
Freescale Semiconductor
Application Note

© 2010 Freescale Semiconductor, Inc. All rights reserved.

1 Introduction
The Das U-Boot, also known as U-Boot, is a
firmware/bootloader for the hardware platforms, which is
widely used in embedded designs. The U-Boot supports
common processor architectures such as ARM®, Power
Architecture®, Microprocessor without Interlocked Pipeline
Stages (MIPS®), and x86®. In addition to the bootstrapping
functionality, the U-Boot also supports other features that are
part of the open source project (available under General
Public License—GPL), such as device drivers, networking,
and file systems support utilities that assist board bring up
and testing.

The U-Boot firmware is ported to operate on the i.MX
applications processors and development boards. However,
the customers should get adapted to some key areas of the
source code that makes the U-Boot firmware to operate on a
new hardware platform based on the i.MX processor.

In this application note, the reader is guided through the
areas of the i.MX35 3-stack U-Boot source code where the
adaptation is required. Also, this application note defines
guidelines for configuring the Eclipse Integrated

Document Number: AN4172
Rev. 0, 07/2010

Contents
1 Introduction . 1
2 Requirements . 2
3 U-Boot Overview . 2
4 Getting U-Boot Source Code 3
5 Source Code Tree Overview . 4
6 Creating New Board Based on i.MX35 3-Stack 7
7 Customizing the Code . 9
8 Enabling Debugging Information 17
9 Revision History . 18
A Configuration of Eclipse IDE for U-Boot

Development . 19

U-Boot® for i.MX35 Based Designs
Source Code Overview and Customization

by Multimedia Applications Division
Freescale Semiconductor, Inc.
Austin, TX

U-Boot® for i.MX35 Based Designs, Rev. 0

2 Freescale Semiconductor

Requirements

Development Environment (IDE) for the U-Boot development in Appendix A, “Configuration of Eclipse
IDE for U-Boot Development.”

2 Requirements
The requirements to build a U-Boot project are as follows:

• Host computer with a Linux operating system (OS) and basic knowledge in Linux

• U-Boot source code for the i.MX platforms. Refer to the Section 4, “Getting U-Boot Source Code,”
for information about the U-Boot source code.

• i.MX35 (MCIMX35) Multimedia Applications Processor Reference Manual (IMX35RM)

• i.MX35 PDK 1.6 Linux User’s Guide (926-77208)

• i.MX35 PDK Hardware User's Guide (924-76347)

• Basic knowledge in C and ARM assembly languages

• Eclipse IDE with C/C++ development plug-in (required if the reader desires to follow the
instructions in Appendix A, “Configuration of Eclipse IDE for U-Boot Development.”)

3 U-Boot Overview
The U-Boot is derived from two small bootloaders—PPCBoot and ARMboot. These bootloaders are
merged to create the universal bootloader or U-Boot that provides support for an expanded number of
processors and boards. Refer to the link, http://www.denx.de/wiki/U-Boot/WebHome, to know more about
the U-Boot. The source code and documentations are distributed under the GPL license.

The U-Boot uses some portions of the Linux kernel code and maintains a similar source code structure and
configuration scheme. This fact along with the set of features of the U-Boot such as stability, support for
many processors and boards, easiness to port, and active community of the developers that enhances and
supports the project have contributed to make the U-Boot as one of the most used bootloaders. The U-Boot
is widely used in the embedded space where cost and reliability are critical.

The important features of the U-Boot firmware are as follows:

• Bootstraps the hardware platform

• Loads an OS image and transfers control to the OS (for execution)

• Supports network protocols—Trivial File Transfer Protocol (TFTP), Bootstrap Protocol (BOOTP),
Dynamic Host Configuration Protocol (DHCP), and Network File System (NFS)

• Supports serial download—s-record and binary (through Kermit)

• Supports Flash management—copy, erase, protect, cramfs, and jffs2

• Supports Flash types—CFI NOR Flash, NAND Flash, and MultiMediaCard/Secure Digital
(MMC/SD) cards

• Supports memory utilities—copy, dump, crc, check, and mtest

• Supports IDE and Serial Advanced Technology Attachment (SATA) boot from disk—raw block,
ext2, fat, and reiserfs

• Supports interactive shell—choice of simple or busybox shell with many scripting features

http://www.denx.de/wiki/U-Boot/WebHome

U-Boot® for i.MX35 Based Designs, Rev. 0

Freescale Semiconductor 3

Getting U-Boot Source Code

For more information about the U-Boot, refer to the link, http://www.denx.de/wiki/U-Boot/WebHome.

4 Getting U-Boot Source Code
The U-Boot source code is shipped along with the Linux Board Support Package (BSP) for the i.MX35
Platform Development Kit (PDK). The BSP is embedded in the Linux Software Development Kit (SDK).
The Linux SDK for the i.MX35 and documentations are available at www.freescale.com/imx35pdk.

NOTE
The latest available Linux SDK is IMX35_SDK16_LINUX_BSP that
contains the BSP based on the Linux kernel version 2.6.28. To install the
Linux BSP in the host computer, check the accompanying documents.

Some important points with respect to the U-Boot source code are as follows:

• After successful installation of the Linux BSP, the Linux Image Target Builder (LTIB) and the
GNU tool-chain (for ARM) are ready for use. In this application note, the LTIB installation path is
referred to as <LTIB_DIR>.

• To get the U-Boot source code for the i.MX platforms, use the following commands:
cd <LTIB_DIR>

./ltib –m prep –p u-boot

From this set of commands, the U-Boot source code package is extracted and the i.MX patches are
applied. The patched source code is located at:
<LTIB_DIR>/rpm/BUILD/u-boot-2009.01

• To rebuild the source code using LTIB, use the following command:
./ltib –m scbuild –p u-boot

Executing this command configures the U-Boot for the i.MX35 3-stack platform and the following
binaries are generated:

— u-boot—is a file in Executable and Linkable Format (ELF) with symbols and debugging
information.

— u-boot.bin—is a plain binary file and is programmed to a boot media (NAND, NOR, SD, and
so on) to bootstrap the i.MX35 3-stack board.

NOTE
The term 3-stack board is used to describe an i.MX development platform
that consists of three boards—CPU, debug, and personality.

It is recommended to verify with the Freescale representative if new U-Boot
patches or code is available for the i.MX platforms before the code
customization.

http://www.denx.de/wiki/U-Boot/WebHome
www.freescale.com/imx35pdk

U-Boot® for i.MX35 Based Designs, Rev. 0

4 Freescale Semiconductor

Source Code Tree Overview

5 Source Code Tree Overview
The U-Boot source code organization is similar to the Linux kernel source code organization. In this
section, an overview of the source code tree is presented. Table 1 shows the top-level directory tree and a
brief description of each directory.

The command to list the directory tree is as follows:
cd <LTIB_DIR>/rpm/BUILD/u-boot-2009.01

ls

Table 1. U-Boot Source Code Top-Level Directories

Directory Description

api U-Boot machine/arch independent API for the external applications

api_examples Example applications that uses the API

board Board dependant files/directories

common Misc architecture independent functions

cpu CPU specific files

disk Code for the disk drive partition handling

doc Basic documentation files

drivers Device drivers for common peripherals

examples Example code for standalone applications

fs Common file systems support

include Header files (.h)

lib_arm Files generic to the ARM architecture

lib_avr32 Files generic to the AVR32 architecture

lib_blackfin Files generic to the blackfin architecture

libfdt Flat tree manipulation library

lib_generic Files generic to all architectures

lib_i386 Files generic to the i386 architecture

lib_m68k Files generic to the m68k architecture

lib_microblaze Files generic to the microblaze architecture

lib_mips Files generic to the MIPS architecture

lib_nios Files generic to the Altera NIOS architecture

lib_nios2 Files generic to the NIOS2 architecture

lib_ppc Files generic to the PowerPC architecture

lib_sh Files generic to the SH architecture

lib_sparc Files generic to the Scalable Processor Architecture (SPARC) architecture

nand_spl Support for the NAND Flash boot with stage 0 bootloader

U-Boot® for i.MX35 Based Designs, Rev. 0

Freescale Semiconductor 5

Source Code Tree Overview

The files listed in Table 2 are also in the top-level directory.

5.1 i.MX35 Related Source Files
The i.MX35 applications processor (based on ARM1136JF-S) and its development platform (3-stack
board) are added to the U-Boot. Table 3 shows the files and directories related to the i.MX35 porting and
their description.

net Networking support (bootp, tftp, rarp, nfs, and so on)

onenand_ipl OneNAND initial program loader

patches Patches for the i.MX platforms (already applied during the command, ./ltib -m prep -p u-boot)

post Power on self test

tools Tools for building S-Record files, U-Boot images, and so on

Table 2. U-Boot Source Code Top-Level Files

File Description

README This file gives information about the U-Boot project. Several sections of this application note are based on the
information from this file.

Makefile The top-level Makefile is used while executing the board configuration and build processes. The new board
configurations should be added to this file.

MAKEALL This script in this file is used to configure and build all the supported boards in one step. The list of boards in
this file should be updated manually when a new board is added.

CREDITS The author and main contributors of the U-Boot project are listed in this file (includes their email).

COPYING This file contains the license for the U-Boot source code.

Table 3. i.MX35 3-Stack Related Source Files

Directory/File Description

board/freescale/mx35_3stack/board-mx35_3stack.h The i.MX35 3-stack board definitions including the CPLD
and SDRAM configuration constants

board/freescale/mx35_3stack/flash_header.S Image header that can be appended to the u-boot.bin
file. The file includes Device Configuration Data (DCD)

board/freescale/mx35_3stack/lowlevel_init.S Board low-level initialization routines in the assembly
language

board/freescale/mx35_3stack/mx35_3stack.c More board routines in the C language

board/freescale/mx35_3stack/config.mk Defines the base address for binary (TEXT_BASE).

board/freescale/mx35_3stack/u-boot.lds Linker script

cpu/arm1136/cpu.c CPU specific code in the C language

Table 1. U-Boot Source Code Top-Level Directories (continued)

Directory Description

U-Boot® for i.MX35 Based Designs, Rev. 0

6 Freescale Semiconductor

Source Code Tree Overview

cpu/ arm1136/start.S Includes the CPU low-level initialization code. The first
function executed when the U-Boot starts is defined in this
file

cpu/arm1136/mx35/crm_regs.h The i.MX35 clock and reset module (CRM) definitions

cpu/arm1136/mx35/generic.c Routines to calculate the CPU and peripheral clocks and a
function to call the on-chip Ethernet initialization routine

cpu/arm1136/mx35/interrupts.c Starts a timer, and provides functions around the timer
count. The file also implements the reset_cpu function

cpu/arm1136/mx35/iomux.c The i.MX35 IOMUX and GPIO setup functions

cpu/arm1136/mx35/mxc_nand_load.S Low-level NAND boot support for the i.MX35 3-stack

cpu/arm1136/mx35/serial.c On-chip UART driver and serial I/O functions

include/asm-arm/arch-mx35/iomux.h IOMUX control definitions and functions

include/asm-arm/arch-mx35/mmc.h Nothing is defined in this file

include/asm-arm/arch-mx35/mx35.h On-chip modules base addresses and register definitions

include/asm-arm/arch-mx35/mx35_pins.h The i.MX35 I/O pin list

include/asm-arm/arch-mx35/mxc_nand.h NAND Flash Controller (NFC) register definitions

include/asm-arm/arch-mx35/sdhc.h Secure Digital Host Controller (SDHC) register definitions
and functions

include/configs/mx35_3stack.h The i.MX35 3-stack board high-level configuration

include/configs/mx35_3stack_mmc.h The i.MX35 3-stack board high-level configuration (for
MMC boot)

lib_arm/board.c Implements high-level board initialization functions and
allows the user to configure the initialization sequence

drivers/mtd/cfi_flash.c Implements a Common Flash Interface (CFI) driver for the
NOR Flashes

drivers/mtd/nand/mxc_nand.c NFC low-level driver

drivers/mtd/nand/nand.c NAND Flash definitions and initialization function

drivers/mtd/nand/nand_base.c NAND Flash generic to the Memory Technology Device
(MTD) driver

drivers/mtd/nand/nand_bbt.c Bad block table support for the NAND Flash driver

drivers/mtd/nand/nand_ecc.c Error correction code support for the NAND Flash

drivers/mtd/nand/nand_ids.c NAND Flash chip ID list

drivers/mtd/nand/nand_util.c Utilities to work with the NAND Flash, write and read
skipping bad blocks, and lock the NAND Flash during
accesses

drivers/mmc/fsl_esdhc.c Functions to use the MMC/SD cards

drivers/mmc/fsl_mmc.c I/O control access for the MMC/SD cards

Table 3. i.MX35 3-Stack Related Source Files (continued)

Directory/File Description

U-Boot® for i.MX35 Based Designs, Rev. 0

Freescale Semiconductor 7

Creating New Board Based on i.MX35 3-Stack

6 Creating New Board Based on i.MX35 3-Stack
In the process of adapting the U-Boot to a custom design, it is recommended to create a new board
directory within the code tree where all the files and new configuration are contained. In this way, the
original files that are used as base (in this case, the i.MX35 3-stack board) remain untouched and available
for comparison. If device drivers or another non-board specific code is to be adapted, it is a good practice
to make a backup copy of the original code and to have it available in the source tree for comparison. Refer
to Appendix A, “Configuration of Eclipse IDE for U-Boot Development,” to configure Eclipse IDE
before proceeding with the following sections.

The steps to create a new board based on the i.MX35 3-stack are as follows:

1. Clean the source code tree to delete the output files of the previous build:
make distclean

2. Copy the current mx35_3stack board directory to a new directory with a meaningful name to
identify the design. In this application note, the directory is named as mx35_custom:
cp -r board/freescale/mx35_3stack/ board/freescale/mx35_custom

3. Rename the board-mx35_3stack.h and mx35_3stack.c files accordingly:
mv board/freescale/mx35_custom/board-mx35_3stack.h

board/freescale/mx35_custom/board-mx35_custom.h

mv board/freescale/mx35_custom/mx35_3stack.c board/freescale/mx35_custom/mx35_custom.c

4. Adjust the board/freescale/mx35_custom/Makefile file to fit the new file name:
Change the line: COBJS := mx35_3stack.o for:

COBJS := mx35_custom.o

5. Adjust the flash_header.S and lowlevel_init.S files to fit the new file name:
Change the line, #include “board-mx35_3stack.h”, to #include “board-mx35_custom.h

common/env_mmc.c Functions to store and retrieve the environment variables
from the MMC/SD card

drivers/i2c/mxc_i2c.c I2C driver for the i.MX architecture

drivers/net/smc911x.c SMSC911x Ethernet device driver (used for Standard
Microsystems Corporation—SMSC LAN9217)

drivers/net/mxc_fec.c On-chip Fast Ethernet Controller (FEC) device driver

Table 3. i.MX35 3-Stack Related Source Files (continued)

Directory/File Description

U-Boot® for i.MX35 Based Designs, Rev. 0

8 Freescale Semiconductor

Creating New Board Based on i.MX35 3-Stack

6. Copy the current i.MX35 3-stack board configuration files and give meaningful names. In this
application note, the names, mx35_custom.h and mx35_custom_mmc.h, are used:
cp include/configs/mx35_3stack.h include/configs/mx35_custom.h

cp include/configs/mx35_3stack_mmc.h include/configs/mx35_custom_mmc.h

NOTE
The configuration files, mx35_custom.h and mx35_custom_mmc.h, are not
required to be copied if only one boot media is used. In this case, select the
configuration file that most suits the requirements and create a new file.
These configuration files are further explained in Section 7.2, “Board
Configuration File Differences.”

7. Create two entries in the top-level directory, Makefile, for the new custom board configurations.
These files are arranged in the alphabetical order:
mx35_custom_config \

mx35_custom_mmc_config: unconfig

@$(MKCONFIG) $(@:_config=) arm arm1136 mx35_custom freescale mx35

NOTE
The U-Boot project developers recommend adding new board to the
MAKEALL script and running this script to verify if the new code has not
broken any other platform build. This is necessary if a patch is planned to
be submitted back to the U-Boot community. For more information, refer to
the U-Boot README file.

8. Adopt any fixed paths. In this case, the linker script, mx35_custom/u-boot.lds, has two paths.
Replace mx35_3stack with mx35_custom:
board/freescale/mx35_custom/flash_header.o

board/freescale/mx35_custom/libmx35_custom.a

9. Set the CROSS_COMPILE and PATH environment variables in the console as the build process is
executed manually (without LTIB):
export CROSS_COMPILE=arm-none-linux-gnueabi-

export

PATH=/opt/freescale/usr/local/gcc-4.1.2-glibc-2.5-nptl-3/arm-none-linux-gnueabi/bin/:$

PATH

10. Configure the system for the new board. Use either the mx35_custom_config or
mx35_custom_mmc_config board configuration depending on the boot media to be used:
make mx35_custom_config

11. Build the new board. Verify if no errors are found and the U-Boot binaries are created:
make

The new board is an exact copy of the i.MX35 3-stack board. The next step is to adapt some portions of
the code to make the code suitable for the new hardware design. See Section 7, “Customizing the Code,”
for the guidelines to customize the code.

U-Boot® for i.MX35 Based Designs, Rev. 0

Freescale Semiconductor 9

Customizing the Code

7 Customizing the Code
In this section, examples for the key places within the source code are described where customization is
required.

NOTE
Depending on the design and requirements, the described code should be
modified.

7.1 Internal Boot vs. External Boot
The i.MX35 applications processor provides different boot modes. These boots modes are described in the
i.MX35 (MCIMX35) Multimedia Applications Processor Reference Manual (IMX35RM). A brief
introduction to the internal and external boot modes is given as follows:

• Internal boot mode—allows selection of all boot sources (NOR, NAND, MMC/SD, OneNAND,
Parallel Advanced Technology Attachment—P-ATA, Serial ROM/Flash, and so on). After
Power-On Reset (POR) or reset, the processor ROM code samples the boot pins or eFuses and
loads the first set of codes from the selected boot media. These codes should have a Flash header
at a particular offset (varies depending on the boot source). The Flash header stores the application
information in a specific structure. The Flash header can also store the DCD, which is a block of
data processed by the i.MX35 to configure the hardware during the boot time. This enables the
configuration of some on-chip modules and external peripherals before moving to the entry point
of the application.

• External boot mode—allows selection of only the NOR and NAND Flash as the boot sources. After
POR or reset, the i.MX35 samples the boot pins or eFuses and moves directly to the base address
of the selected boot source (base address of the NFC buffer in the case of NAND Flash). The Flash
header is not required to identify the application, and the hardware configuration is carried out by
the loaded application.

7.2 Board Configuration File Differences
In Section 6, “Creating New Board Based on i.MX35 3-Stack,” the following board configuration files are
created:

• include/configs/mx35_custom.h

• include/configs/mx35_custom_mmc.h

The configurations stored in these files impact the way the U-Boot source codes are compiled and how the
board operates when the binary in these files are executed during boot up. The differences between these
two board configuration files are as follows:

• The mx35_custom.h file enables the NAND and NOR Flash drivers. This file does not include any
Flash header. Therefore, the U-Boot binary can boot the board in external boot mode only, either
from the NOR or NAND Flash.

• The mx35_custom_mmc.h file enables the MMC card driver, MMC commands, and Flash header and
allows the file to boot from the MMC card (should use the internal boot). This file also includes
the NAND and NOR device drivers.

U-Boot® for i.MX35 Based Designs, Rev. 0

10 Freescale Semiconductor

Customizing the Code

7.3 Flash Header
When the final device requires the i.MX35 external boot to be disabled (through the eFuse, DIR_BT_DIS),
the only option to boot the board is to use the internal boot mode. In this mode, a Flash header is required
to identify the application. Therefore, the following definitions should be present in the board
configuration file:

• Include the device driver for the boot media (MMC, NOR, or NAND).

• Add the Flash header and barker (identifier used by the i.MX35 ROM code):
#define CONFIG_FLASH_HEADER 1//Includes the Flash header to the binary

#define CONFIG_FLASH_HEADER_BARKER 0xB1//Identifier

• For NAND or MMC Flash, configure the offset at:
#define CONFIG_FLASH_HEADER_OFFSET 0x400//Required to be set if the Flash header is used

• For NOR Flash, configure the offset at:
#define CONFIG_FLASH_HEADER_OFFSET 0x1000//Required to be set if the Flash header is used

• Rebuild the U-Boot source to generate the u-boot.bin file.

Also, if DCD is used and the SDRAM initialization is performed by the DCD data, the user can set the
configuration, #define CONFIG_SKIP_RELOCATE_UBOOT, to disable the U-Boot relocation to RAM (as the
U-Boot relocation is already performed by the i.MX ROM code).

7.4 Customizing SDRAM Initialization
If the SDRAM device changes in the custom platform, then the i.MX35 enhanced SDRAM controller and
initialization sequence code should adapt to operate with the new device. The portions of the code that
should be focused to modify such initialization sequence are as follows:

• If a U-Boot binary with the Flash header (including the DCD data) is used—Open the
flash_header.S file and modify the values of the DCDGEN macros (or add/remove values) in
accordance with the SDRAM device specification sheet and i.MX35 (MCIMX35) Multimedia
Applications Processor Reference Manual (IMX35RM). The DCDGEN macro transforms the
identifier number, register address, value to be written into this register, and length of the access to
the corresponding data to be appended into the U-Boot binary. The format of the DCD data is
described thoroughly in the i.MX35 (MCIMX35) Multimedia Applications Processor Reference
Manual (IMX35RM).

NOTE
Ensure to adjust the length of the DCD structure if the data is added or
removed from DCD.

• If external boot (without DCD) is used—Open the lowlevel_init.S file and modify the assembly
code of the setup_sdram and setup_sdram_bank macros, if necessary. Generally, a fine-tuning of the
SDRAM timing parameters is the primary customization. The code in the lowlevel_init.S file
uses the constant values declared in the board-mx35_3stack.h file and is recommended to modify
the referenced values (ESDCTL_*) instead of writing a value directly into the assembly instruction.

U-Boot® for i.MX35 Based Designs, Rev. 0

Freescale Semiconductor 11

Customizing the Code

If the chip select of the SDRAM or SDRAM size is changed, the following values should be adjusted in
the board custom configuration file:
#define PHYS_SDRAM_1 CSD0_BASE_ADDR
#define PHYS_SDRAM_1_SIZE (128 * 1024 * 1024)

NOTE
Here, the i.MX35 3-stack U-Boot is using only half of the available physical
memory. The board has a total memory capacity of
256 Mbytes that consists of four 16-bit memory chips mapped with two
separate chips selects. The two chip select configurations are not described
in this application note.

7.5 Necessity of CPLD Code
The i.MX PDKs (3-stack) contain a debug board, and the glue logic in the debug board is implemented in
the Complex Programmable Logic Device (CPLD). This device is memory mapped to the on-chip
Wireless External Interface Module (WEIM) at chip select 5 (CS5) and provides the following features:

• 16-bit slave interface to the CPU data bus

• Address decode and control for the external Ethernet controller

• Address decode and control for the external Universal Asynchronous Receiver Transmitter
(UART) controller

• Level shift for the Ethernet and UART signals

• Control and status registers for the various board functions

List of situations to be checked for the necessity of the CPLD code are as follows:

• When the new board does not have the CPLD or memory range of the CS5
(0xB600_0000–0xB7FF_FFFF) is used for different purposes, the code targeting the CPLD should be
removed to avoid possible errors. This point can be explained with the following example.
Consider a case were the new board has an external Ethernet controller directly attached to the
i.MX processor at the CS5. When the CPLD initialization code is executed, the external Ethernet
chip initialization gets corrupted and prevents the Ethernet controller device driver from operating
correctly.

• When the CS5 is required in the new board for a different purpose, then the CS5 initialization
should be kept and only the CPLD (alias debug board or peripheral bus controller) initialization
should be removed.

• When the CS5 is not used in the new board, then the code should not be executed. In such cases,
both the CS5 initialization and CPLD initialization should be removed.

• To remove or comment out the CS5 and/or CPLD code in the U-Boot source files, look for
references to the keywords—CS5, DBG, and PBC. Also, look for other references to the CS5
address space. For example, in the i.MX35 custom board, if CS5 is not required comment out the
following sets of codes:

— In the flash_header.S file, remove the CS5 configuration data from the DCD:

//WEIM config-CS5 init
DCDGEN(1, 4, 0xB8002054, 0x444a4541)

U-Boot® for i.MX35 Based Designs, Rev. 0

12 Freescale Semiconductor

Customizing the Code

DCDGEN(1_1, 4, 0xB8002050, 0x0000dcf6)
DCDGEN(1_2, 4, 0xB8002058, 0x44443302)

//WEIM config-CS5 init
DCDGEN(1, 4, 0xB8002050, 0x0000d843)
DCDGEN(1_1, 4, 0xB8002054, 0x22252521)
DCDGEN(1_2, 4, 0xB8002058, 0x22220a00)

NOTE
Ensure to adjust the length of the DCD structure when the data is removed.

— In the lowlevel_init.S file, remove the init_debug_board macro and references to the macro:

/* CPLD on CS5 setup */
.macro init_debug_board
ldr r0, =DBG_BASE_ADDR
ldr r1, =DBG_CSCR_U_CONFIG
str r1, [r0, #0x00]
ldr r1, =DBG_CSCR_L_CONFIG
str r1, [r0, #0x04]
ldr r1, =DBG_CSCR_A_CONFIG
str r1, [r0, #0x08]
.endm /* init_debug_board */

• When the CS5 is required to be initialized and the code interacting with the CPLD logic is not
required, then look for the accesses made to the CS5 address space. For example, see the constants
below (this code is not found in the current i.MX35 3-stack U-Boot code. However, this can be
found in the future U-Boot code):

#define PBC_LED_CTRL (0x20000)
#define PBC_SB_STAT (0x20008)
#define PBC_ID_AAAA (0x20040)
#define PBC_ID_5555 (0x20048)
#define PBC_VERSION (0x20050)
#define PBC_ID_CAFE (0x20058)
#define PBC_INT_STAT (0x20010)
#define PBC_INT_MASK (0x20038)
#define PBC_INT_REST (0x20020)
#define PBC_SW_RESET (0x20060)

7.6 Board Initialization Sequence
The start_armboot function executes the board initialization sequence as part of the U-Boot boot-up
process. This sequence defines the order in which other routines are to be called and is user customizable.
To adapt this sequence, modify the init_sequence[] array defined in the lib_arm/board.c file:

init_fnc_t *init_sequence[] = {
cpu_init, /* basic cpu dependent setup */
board_init, /* basic board dependent setup */
interrupt_init, /* set up exceptions */
env_init, /* initialize environment */
init_baudrate, /* initialze baudrate settings */
serial_init, /* serial communications setup */
console_init_f, /* stage 1 init of console */
display_banner, /* say that we are here */

#if defined(CONFIG_DISPLAY_CPUINFO)
print_cpuinfo, /* display cpu info (and speed) */

U-Boot® for i.MX35 Based Designs, Rev. 0

Freescale Semiconductor 13

Customizing the Code

#endif
#if defined(CONFIG_DISPLAY_BOARDINFO)

checkboard, /* display board info */
#endif
#if defined(CONFIG_HARD_I2C) || defined(CONFIG_SOFT_I2C)

init_func_i2c,
#endif

dram_init, /* configure available RAM banks */
display_dram_config,
NULL,

};

7.7 Include, Exclude or Remap Device Drivers
After the build, the U-Boot binary should only include the code that is useful to the target board. The
i.MX35 3-stack board configuration files should include device drivers for the on-chip and off-chip
peripherals such as I2C, UART, FEC, NAND, NOR, MMC, SMSC Ethernet controller, and so on. In the
U-Boot customization process, the included drivers in the custom board configuration files are required to
be reviewed and verified if all the files are required in the design. The device drivers should be included,
excluded or remapped in case the base address changes the design. This is described with examples in the
following sections.

7.7.1 UART Driver
The current UART driver uses the UART1_BASE_ADDR constant as the base address. In case a different UART
is required to be used, adjust the definition, #define CONFIG_MX35_UART UART1_BASE_ADDR, in the board
configuration file to remap this driver. Check the available UARTs in the i.MX35 System On Chip (SoC)
and use a definition from the mx35.h file.

7.7.2 SMSC Ethernet Driver

As described in Section 7.6, “Board Initialization Sequence,” the SMSC LAN9217 device located in the
debug card is interfaced through the CPLD logic and therefore, mapped out at an offset within the CS5
(check CPLD memory map). In the case of the SMSC device, this offset is 0. Therefore, the CS5 base
address is same for the SMSC driver. If the SMSC LAN9217 or a compatible device is not present in the
new board, then the driver code should be excluded from the U-Boot build. If the SMSC LAN9217 or a
compatible device is present in the new design and the base address of the device is changed, then a driver
remap is required. For the driver remap, adjust the following definitions in the custom board configuration
files:

/*Support LAN9217*/
#define CONFIG_SMC911X 1
#define CONFIG_SMC911X_16_BIT 1
#define CONFIG_SMC911X_BASE CS5_BASE_ADDR

While including or excluding the Ethernet device drivers, modify the multiple Ethernet interface
definitions to a suitable value. The U-Boot uses the following configurations to estimate the number of
Ethernet devices present in the system:

#define CONFIG_HAS_ETH1
#define CONFIG_NET_MULTI 1

U-Boot® for i.MX35 Based Designs, Rev. 0

14 Freescale Semiconductor

Customizing the Code

7.7.3 MMC Driver and Commands
Depending on the requirement, the MMC device driver can be included or excluded from the U-Boot
build. For that, add or remove the following definitions in the board configuration file:

#define CONFIG_FSL_MMC //Includes the MMC driver
#define CONFIG_MMC 1 //Required for other definitions inside the MMC driver
#define CONFIG_CMD_MMC //Enables the MMC U-Boot commands
#define CONFIG_DOS_PARTITION 1 //Enables DOS partition read/write
#define CONFIG_CMD_FAT 1 //Enables the U-Boot FAT commands
#define CONFIG_MMC_BASE 0x0 //Defines the base of MMC card
#define CONFIG_ENV_IS_IN_MMC 1 //Environment variables will be stored in MMC card
#define CONFIG_ENV_OFFSET (768 * 1024) //Offset within the MMC card where the
environment variables will be stored at

7.7.4 NOR Flash Driver and Commands
The NOR Flash driver (Common Flash Interface—CFI) and Flash commands are included when the
following definitions are used. In this case, CS0 is the base of the NOR Flash:

NOTE
The user should modify the values according to the new board
configuration.

#define CONFIG_SYS_FLASH_BASE CS0_BASE_ADDR
#define CONFIG_SYS_MAX_FLASH_BANKS 1 /* max number of memory banks */
#define CONFIG_SYS_MAX_FLASH_SECT 512 /* max number of sectors on one chip */
/* Monitor at beginning of flash */
#define CONFIG_SYS_MONITOR_BASE CONFIG_SYS_FLASH_BASE
#define CONFIG_SYS_MONITOR_LEN (512 * 1024)

/*---
* CFI FLASH driver setup
*/
#define CONFIG_SYS_FLASH_CFI 1/* Flash memory is CFI compliant */
#define CONFIG_FLASH_CFI_DRIVER 1/* Use drivers/cfi_flash.c */
/* A non-standard buffered write algorithm */
#define CONFIG_FLASH_SPANSION_S29WS_N 1
#define CONFIG_SYS_FLASH_USE_BUFFER_WRITE 1/* Use buffered writes (~10x faster) */
#define CONFIG_SYS_FLASH_PROTECTION 1/* Use hardware sector protection */

7.7.5 NAND Flash Driver and Commands
When the CONFIG_MX35 and CONFIG_CMD_NAND macros are defined, the NAND Flash driver and commands
are included in the U-Boot build. However, disabling the CONFIG_MX35 macro impacts other
functionalities. Therefore, it is recommended to create a specific macro for the NAND low-level driver
(mxc_nand.c). Hence, the CONFIG_MX35 macro can be enabled or disabled like the other drivers.

It is important to highlight the location of the NAND chip ID definition for the NAND driver and MTD
subsystem. This helps to add a new NAND manufacturer or device ID to the list of supported NANDs.

U-Boot® for i.MX35 Based Designs, Rev. 0

Freescale Semiconductor 15

Customizing the Code

The structure in the drivers/mtd/nand/nand_ids.c file adds new NAND manufacturer IDs to the list of
supported NANDs:

struct nand_flash_dev nand_flash_ids[] = {
.....
.....

{"NAND 128MiB 1,8V 16-bit", 0x49, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 3,3V 16-bit", 0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 3,3V 16-bit", 0x59, 512, 128, 0x4000, NAND_BUSWIDTH_16},

{"NAND 256MiB 3,3V 8-bit", 0x71, 512, 256, 0x4000, 0},
.....
.....

{NULL,}
};

struct nand_manufacturers nand_manuf_ids[] = {
{NAND_MFR_TOSHIBA, "Toshiba"},
{NAND_MFR_SAMSUNG, "Samsung"},
{NAND_MFR_FUJITSU, "Fujitsu"},

.....

.....
{0x0, "Unknown"}

};

7.7.6 I2C Driver
The I2C communication channel is used to interface with the Power Management IC (PMIC) in the
i.MX35 3-stack board. In this board, the I2C port 1 is used with the base address, 0x43F80000. If the PMIC
is relocated to an another I2C port or the PMIC is changed, the codes at the following locations should be
changed:

• include/configs/mx35_custom.h or include/configs/mx35_custom_mmc.h:

#define CONFIG_CMD_I2C
#define CONFIG_HARD_I2C 1
#define CONFIG_I2C_MXC 1
#define CONFIG_SYS_I2C_PORT I2C_BASE_ADDR
#define CONFIG_SYS_I2C_SPEED 100000
#define CONFIG_SYS_I2C_SLAVE 0xfe

• board/freescale/mx35_custom/mx35_custom.c (inside the board_init function):

/* setup pins for I2C1 */
mxc_request_iomux(MX35_PIN_I2C1_CLK, MUX_CONFIG_SION);
mxc_request_iomux(MX35_PIN_I2C1_DAT, MUX_CONFIG_SION);

mxc_iomux_set_pad(MX35_PIN_I2C1_CLK, pad);
mxc_iomux_set_pad(MX35_PIN_I2C1_DAT, pad);

Also, if the BOARD_LATE_INIT macro is defined in the board configuration file, the board_detect and
board_late_init functions in the board/freescale/mx35_custom/mx35_custom.c file should be included.
These functions perform the read and write operations for the PMIC registers. If the PMIC I2C port is
remapped, then these two functions work properly. However, if the PMIC is changed, these functions do
not work. Therefore, the user should adapt or exclude this code from the U-Boot build.

U-Boot® for i.MX35 Based Designs, Rev. 0

16 Freescale Semiconductor

Customizing the Code

7.8 Miscellaneous Customizations
This section describes the various types of customizations.

7.8.1 Environment Variables and Auto Boot Command
The U-Boot shell allows the user to set environment variables like the Linux shell. These variables can be
defined at the U-Boot prompt using the setenv command or hardcoded into the source code before the
compilation. The bootcmd variable in this variable set is executed automatically when the auto boot feature
is enabled. To configure these elements, go to the board configuration files and adapt the following code:

#define CONFIG_BOOTDELAY 3
#define CONFIG_LOADADDR 0x80800000 /* loadaddr env var */
#define CONFIG_EXTRA_ENV_SETTINGS \

"netdev=eth0\0" \
"ethprime=smc911x\0" \
"uboot_addr=0xa0000000\0" \
"uboot=u-boot.bin\0" \
"kernel=uImage\0" \
"nfsroot=/opt/eldk/arm\0" \
"bootargs_base=setenv bootargs console=ttymxc0,115200\0"\
"bootargs_nfs=setenv bootargs ${bootargs} root=/dev/nfs "\
"ip=dhcp nfsroot=${serverip}:${nfsroot},v3,tcp\0"\
"bootcmd=run bootcmd_net\0" \
"bootcmd_net=run bootargs_base bootargs_nfs; " \
"tftpboot ${loadaddr} ${kernel}; bootm\0" \
"prg_uboot=tftpboot ${loadaddr} ${uboot}; " \
"protect off ${uboot_addr} 0xa003ffff; " \
"erase ${uboot_addr} 0xa003ffff; " \
"cp.b ${loadaddr} ${uboot_addr} ${filesize}; " \
"setenv filesize; saveenv\0"

7.8.2 Changing Board Name and U-Boot Prompt

While the U-Boot is booting, some debug messages are displayed in the console before the prompt is
reached. One of these messages is the board name. This is displayed when the checkboard function in the
board/freescale/mx35_custom/mx35_custom.c file is executed along with the root cause of the most recent
reset.

NOTE
The board name can be replaced with a suitable string.

The checkboard function is given as follows:

int checkboard(void)
{

printf("Board: MX35 3STACK [");
switch (__REG(CCM_BASE_ADDR + CLKCTL_RCSR) & 0x0F) {

case 0x0000:
printf("POR");
break;

case 0x0002:
printf("JTAG");
break;

U-Boot® for i.MX35 Based Designs, Rev. 0

Freescale Semiconductor 17

Enabling Debugging Information

case 0x0004:
printf("RST");
break;

case 0x0008:
printf("WDT");
break;

default:
printf("unknown");

}
printf("]\n");
return 0;

}

The U-Boot prompt is displayed in the shell when all the setup functions are executed. The string displayed
with the prompt can be changed in the include/configs/mx35_custom.h file with the macro definition,
#define CONFIG_SYS_PROMPT "MX35 U-Boot > ".

7.8.3 Changing Linux Machine Type and ATAG Address
When the U-Boot is used to boot the Linux OS, the kernel parameters are placed in a special memory area
in ATAG format (if this feature is enabled in the board configuration file). The address of this memory
location is user-configurable, and one of the parameters passed to the kernel is the machine type. This
parameter is a number used to identify the board and should match between the Linux and U-Boot.
Otherwise, the Linux kernel does not boot.

To change these parameters, modify the following lines of code in the
board/freescale/mx35_custom/mx35_custom.c file:

gd->bd->bi_arch_number = MACH_TYPE_MX35_3DS; /* board id for linux */
gd->bd->bi_boot_params = 0x80000100; /* address of boot parameters */

The definitions in the board configuration file that enables the ATAGs are as follows:

#define CONFIG_CMDLINE_TAG 1 /* enable passing of ATAGs */
#define CONFIG_REVISION_TAG 1
#define CONFIG_SETUP_MEMORY_TAGS 1
#define CONFIG_INITRD_TAG 1

8 Enabling Debugging Information
Debugging is the most time-consuming activity while customizing the U-Boot. To have information that
detects the root cause of errors is helpful in debugging. For this purpose, the U-Boot source code contains
several functions or macros that print extra information in the console during the run-time. This can be
described in the following instances:

• In the include/common.h file, two debug macros are defined. When the #define DEBUG macro
definition is set in this file, all the files that include the common.h file use the debug(fmt, args…) or
debugX(level, fmt, args…) macros to print the additional information. To reduce the information
that is displayed, enable the #define DEBUG macro definition in a particular file or files before
including the common.h file. In both cases, the source code should be recompiled.

• There are other files, such as MTD subsystem and NAND driver, that have their own debug macros
or functions. In the MTD subsystem, #define CONFIG_MTD_DEBUG and a debug level is used to print

U-Boot® for i.MX35 Based Designs, Rev. 0

18 Freescale Semiconductor

Revision History

the additional information. Other such files are the Serial Peripheral Interface (SPI) subsystem, I2C
subsystem, and Journalling Flash File System 2 (JFFS2) subsystem that use the macros DEBUG_SPI,
DEBUG_I2C, and DEBUG_JFFS2, respectively.

9 Revision History
Table 4 provides a revision history for this application note.

Table 4. Document Revision History

Rev.
Number

Date Substantive Change(s)

0 03/07/2003 Initial release.

U-Boot® for i.MX35 Based Designs, Rev. 0

Freescale Semiconductor 19

Configuration of Eclipse IDE for U-Boot Development

Appendix A Configuration of Eclipse IDE for U-Boot
Development

To assist the source code customization process, IDE should be set up in the host computer. In this section,
the instructions to set-up Eclipse IDE (for C/C++ developers) is given. Refer to the link,
http://www.eclipse.org/cdt/, for the information regarding the installation of Eclipse in the host computer.

Once the Eclipse IDE is installed in the Linux host, the steps to configure the Eclipse IDE for the U-Boot
development are as follows:

1. Open the Eclipse window, and click File > New > Project.

2. In the new project wizard, select C > Standard Make C Project as shown in Figure 1 and click
Next.

Figure 1. Eclipse IDE New Project Wizard

At the end of this step, the C/Make Project window appears.

http://www.eclipse.org/cdt/

U-Boot® for i.MX35 Based Designs, Rev. 0

20 Freescale Semiconductor

Configuration of Eclipse IDE for U-Boot Development

3. In the C/Make Project window, type a project name in the box and un-check the Use default
location checkbox as shown in Figure 2.

Figure 2. Project Name and Location

4. Click on Browse to search for the path where the U-Boot source code is located. Then, click on
Finish to close the wizard.

5. In the Eclipse main window, deselect Project > Build automatically.

6. To configure the project properties, click Project > Properties to open the Properties window:

a) Select C/C++ Include Paths and Symbols, and do the following steps:

– Disable all the automatically discovered paths and symbols (multiple selection is allowed to
disable all at once).

– Click Add include path from workspace. Then, click on U-Boot_Customized/include as
shown in Figure 3.

Figure 3. Include Path from Workspace

U-Boot® for i.MX35 Based Designs, Rev. 0

Freescale Semiconductor 21

Configuration of Eclipse IDE for U-Boot Development

b) Select C/C++ Indexer, and perform the following step:

It is recommended to enable Fast C/C++ Indexer for the assisted source code navigation.
The full indexer can be selected optionally. However, this takes more time to complete.

c) Select C/C++ Make Project, and perform the following steps:

– In the Make Builder tab, deselect the Build on resource save (Auto Build) option and select
the Stop on first build error option.

– In the Environment tab, select Replace native environment with specific environment and
add the environment variables listed in Table 5 as shown in Figure 4.

Figure 4. Environment Variables in Eclipse Make Builder

– In the Binary Parser tab, deselect Elf parser and select the GNU Elf Parser. Configure the
addr2line and c++filt commands as listed in Table 6.

Table 5. Environment Variables to Set

Variable Value

CROSS_COMPILE arm-none-linux-gnueabi

PATH /opt/freescale/usr/local/gcc-4.1.2-glibc-2.5-nptl-3/arm-none-linux-gnueabi
/bin/:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

Table 6. GNU Binary Parser Selection

Binary
Parser

Options
Value

addr2line /opt/freescale/usr/local/gcc-4.1.2-glibc-2.5-nptl-3/arm-none-linux-gnueabi/bin/arm
-none-linux-gnueabi-addr2line

c++filt /opt/freescale/usr/local/gcc-4.1.2-glibc-2.5-nptl-3/arm-none-linux-gnueabi/bin/arm
-none-linux-gnueabi-c++filt

U-Boot® for i.MX35 Based Designs, Rev. 0

22 Freescale Semiconductor

Configuration of Eclipse IDE for U-Boot Development

– In the Discovery Options tab, deselect the Automate discovery of paths and symbols option.

7. Click OK to save and close the Properties window.

8. Click Project > Create Make Target to open a new window. For this U-Boot project, create the
make targets listed in Table 7 as shown in Figure 5.

Figure 5. Make Targets in Eclipse Project

The Make Targets are used to configure the system for the target board before executing the build
process. If the system is not configured, an error is shown as follows:
Make all

System not configured – see README

Make: *** [all] Error 1

Additionally, the Dist Clean target is used to perform a full clean up of the source tree. Therefore,
the Dist Clean target removes all the files of the previous build.

After the successful configuration of Eclipse IDE, the steps to build the project are as follows:

1. Build the Dist Clean make target (optional).

2. Configure the system using the desired make target from the Make Target column in Table 7.

3. Build the project.

Table 7. Make Targets to Create

Target Name Make Target Description

Dist Clean distclean Full clean up of the source tree

i.MX35 3-Stack mx35_3stack_config Configures the U-Boot source tree to be built for the i.MX35
3-stack board

i.MX35 3-Stack MMC Boot mx35_3stack_mmc_config Configures the U-Boot source tree to be built for the i.MX35
3-stack board with the MMC boot enabled

i.MX35 Custom mx35_custom_config Configures the U-Boot source tree to be built for a custom
i.MX35 based design

i.MX35 Custom MMC Boot mx35_custom_mmc_config Configures the U-Boot source tree to be built for a custom
i.MX35 based design with the MMC boot enabled

U-Boot® for i.MX35 Based Designs, Rev. 0

Freescale Semiconductor 23

Configuration of Eclipse IDE for U-Boot Development

The output files are placed in the U-Boot source code path as shown in Figure 6.

Figure 6. Console Output of Building Process

Document Number: AN4172
Rev. 0
07/2010

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC,
StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc.
Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ, QUICC Engine, and VortiQa are
trademarks of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. ARM is the registered
trademark of ARM Limited. ARM1136JF-S is the trademark of ARM Limited.
© 2010 Freescale Semiconductor, Inc.

	U-Boot® for i.MX35 Based Designs
	1 Introduction
	2 Requirements
	3 U-Boot Overview
	4 Getting U-Boot Source Code
	5 Source Code Tree Overview
	Table 1. U-Boot Source Code Top-Level Directories
	Table 2. U-Boot Source Code Top-Level Files
	5.1 i.MX35 Related Source Files
	Table 3. i.MX35 3-Stack Related Source Files

	6 Creating New Board Based on i.MX35 3-Stack
	7 Customizing the Code
	7.1 Internal Boot vs. External Boot
	7.2 Board Configuration File Differences
	7.3 Flash Header
	7.4 Customizing SDRAM Initialization
	7.5 Necessity of CPLD Code
	7.6 Board Initialization Sequence
	7.7 Include, Exclude or Remap Device Drivers
	7.7.1 UART Driver
	7.7.2 SMSC Ethernet Driver
	7.7.3 MMC Driver and Commands
	7.7.4 NOR Flash Driver and Commands
	7.7.5 NAND Flash Driver and Commands
	7.7.6 I2C Driver

	7.8 Miscellaneous Customizations
	7.8.1 Environment Variables and Auto Boot Command
	7.8.2 Changing Board Name and U-Boot Prompt
	7.8.3 Changing Linux Machine Type and ATAG Address

	8 Enabling Debugging Information
	9 Revision History
	Table 4. Document Revision History

	Appendix A Configuration of Eclipse IDE for U-Boot Development
	Figure 1. Eclipse IDE New Project Wizard
	Figure 2. Project Name and Location
	Figure 3. Include Path from Workspace
	Table 5. Environment Variables to Set
	Figure 4. Environment Variables in Eclipse Make Builder
	Table 6. GNU Binary Parser Selection
	Table 7. Make Targets to Create
	Figure 5. Make Targets in Eclipse Project
	Figure 6. Console Output of Building Process

