
1 Introduction
This application note describes how to port U-Boot and Linux
sources from Freescale's Software Development Kit (SDK) to
a new T4240 platform.

This document covers the main areas within the U-Boot and
Linux sources that a developer should be aware of to port
these packages to a new T4240 platform. It also assumes the
reader has at least a basic knowledge on U-Boot, Linux and
git. Note that the code sources referenced in this document are
based on SDK 1.4 which uses U-Boot 2013.01 and Linux
kernel 3.8.13. For different U-Boot or kernel releases there
may be slight changes to some of these references.

The SDK includes support for the T4240QDS, therefore
T4240 device support is already included within the package.
As such, the items discussed here focus on board level
changes. For the purposes of this document, the example
platform is the T4240-SDP, a custom T4240 reference design
from Freescale.

2 Porting U-Boot
This section covers the process of obtaining the U-Boot
source, modifying the source to support the new platform and
building binary images that will execute on the platform.

Freescale Semiconductor Document Number:AN4814

Application Note Rev 0, 10/2013

Porting U-Boot and Linux to T4240
Systems

© 2013 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 Porting U-Boot...1

3 Porting Linux..6

4 Revision history..10

2.1 Overview
U-Boot is a multi-functional open-source bootloader which allows a developer to load an operating system.

In addition to the bootstrapping functionality, U-Boot also supports other features such as device drivers, networking and file
systems support.

U-Boot is free software released under the terms of the GNU General Public License (GPL). For the purposes of this
document U-Boot will be responsible for initial board bring-up including DDR, PCIe and networking interfaces, and for
booting the Linux operating system.

2.2 Obtaining the source code

The latest U-Boot source can be obtained from the repository at git://git.denx.de/u-boot.git and users can clone the tree from
this location to port to their new platform using the command below.

git clone git://git.denx.de/u-boot.git

The method detailed below uses the U-Boot package available within the SDK as a starting point for the port. Information on
how to extract/modify the U-Boot sources from the SDK is available on the infocenter website:

http://www.freescale.com/infocenter/index.jsp?topic=%2FQORIQSDK%2F2880375.html.

The main steps are as follows:
1. Install the latest SDK release
2. In the main install directory create a build directory for the T4240QDS, i.e.

• source ./fsl-setup-poky -m t4240qds

3. From the <yocto_install_path>/build_t4240qds_release directory, extract the U-Boot source using the following
command:

• bitbake -c patch u-boot

4. To find the location of the extracted U-Boot source run the following command and look for the source ‘S=’ result
• bitbake -e u-boot | grep ^S

The output will look something like:
• S="/home/Projects/sdk-1.4/QorIQ-SDK-V1.4-20130625-yocto/build_t4240qds_release/tmp/
work/t4240qds-fsl_networking-linux/u-boot/git-r33/git"

5. cd to the source directory given by ‘S=’
6. Set <ARCH> and <CROSS_COMPILE> to the correct values, i.e.

• export ARCH=powerpc
• Using ‘export CROSS_COMPILE=’ set the path to the relevant cross compile tools within the /opt directory on

your system
7. Check the build process by building the T4240QDS binary, i.e.

• Run ‘make T4240QDS’
• Check the u-boot.bin file is created in the top level U-Boot directory

The source code in the directory above can now be modified for the new platform. The steps in this application note assume
U-Boot and the kernel are built manually, i.e. not using bitbake. If users prefer to use bitbake they should refer to the
infocenter QorIQ instructions/FAQs for U-Boot and Linux.

2.3 Creating a new platform
Adding a new platform can be split into the following tasks:

Porting U-Boot

Porting U-Boot and Linux to T4240 Systems, Rev 0, 10/2013

2 Freescale Semiconductor, Inc.

• New board configuration files required to add overall support for the platform
• Modification of existing drivers to support new features/components used on the board

The steps below outline the process of completing both these tasks.

2.3.1 Step 1: Update boards.cfg file
At the top level in U-Boot the boards.cfg file lists all supported platforms, for example:

T4240QDS powerpc mpc85xx t4qds Freescale - T4240QDS:PPC_T4240

The fields above define the Target, ARCH, CPU, Board name, Vendor, SoC and Options for the board. The Target is the
name used during the build process to create binaries for a specific platform. A new entry is therefore required in this file for
the new platform, for example:

T4240SDP powerpc mpc85xx t4sdp Freescale - T4240SDP:PPC_T4240

2.3.2 Step 2: Create a board configuration file
The include/configs directory contains board configuration files where the user should define which interfaces are supported
(e.g. CONFIG_SATA1 to enable SATA controller 1), the memory map of the system (e.g.
CONFIG_SYS_DDR_SDRAM_BASE defines the DDR base address), other options such as supported U-Boot commands
(e.g. CONFIG_CMD_I2C) and the U-Boot environment variables (e.g. bootargs).

For a new development platform, in this case the T4240-SDP, developers could create T4240SDP.h and t4sdp.h files within
the configs directory based on those already available for the T4240QDS. These files can then be modified to meet the
requirements of the new board.

2.3.3 Step 3: Create board specific directory and files
The board/freescale directory contains directories for supported platforms, e.g. t4qds. A new T4240 platform would require a
directory at this level and the files listed below.

As with the configuration file users can start with the T4240QDS files and modify them to meet their requirements.
• t4sdp.c Board specific peripheral set-up. Includes functions to print clock and RCW details at start-up.
• ddr.c Board specific DDR initialization functions. Includes DDR controller settings such as clock adjust and write

leveling control.

Part of this initialization handles enabling interleaving based on the requirements passed in from the U-Boot environment
variable hwconfig. For example: If the user has the hwconfig setting shown below, the populate_memctl_options() function
in arch/powerpc/cpu/mpc8xxx/ddr/options.c will take these inputs and ensure the DDR initialization completes with the
relevant interleaving options in place. The example below enables both controller and bank based interleaving. If interleaving
should be disabled these entries within hwconfig should be removed.

hwconfig=fsl_ddr:ctlr_intlv=3way_4KB,bank_intlv=auto;

• eth.c Board specific Ethernet initialization functions including setting up the MDIO bus for each of the FMan
interfaces.

The PHY addresses used in the board_eth_init() function are defined in the board configuration file discussed in Step 2:
Create a board configuration file , for example:.

#define RGMII_PORT1_PHY_ADDR 0x5

Porting U-Boot

Porting U-Boot and Linux to T4240 Systems, Rev 0, 10/2013

Freescale Semiconductor, Inc. 3

• pci.c Functions for configuring the PCIe interface.

pci_of_setup() is called in ft_board_setup() within t4sdp.c if CONFIG_PCI is defined in the board configuration file covered
in Step 2: Create a board configuration file.

• law.c Defines local access windows for interfaces such as flash memory based on the memory map of the system.

If users copy the T4240QDS file as a starting point it is easy to add/remove/modify entries in law_table[]. For example, to
change the size of the flash LAW from 256MB to 128MB users should change the entry below from:

SET_LAW(CONFIG_SYS_FLASH_BASE_PHYS, LAW_SIZE_256M, LAW_TRGT_IF_IFC)

to

SET_LAW(CONFIG_SYS_FLASH_BASE_PHYS, LAW_SIZE_128M, LAW_TRGT_IF_IFC)

All valid size options can be found in arch/powerpc/include/asm/fsl_law.h. The LAW target options can also be found in this
header file. If the base address of a LAW needs to be changed, for example CONFIG_SYS_FLASH_BASE_PHYS, the
relevant parameter in the board configuration files covered in Step 2: Create a board configuration file should be changed to
the correct value for the new platform.

• tlb.c Defines translation lookaside buffers to handle memory management in regions such as DDR, CCSR space, flash
and PCIe.

As with all files in this section the best approach is to start with the T4240QDS file and modify as required for the new
platform.

• Makefile Makefile is used to compile files listed above.

2.3.4 Step 4: Updating the device memory map (optional)
The device memory map is defined in arch/powerpc/include/asm/immap_85xx.h.

There are, however, some registers within the device that may not be currently exposed to users for use within board
configuration code. If the user requires access to these registers the memory map can be updated to accommodate this, e.g.
the code below defines the offset required for the serdes 4 block.

#define CONFIG_SYS_FSL_CORENET_SERDES4_OFFSET 0xED000

…

#define CONFIG_SYS_FSL_CORENET_SERDES4_ADDR \

(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_CORENET_SERDES4_OFFSET)

Once defined the identifier can be used within board initialization code to read/write registers within this block.

2.3.5 Step 5: Adding new errata workarounds (optional)

If the user requires errata workarounds that may not be currently supported in the SDK the following files can be modified.

NOTE
The actual implementation of the errata workaround is not defined here since that will be
unique to each errata.

• arch/powerpc/cpu/mpc85xx/cmd_errata.c

Porting U-Boot

Porting U-Boot and Linux to T4240 Systems, Rev 0, 10/2013

4 Freescale Semiconductor, Inc.

Once running on the platform U-Boot supports an ‘errata’ command which will list all the errata workarounds implemented
in the particular build. To ensure any new errata workarounds are included when the command is executed users should
update cmd_errata.c to include a new entry in the format shown below.

#ifdef CONFIG_SYS_FSL_ERRATUM_A005977
 if (IS_SVR_REV(svr, 1, 0))
 puts("Work-around for Erratum A005977 enabled\n");
 #endif

• arch/powerpc/include/asm/config_mpc85xx.h

The config_mpc85xx.h file includes SoC specific defines for Freescale MPC85xx and QorIQ processors. This includes
values such as the maximum number of CPUs (CONFIG_MAX_CPUS) and the number of DDR controllers
(CONFIG_NUM_DDR_CONTROLLERS). Also defined for each processor are the errata workarounds that should be
implemented, e.g.

 #define CONFIG_SYS_FSL_ERRATUM_A005977

Therefore if new workarounds are being added a #define should be added for each to ensure all workaround code is
controlled at this level.

2.3.6 Step 6: Updating Ethernet PHY drivers (optional)

If the Ethernet PHY used is not already supported within U-Boot the PHY driver code can be updated to add support for the
new device. For example, if the user wishes to add a new Broadcom PHY they should follow the example below shown for
the BCM54616S PHY.

• In drivers/net/phy/broadcom.c create a new structure in the format below. In this case the config, startup and shutdown
functions are reuse of already existing routines but if the device has different programming requirements these can be
changed to call new functions.

Static struct phy_driver BCM54616S_driver = {
 .name = “Broadcom BCM54616S”,
 .uid = 0x3625d10,
 .mask = 0xffffff0,
 .features = PHY_GBIT_FEATURES,
 .config =&bcm5461_config,
 .startup = &bcm54xx_startup,
 .shutdown = &genphy_shutdown,
 };

• In drivers/net/phy/broadcom.c ensure the new PHY is registered by adding a phy_register() call, for example:

phy_register(&BCM54616S_driver);

For other PHY vendors users should refer to the drivers/net/phy options where other files are available such as vitesse.c.

2.4 Building U-Boot images

To build the U-Boot binary for the newly created platform users should open a terminal window at the top level U-Boot
directory and run the make target command, for example:

make T4240SDP

The u-boot.bin file will be created within the top level directory and can then be flashed to the board for testing.

Porting U-Boot

Porting U-Boot and Linux to T4240 Systems, Rev 0, 10/2013

Freescale Semiconductor, Inc. 5

3 Porting Linux
This section covers the process of obtaining the Linux sources, modifying the source to support the new platform and
building binary images that will execute on the platform.

3.1 Overview
Linux as an operating system in the embedded space is increasing in popularity and provides a stable, scalable solution that is
updated frequently to include the latest device drivers, etc for embedded system components.

In a system the Linux operating system must be capable of bringing up the correct network interfaces and other system
peripherals such as SATA and PCIe.

3.2 Obtaining the source code

The main Linux repository is at

git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

Users can clone the tree from this location to port their new platform using the command below.

git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

The method detailed below uses the Freescale SDK package and will use the Linux kernel sources available within the SDK
as a starting point for the port.

Information on how to extract/modify the kernel sources from the SDK is available on the infocenter website: http://
www.freescale.com/infocenter/index.jsp?topic=%2FQORIQSDK%2F2880375.html.

The main steps are as follows:
1. Install the latest SDK release
2. In the main install directory create a build directory for the T4240QDS, i.e.

• source ./fsl-setup-poky -m t4240qds

3. From the <yocto_install_path>/build_t4240qds_release directory extract the kernel source using the following
command:

• bitbake -c patch virtual/kernel

4. To find the location of the extracted kernel source run the following command and look for the source S= result
• bitbake -e virtual/kernel | grep ^S

The output will look something like:
• S="/home/Projects/sdk-1.4/QorIQ-SDK-V1.4-20130625-yocto/build_t4240qds_release/tmp/
work/t4240qds-fsl_networking-linux/linux-qoriq-sdk/3.8-r14.3/git"

5. cd to the source directory given by S=
6. Set <ARCH> and <CROSS_COMPILE> to the correct values:

• export ARCH=powerpc

• Using export CROSS_COMPILE= set the path to the relevant cross compile tools within the /opt directory on
your system

7. Check the build process by building the T4240QDS binary, i.e.
• Run make 85xx/e6500rev1_defconfig
• Run make uImage
• Check the uImage file is created within the arch/powerpc/boot directory of Linux

Porting Linux

Porting U-Boot and Linux to T4240 Systems, Rev 0, 10/2013

6 Freescale Semiconductor, Inc.

The source code in the directory above can now be modified for the new platform. The steps in this application note assume
the kernel is built manually, i.e. not using bitbake. If users prefer to use bitbake they should refer to the infocenter QorIQ
instructions/FAQs for Linux.

3.3 Creating a new platform
As with U-Boot adding support for a new platform involves creating new files specific to the board and updating existing
kernel code to support features on the board that may not already be part of the kernel.

The steps below outline the process of completing both these tasks.

3.3.1 Step 1: Create a new board initialization file
The arch/powerpc/platforms/85xx directory contains initialisation files for supported platforms.

In this example a developer could create a t4240_sdp.c file which includes set-up such as interrupt and power saving
functions as shown below. As most of this file is generic across all T4240 platforms it is best to start with a known working
example such as the T4240QDS and modify as required.

define_machine(t4240_sdp) {
 .name = "T4240 SDP",
 .probe = t4240_sdp_probe,
 .setup_arch = corenet_ds_setup_arch,
 .init_IRQ = corenet_ds_pic_init,
 #ifdef CONFIG_PCI
 .pcibios_fixup_bus = fsl_pcibios_fixup_bus,
 #endif
 /* coreint doesn't play nice with lazy EE, use legacy mpic for now */
 #ifdef CONFIG_PPC64
 .get_irq = mpic_get_irq,
 #else
 .get_irq = mpic_get_coreint_irq,
 #endif
 .restart = fsl_rstcr_restart,
 .calibrate_decr = generic_calibrate_decr,
 .progress = udbg_progress,
 #ifdef CONFIG_PPC64
 .power_save = book3e_idle,
 #else
 .power_save = e500_idle,
 #endif
 .init_early = corenet_ds_init_early,
 };

3.3.2 Step 2: Update Kconfig and Makefile
To provide build support for the new platform the user must make sure Kconfig and Makefile within the arch/powerpc/
platforms/85xx directory have the relevant updates as shown below.

• In Kconfig add an entry for the new platform, e.g.

config T4240_SDP
 bool "Freescale T4240 SDP"
 select DEFAULT_UIMAGE
 select E500
 select PPC_E500MC
 select PHYS_64BIT
 select SWIOTLB

Porting Linux

Porting U-Boot and Linux to T4240 Systems, Rev 0, 10/2013

Freescale Semiconductor, Inc. 7

 select ARCH_REQUIRE_GPIOLIB
 select GPIO_MPC8XXX
 select PPC_EPAPR_HV_PIC
 select HAS_FSL_QBMAN
 help

This option enables support for the T4240 SDP board
• Update the Makefile to include the build option for the new platform, e.g.

obj-$(CONFIG_T4240_SDP) += t4240_sdp.o corenet_ds.o

NOTE
The first file name specified for the board should match the board initialization file
created in Step 1: Create a new board initialization file

3.3.3 Step 3: Create Kernel configuration file
The kernel configuration settings are held in a .config file located in the top level directory.

The content of this file is updated during the build process when the user specifies a configuration file for the board.

The board specific kernel options are defined in a target_defconfig file located in the arch/powerpc/configs/85xx directory.
The user should create a new file such as, t4240sdp_defconfig. In the example, T4240-SDP board the platform support
section of this file would contain an entry for CONFIG_T4240_SDP=y.

3.3.4 Step 4: Create a device tree
The device tree is a data structure for describing the hardware. Linux is passed this information at boot time and it therefore
avoids hardware details being hard coded within the operating system.

Bindings are used within the device tree to define typical hardware features such as data busses and peripheral devices. Users
should refer to the Documentation/devicetree/bindings directory for a breakdown of the available bindings and examples of
each case.

When porting to a new T4240 platform the best approach would be to start from the T4240QDS device tree (t4240qds.dts)
and modify to match the hardware characteristics of the new platform. For example, the T4240QDS device tree has
Integrated Flash Controller (IFC) entries for various options such as NAND flash that are not used on the T4240-SDP. The
IFC entry can therefore be simplified to the settings below where only NOR flash is required. The ranges field is where the
user sets the size, in this case 0x8000000 for 128MB and the start address, e.g. 0xFE8000000. Note that in this case a 36 bit
address map is assumed so the user must make sure this is taken into account when defining the ranges.

 ifc: localbus@ffe124000 {
 reg = <0xf 0xfe124000 0 0x2000>;
 ranges = <0 0 0xf 0xe8000000 0x08000000>;

 nor@0,0 {
 #address-cells = <1>;
 #size-cells = <1>;
 compatible = "cfi-flash";
 reg = <0x0 0x0 0x8000000>;

 bank-width = <2>;
 device-width = <1>;
 };
 };

Developers should ensure that the U-Boot addressing for LAWs and TLBs is inline with the addressing defined in the device
tree.

Porting Linux

Porting U-Boot and Linux to T4240 Systems, Rev 0, 10/2013

8 Freescale Semiconductor, Inc.

3.3.5 Step 5: Update Ethernet PHY driver (optional)

As with U-Boot if the Ethernet PHY used on the T4240 platform is not already supported within Linux the PHY driver code
can be updated to add support for the new device. E.g. if the user wishes to add a new Broadcom PHY they should follow the
example below shown for the BCM54616S PHY.

• In drivers/net/phy/broadcom.c update broadcom_drivers[] to include an entry for the new PHY. In this case the
config_init, etc functions are reuse of already existing routines but if the device has different programming
requirements these can be changed to call new functions.

 .phy_id = PHY_ID_BCM54616,
 .phy_id_mask = 0xfffffff0,
 .name = "Broadcom BCM54616",
 .features = PHY_GBIT_FEATURES |
 SUPPORTED_Pause | SUPPORTED_Asym_Pause,
 .flags = PHY_HAS_MAGICANEG | PHY_HAS_INTERRUPT,
 .config_init = bcm54xx_config_init,
 .config_aneg = genphy_config_aneg,
 .read_status = genphy_read_status,
 .ack_interrupt = bcm54xx_ack_interrupt,
 .config_intr = bcm54xx_config_intr,
 .driver = { .owner = THIS_MODULE },

The final step in broadcom.c is to add an entry for the PHY to the broadcom_tbl structure, like this:

 { PHY_ID_BCM54616, 0xfffffff0 }
• In include/linux/brcmphy.h add a #define for the new PHY to specify what the PHY identifier register values are (this

value should be provided in the PHY datasheet).

#define PHY_ID_BCM54616 0x03625d12

NOTE
Users should ensure the device drivers section in the kernel config file (Step 3:
Create Kernel configuration file) includes the correct PHY option for the board,
e.g. CONFIG_BROADCOM_PHY=y.

3.4 Building Linux images

To build the Linux binary for the newly created platform users should open a terminal window at the top level Linux
directory and run the following commands:

• make config, like this:

 make 85xx/t4240sdp_defconfig

This step reads the kernel configuration options from the specified file and these are stored in the .config file at the top
level directory. If the user wishes add/remove options the make menuconfig command can be used at this stage to
bring up a user interface showing all available options.

• make uImage
• make t4240sdp.dtb

The kernel binary (uImage) file and the device tree binary (e.g. t4240sdp.dtb) will be created within the arch/powerpc/boot
directory. These can then be flashed to the new platform and tested using the U-Boot build created in Porting U-Boot.

Porting Linux

Porting U-Boot and Linux to T4240 Systems, Rev 0, 10/2013

Freescale Semiconductor, Inc. 9

4 Revision history
This table summarizes revisions to this document.

Table 1. Revision history

Revision Date Description

0 10/2013 Initial public release.

Revision history

Porting U-Boot and Linux to T4240 Systems, Rev 0, 10/2013

10 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions .

Freescale, the Freescale logo, AltiVec, CodeWarrior, Energy Efficient
Solutions logo, and QorIQ are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. CoreNet, is a trademark of Freescale
Semiconductor, Inc. All other product or service names are the property
of their respective owners. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are
trademarks and service marks licensed by Power.org.

© 2013 Freescale Semiconductor, Inc.

Document Number AN4814
Revision 0, 10/2013

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Introduction
	Porting U-Boot
	Overview
	Obtaining the source code
	Creating a new platform
	Step 1: Update boards.cfg file
	Step 2: Create a board configuration file
	Step 3: Create board specific directory and files
	Step 4: Updating the device memory map (optional)
	Step 5: Adding new errata workarounds (optional)
	Step 6: Updating Ethernet PHY drivers (optional)

	Building U-Boot images

	Porting Linux
	Overview
	Obtaining the source code
	Creating a new platform
	Step 1: Create a new board initialization file
	Step 2: Update Kconfig and Makefile
	Step 3: Create Kernel configuration file
	Step 4: Create a device tree
	Step 5: Update Ethernet PHY driver (optional)

	Building Linux images

	Revision history

