRAM (MURAMBASE + 0x8300)

#define UCC8_BASE (QEBASE + 0x3600)

//
//

This defines the size of a single buffer, in bytes. For this demo,

256 bytes is sufficient.

#define BUF_SIZE 256

// The following typedefs to create simple definitions for 8 bit, 16 bit,

// and 32 bit unsigned gquantities.

typedef unsigned char UBYTE;

typedef unsigned short UWORD ;

typedef unsigned int ULONG ;

// This typedef defines the memory structure used by a buffer descriptor. This

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev.0

Freescale Semiconductor 19

Code Listing

// definition matches the format used by the QUICC Engine.
typedef struct
{
UBYTE cntrl;
UBYTE stat;
UWORD len;
char* buf ptr;
} bd_t;
// allocate space in main memory for the transmit and receive buffers.

char g_txbuf [BUF_SIZE];

char g_rxbuf [BUF_SIZE];

// Define offsets in MURAM for TX and RX buffer descriptors.
#define RX BD_OFFSET 0x0000

#define TX BD OFFSET 0x0100

// Define offsets in MURAM for VFIFOs.

#define UCC8 RX_VFIFO 0%001200

#define UCC8_TX VFIFO 0%001800

// Define offsets in MURAM for RX & TX internal data pointers.
#define UCC8_RIPTR 0x1000

#define UCC8_TIPTR 0x1a00

/**/

//
//
//
//
//
//
!/
!/

function: init_brg
parameters: none
return value: none
assumptions:
QE clock is 250 MHz.
The IMMR define matches the value loaded into the real IMMR.
hardware effects:

BRG3 enabled to produce a 1.552 MHz clock.

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev.0

20

Freescale Semiconductor

// BRG11l enabled to produce a 8.0005 kHz clock.

!/

// Description:

// This function initializes two baud rate generators in the QE to provided

// simulated data clock and frame sync for the TSA.

/**/

void init_brg ();

void init_brg ()

{
/*
//
//
//
//
//
//

Set BRGC3 to 1.552 MHz (BRGCLK/161). RM section 5.7 */
RST = 0
EN = 1

EXTC = b00, BRGCLK

ATB = 0
CD = 0xA0 (161 - 1)
DIV16 = 0

* (ULONG *) (QEBASE + 0x0648) = 0x00010140;

/*
/*
//
//
!/
!/
//
!/

Set BRGC1l1l to 8.0005 kHz (BRGCLK/31,248) RM section 5.7 */
31,248 = 16 * 1,953 */

RST = 0

EN = 1

EXTC = b00, BRGCLK

ATB = 0

CD = 0x7A0 (1,943 - 1)

DIV1ie =1

* (ULONG *) (QEBASE + 0x0668) = 0x00010F41;

/**/

// function:

init_tsa

// parameters: none

// return value: none

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev.0

Code Listing

Freescale Semiconductor

21

PR 4

Code Listing

// assumptions:

// The IMMR define matches the value loaded into the real IMMR.

// hardware effects:

// Interface TDMC is setup for TDM operation using TSA entries 0-31.

// The TSA's SI RAM is setup with 24 eight bit time slots for both receive

// and transmit.

// The first time slot is connected to UCC8 for both receive and transmit.
// TDMC is connected to BRG3 for the data clock and BRG1ll for frame sync.
//

// Description:

// This routine initializes the time slot assigner (TSA) to operate interface
// TDMC with 24, 8 bit channels. The first channel is connected to UCC8 for

// receive and transmit.

//

/**/
void init_tsa ();
void init_tsa ()

int cntr;

UWORD *ptr;

/* setup SI RX RAM with 24 1-byte size time slots. RM section 21.6.1 */

ptr = (UWORD *) (QEBASE + 0x1000) ;

for (cntr = 0; cntr < 24; cntr++)
{
// 1 byte unused timelost. No strobes.
// MCC=0, SWTR=0, SSEL[1:4]=0, SGS=0, CSEL=0, CNT=0, BYT=1, LST=0

ptr[cntr] = 0x0002;

// Route the second timeslot to UCC8 for RX.
// CSEL for entry 0 = b0100

ptr[l] |= 0x0080;

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev.0

22 Freescale Semiconductor

Code Listing

// Set the last bit on timeslot 24

ptr[23] |= 0x0001;

/* setup SI TX RAM with 24 byte size time slots*/

ptr = (UWORD *) (QEBASE + 0x1400) ;
for (cntr = 0; cntr < 24; cntr++)
{

// 1 byte unused timelost. No strobes.
// MCC=0, SWTR=0, SSEL[1:4]=0, SGS=0, CSEL=0, CNT=0, BYT=1, LST=0

ptr[cntr] = 0x0002;

// Route the second timeslot to UCC8 for TX.
// CSEL for entry 0 = b0100

ptr[l] |= 0x0082;

/* Set the last bit on timeslot 24 */

ptr[23] |= 0x0001;

/* setup SI mode register for TDM C. RM section 21.6.4 */
// SAD = 0, use entries 0-31.

// SDM = bll, internal loopback.

// RFSD = b00, No delay between sync and data.

// CRT = 1, common RX/TX clock & sync

// SL

0, sync is active high.
// CE = 1, TX on falling edge, RX on rising edge.

// FE

1, sample sync on rising edge.
// GM = 0, no grant mode.
// TFSD = b00, No delay between sync and data.

* (UNORD *) (QEBASE + 0x0704) = 0x0C58;

/* setup clocks in QE mux, CMXSI1CRL. RM Section 5.5.2 */

// RTC1CS = b001l, TDMC RX clock is BRG3

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev.0

Freescale Semiconductor 23

PR 4

Code Listing

// TTC1CS = b001l, TDMC TX clock is BRG3

* (ULONG *) (QEBASE + 0x0404) = 0x00100010;

/* setup syncs in QE mux, CMXSI1SYR. RM section 5.5.4 */

// RTC1SS

b10, TDMC RX sync is BRG11

// TTC1SS

b10, TDMC TX sync is BRG11l

* (ULONG *) (QEBASE + 0x040C) = 0x08000800;

/**/

// function: enable tdm c
// parameters: none.
// return value: none.
// assumptions:
// The IMMR define matches the value loaded into the real IMMR.
// The TSA has been initialized and the proper clock sources setup.
// hardware effects:
// TDMC is enabled.
// Description:
// This routine turns on the TDMC interface. It assumes the system has
// been configured for proper TDMC operation.
[k ko ko ok ko ko Kok ok ok kK ok ok kK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Kok ok ok ok ko Kok Kk Kk Kk ko ko kK k kK ko k
void enable_tdm c ();
void enable tdm c ()
{
/* Set ENC bit in SIGLMRH. RM section 21.6.2 */

* (UBYTE *) (QEBASE + 0x0708) |= 0x04;

/**/

// function: disable tdm c
// parameters: none.

// return value: none.

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev.0

24 Freescale Semiconductor

// assumptions:
// The IMMR define matches the value loaded into the real IMMR.
// hardware effects:
// TDMC is disabled.
// Description:
// This routine turns off the TDMC interface.
[k ok ko ko ok Kk ok ok Kk ok ok Kk ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K ok ok Kk ok ok Kk ok ok ok ok ok Kk ok kK ok ok ok ok Kk ok ok Kk ok ok k ok /
void disable_tdm c () ;
void disable_tdm c ()
{
/* Clear ENC bit in SIGLMRH. RM section 21.6.2 */

* (UBYTE *) (QEBASE + 0x0708) &= ~(0x04);

/**/
// function: init ucc8_hdlc pram

// parameters: none.

// return value: none.

// assumptions:

// The IMMR define matches the value loaded into the real IMMR.

// hardware effects:

// UCC8's PRAM is loaded with values appropriate for HDLC operation.

// Description:

// This routine initializes the parameter RAM (PRAM) for UCC8. It is

// configured with the values for HDLC mode.
/**/
void init_ucc8_hdlc_pram () ;

void init_ucc8_hdlc_pram ()

{

int i; // Loop counter

// first, clear 256 bytes of UCC8 PRAM. RM section 14.2.2.1
for (i = 0; 1 < 0x100; i++)

{

((UBYTE *) (UCC8_PRAM)) [i] = 0;

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev.0

Code Listing

Freescale Semiconductor

25

PR 4

Code Listing

// Set RIPTR & TIPTR to point to MURAM as defined by the programmer.

* (UWORD *) (UCC8_PRAM + 0x00)

* (UWORD *) (UCC8_PRAM + 0x02)

UCC8 RIPTR;

UCC8_TIPTR;

// Set MRBLR to the size of the RX and TX buffers.

* (UWORD *) (UCC8_PRAM + 0x06)

// Set RBASE and TBASE to point to RX and TX BDs in MURAM

* (ULONG *) (UCC8_PRAM + 0x0C)

* (ULONG *) (UCC8_PRAM + 0x1C)

// Set RSTATE & TSTATE. The

// and TBMR. All other bits

= BUF_SIZE;

MURAMBASE + RX BD OFFSET;

MURAMBASE + TX_ BD OFFSET;

high 8 bits of these registers are RBMR

must be cleared

// RBMR and TBMR are set as follows:

// GBL = 0, snooping disabled (should be set when cache is enabled).

// BO = bl0, big endian byte ordering

// CETM = 0, not used

// DIB = BDB = 0; buffers and buffer descriptors on CSB

* (ULONG *) (UCC8_PRAM + 0x08)

* (ULONG *) (UCC8_PRAM +

// Set C_MASK & C_PRES
* (ULONG *) (UCC8_PRAM +

* (ULONG *) (UCC8_PRAM +

0x18)

for 1
0x44)

0x48)

= 0x10000000;

= 0x10000000;

6 bit CRC. Defined in RM section 14.2.2.1

= 0x0000FOBS8;

= Ox000O0FFFF;

// Clear DISFC, CRCEC, ABTSC & NMARC

// Note that these steps are shown for completeness.

// skipped due to the clear

* (ULONG*) (UCC8_PRAM
* (ULONG*) (UCC8_PRAM
* (ULONG*) (UCC8_PRAM

* (ULONG*) (UCC8_PRAM

+

+

0x4C)
0x4E)
0x50)

0x52)

at the start of this routine.
= 0x0000;
= 0x0000;
= 0x0000;

= 0x0000;

They could be

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev.0

26

Freescale Semiconductor

// Set RFTHR & RFCNT

* (UWORD *) (UCC8_PRAM + O0x5A) = 0x0001;

* (UWORD *) (UCC8_PRAM + 0x5C) = 0x0001;
// Set MFLR

* (UWORD *) (UCC8_PRAM + 0x58) = BUF SIZE;

/**/

//
//
!/
//
//
!/
//
//
!/

function: init_ucc8_hdlc
parameters: none.
return value: none.
assumptions:
The IMMR define matches the value loaded into the real IMMR.

hardware effects:

Description:

/**/

void init_ucc8_hdlc ();

void init_ucc8_hdlc ()

{

bd t *bd ptr; // buffer descriptor pointer.
ULONG *cecr_ptr; // pointer to the QE command register.

int 1i; // loop counter.

// Connect UCC8 to TDM C by setting UC8 in CMXUCR4. RM section 5.5.8

* (ULONG *) (QEBASE + 0x041C) = 0x00004000;
// Setup GUEMR to configure UCC8 for FAST mode on both TX and RX
// note that bit 3 is reserved and must be set. RM section 6.3.2.

* (UBYTE *) (UCC8_BASE + 0x90) = 0x13;

// Setup virtual FIFOs. RM section 7.5

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev.0

Code Listing

Freescale Semiconductor

27

}{—

Code Listing

* (ULONG *) (UCC8_BASE + 0x20) = UCC8_RX VFIFO; // RX VFIFO base
* (UWORD *) (UCC8_BASE + 0x24) = 0x080; // RX VFIFO size

* (UWORD *) (UCC8_BASE + 0x28) = 0x40; // URFET = 1/2 size

* (UNORD *) (UCC8_BASE + O0x2A) = 0x20; // URFET = 1/4 size

* (ULONG *) (UCC8_BASE + 0x2C) = UCC8_TX VFIFO; // TX VFIFO base
* (UWORD *) (UCC8_BASE + 0x30) = 0x080; // TX VFIFO size

* (UWORD *) (UCC8_BASE + 0x34) = 0x40; // UTFET = 1/2 size

* (UWORD *) (UCC8_BASE + 0x38) = 0x20; // UTFTT = 1/4 size

// Set UCC8's GUMR. RM section 7.4.2.1

// DIAG = b00, normal mode.

// TCI = 0, normal, non-inverted clock.

// TRX = 0, normal, no transparent receiver.

// TTX = 0, normal, no transparent transmitter.

// CDP = 0, normal/envelope; must be used with HDLC in TSA mode.
// CTSP = 1, pulse mode must be used with the TSA.

// CDS = 1, synchronous mode must be used with the TSA.

// CTSS = 1, synchronous mode must be used with the TSA.

// TXSY = 0, no synchronization between RX & TX.

// RSYN = 0, normal; RX sync timing adjust only used with transparent RX
// SYNL = b00, use external sync.

// RTSM = 1, Send flags/syncs between frames

// RENC = b00, NRZ decode for RX.

// REVD = 0, normal bit order.

// TENC = b00, NRZ decode for TX.

// TCRC = b00, CRC selection for transparent TX mode only.

// ENR = 0, disabled for now.

// ENT = 0, disabled for now.

// MODE = b0000, HDLC mode

* (ULONG *) (UCC8_BASE + 0x00) = 0x03802000;

// Setup HDLC Mode Register (UPSMR). RM section 14.2.2.2

// NOF = b0000, no flags.

// FSE = 0, normal operation.

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev. 0

28 Freescale Semiconductor

// MFF = 1, multiple frames allowed in transmit FIFO.

// RTE = 0, no retransmission.

// TS = 0, normal, no timestamp in

RX buffer.

// BUS = 0, normal (not HDLC bus mode) .

// BRM = 0, ignored in non bus mode.

// DRT = 0, normal RX operation.

// NBO = b00, normal operation (1 bit of data per clock).

// CW = b000, ignored in non bus mode.

// CRC = b00, 16 bit HDCL CRC.

* (ULONG *) (UCC8_BASE + 0x04) = 0x04000000;

// Set UDSR (data sync) to OxX7E7E.

* (UWORD *) (UCC8_BASE + 0x0C) = Ox7E7E;

// Init PRAM for an HDLC channel.

init _ucc8_hdlc _pram () ;

// Setup a single RX BD in MURAM.

RM section 7.4.5

// two HDLC flags

RM section 14.2.2.3

// First, set local pointer to RX BD in MURAM

bd ptr = (bd_t *) (MURAMBASE + RX BD_OFFSET) ;

bd ptr->cntrl = 0xB0; // Set Empty
bd ptr->stat = 0x00; // Clear the
bd ptr->len = 0x0000; // Clear the
bd ptr->buf ptr = g rxbuf; // Set

// Setup a single TX BD in MURAM.

& Int & Wrap bits.
status bits.

length.

the data pointer to the RX buffer.

RM section 14.2.2.4

// First, set local pointer to TX BD in MURAM

bd ptr = (bd_t *) (MURAMBASE + TX BD_OFFSET) ;

bd ptr-s>cntrl = 0x2C;

bd_ptr->stat = 0x00;

// Set Last,

Wrap, Transmit CRC */

// Clear status

bd ptr->len = 0x0000; // Clear length.

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev.0

Code Listing

Freescale Semiconductor

29

PR 4

Code Listing

bd ptr->buf ptr = g txbuf; // Set the data pointer to the TX buffer.

// Send an INIT RX & TX Command to the QUICC Engine. This causes

// the QE to initialize all internal data structures as per the

// programmed registers and PRAM.

i =0; // clear the local loop counter.

cecr ptr = (ULONG *) (QEBASE + 0x0100); // point to the QE command reg.

*cecr ptr = 0x02E10000; // UCC8 HDLC Init RX&TX. RM Section 4.3.1

// Wait for the QE to indicate it is ready for a new command.

while ((*cecr_ptr & 0x00010000) == 0x00010000)

{
// Increment the loop counter. Production code should abort if
// the QE doesn't clear FLG after an appropriate amount of time.

i4+;

/**/

!/
//
//
//
//
//
//
!/
//
//
!/
//
//

function: enable_ucc8
parameters: none.

return value: none.

assumptions:
The IMMR define matches the value loaded into the real IMMR.
UCC8 registers, data structures and related hardware are
initialized and ready to be enabled.
hardware effects:

UCC8's receiver and transmitter are enabled.
Description:
Enable RX (ENR) and Enable TX (ENT) are set in the GUMR for UCCS8,

thus allowing UCC8 to receive and transmit.

/**/

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev.0

30

Freescale Semiconductor

void enable ucc8 () ;
void enable_ucc8 ()
{
// Set ENR and ENT in UCC8's GUMR. RM section 7.4.2.1

* (ULONG *) (UCC8 BASE + 0x00) |= 0x00000030;

[k ko ok kK ok ok Kk ok ok ok ok ok kK ok ok ok ok ok ok ok ok ok ok ok ko k ok ok ok Kok ok ok ok ko Kk Kk Kk Kk ko kK kK k ko ko k
// function: disble uccs

// parameters: none.

// return value: none.

// assumptions:

// The IMMR define matches the value loaded into the real IMMR.

// hardware effects:

// UCC8's receiver and transmitter are disabled.

// Description:

// Enable RX (ENR) and Enable TX (ENT) are cleared in the GUMR for UCCS8,
// thus stopping UCC8 reception and transmission.

//

/**/

void disable _ucc8 ();
void disable_ucc8 ()
{
// Clear ENR and ENT in UCC8's GUMR. RM section 7.4.2.1

* (ULONG *) (UCC8_BASE + 0x00) &= ~(0x00000030) ;

/**/
// function: main.

// parameters: none.

// return value: none (does not return).

// assumptions:

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev.0

Code Listing

Freescale Semiconductor

31

PR 4

Code Listing

// The IMMR define matches the value loaded into the real IMMR.

// hardware effects:

// Configures and enables the BRGs, TSA and UCC8 using TDMC in loopback
// mode. Transmission and reception are started using the first

// timeslot.

// Description:

// This drives the entire demonstration. It first sets up the BRGs to
// provide clocks to the TDM interface that simulate Tl clocks, then

// configures TDMC on the time slot assigner to connect the first timeslot
// to UCC8, initializes UCC8 for HDLC mode, configures a transmit buffer
// to transmit continuously, enables the hardware, and then waits for

// received data to display.

//

/**/

void main ()

{

int i=0; // Local counter.

ULONG *ucce_p = (ULONG *) (UCC8_BASE + 0x10); // pointer to UCC8 UCCE

bd t *tx bd p; // pointer to TX bd

bd t *rx bd p; // pointer to RX bd

// First, initialize and enable the baud rate generators used for this
// demo. In a production application, parallel port pin assignments need
// to be done at this time.

init_brg ();

// Setup the time slot assigner hardware. This routine creates
// 24 one byte time slots (similar to a Tl line). The first timeslot
// 1s routed to UCC8. The TSA is not enabled yet.

init_tsa ();

// Setup UCC8 and its parameter RAM for HDLC operation. UCC8 is not

// enabled vyet.

init_ucc8_hdlc () ;

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev.0

32

Freescale Semiconductor

Code Listing

// Set the RX BD pointer to the area of MURAM used to hold RX BDs. Note
// that this matches the values loaded into UCC8's PRAM RX BD pointer.

rx bd p = (bd t *) (MURAMBASE + RX BD OFFSET) ;

// Set the TX BD pointer to the are of MURAM used to hold TX BDs. Note
// that this matches the values loaded into UCC8's PRAM TX BD pointer.

tx bd p = (bd_t *) (MURAMBASE + TX BD OFFSET) ;

// Load the TX buffer in main memory with test data.
strcpy (g_txbuf,

"Now is the time for all good men to come to the aid of the party.");

// Set the length field in the TX BD to the size of the test data.

tx bd p->len = (unsigned short) (strlen(g_txbuf) + 1);

// Make sure the UCC8 Event Register is clear.

*ucce p = OxFFFFFFFF;

// The TX BD and data are ready to transmit, so set R bit in TX BD.

tx_bd p->cntrl |= 0x80;

// Set continuous bit in TX BD so the test data is continuously sent.
// To test a single transmission, don't set this bit.

tx_bd p-scntrl |= 0x02;

// Clear out the RX buffer
for (i=0; i< BUF_SIZE; i++)

g rxbuf [i]=0;

// Now that the TX and RX buffers and BDs are ready and all hardware is
// configured, enable the TDM and UCC.
enable _tdm c () ;

enable ucc8 () ;

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev.0

Freescale Semiconductor 33

PR 4

Code Listing

// Enter an endless loop to wait for an receive frame by polling the
// RXF bit in the UCC8 Event register.
// A production application would most likely enable an interrupt for

// this event to allow the system to do other work.

while (1) {

while ((*ucce_p & 0x00080000) == 0)

{

// do nothing...

// Display the received data.

printf ("RX Frame: %s\n\r", g_rxbuf);

// Clear RXF Flag to allow a new event to be detected.

*ucce_p = 0x00080000;

// Clear out the RX buffer.
for (i=0; i< BUF_SIZE; i++)

g rxbuf [i]=0;
// Set the empty bit in the RX BD to allow another frame to

// be received.

rx_bd_p->cntrl |= 0x80;

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev.0

34 Freescale Semiconductor

Code Listing

THIS PAGE INTENTIONALLY LEFT BLANK

Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC, Rev.0

Freescale Semiconductor 35

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284

1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 169 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125

support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Document Number: AN4026
Rev. 0
12/2009

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks or registered trademarks
of Freescale Semiconductor, Inc. in the U.S. and other countries. All other
product or service names are the property of their respective owners. The
Power Architecture and Power.org word marks and the Power and
Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

BUILTON |

freescale"

semiconductor

	Communicating via HDLC over a TDM Interface with a QUICC Engine™ UCC
	1 Introduction
	1.1 Introduction to the MPC8360E
	Figure 1. MPC8360E Block Diagram

	1.2 Review of TDM and HDLC
	Figure 2. Simple TDM Example
	Figure 3. HDLC Framing Structure

	1.3 Required Documentation

	2 QUICC Engine Sub-blocks Needed for a Single Channel of HDLC over TDM
	2.1 Summary of QUICC Engine Sub-Blocks and Documentation

	3 QUICC Engine Control
	4 QUICC Engine Baud Rate Generates and Clock Routing
	Figure 4. Bank of Clocks
	Figure 5. Baud-Rate Generator (BRG) Block Diagram

	5 Timeslot Assigner Description/Configuration
	5.1 TSA RAM
	Figure 6. SI RAM Entry for UCC
	Table 1. Example Entries

	5.2 TSA Mode Register Settings
	Figure 7. SI Mode Register (SIxMR)

	6 UCC Description/Configuration
	6.1 Common UCC Settings
	6.2 Fast Mode UCC Settings
	Figure 8. General UCC Mode Register (Fast Protocols)

	6.3 UCC Buffers and Buffer Descriptors

	7 Description of Example Code
	8 Conclusion
	9 Revision History
	Table 2. Document Revision History

	Appendix A Code Listing

