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1. Introduction 

This application note describes how to perform 

an in-system reprogramming of Kinetis devices 

using standard communication media such as 

SCI. Most of the codes are written in C, so it is 

easy to migrate to other MCUs. The GUI is 

provided.  

This bootloader is based on the FRDM-KL26 Freescale 

Freedom development board. However, in the software 

package, the bootloader and user application source 

codes for both the FRDM-KL26 Freescale Freedom 

development board (ARM® Cortex®-M0+ core) and 

the FRDM-K22F Freescale Freedom development 

board (ARM® Cortex®-M4 core) are provided. The 

customer can make their own bootloader applications 

based on the source code. The application can be used 

to upgrade a single target board and multi boards 

connected through networks such as RS485. The 

bootloader application checks the availability of the 

nodes between the input address range, and 

automatically upgrades the firmware nodes one by one.  

The bootloader and application code are written in 

separate projects. For mass production, users can 

program the bootloader with tools such as 

CycloneMAX and J-Link, then boot the application 

code through UART. Another option is to combine the 

bootloader and application s19 file in one file, and 
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program it. This combination can be done by copying <user_app>.s19 to the end of <boot_loader>.s19. 

NOTE 

Combination records started by s7, s8, or s9 in the boot.s19 section should 

be deleted, because these records are recognized as the end of the file. 

 

When upgrading, the bootloader updates the user application code space starting from 0x1000. For 

verification, the user application space from 0x1000 is also verified. As all source codes are provided, 

users can define their own programming and verification memory range as needed. 

 

Figure 1. A typical use case 

 

Key features of the bootloader: 

 Able to update (or verify) single or multiple devices in a network. 

 Application code and bootloader code are in separate projects, convenient for mass production 

and firmware upgrading. 

 Bootloader code size is small (around 2 K) which reduces the requirement of on-chip memory 

resources. 

 GUI supports S19, HEX, and BIN format burning images. 

 Source code is available for easy for reading and migration.  
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2. Bootloader Frame Protocol  

2.1. Bootloader Frame Protocol overview 

Bootloader frames are used for communication between a PC and target control units. The frame starts 

with a 1 byte frame start, followed by 1 byte address, 1 byte reserved, 1 bytes data length, 1 byte boot 

code (only for command frame), m byte-specific bytes, and 2 bytes of frame end. A node only processes 

frames using the same node address. 

 

Figure 2. Boot Frame 

 Frame Start: Frame header is a single byte, character ‘$’, which is a frame flag indicating the 

start of a frame. 

 Address:  The address could be from 1 to 255. The Master (GUI running on a PC) adds a target 

node’s address in the ‘Address’ field to communicate with it. The node also adds its own node 

address in the ‘Address’ field of the response frame, so the Master knows which node is 

responding. Address 0 can be selected for broadcasting. In the bootloader code, the address is 

defined as a fixed const: 

  Station_number = 0x01; 

Users can use different ways to implement the address of a node. I.e., reading a DIP Switch on 

GPIO pins, reading it from an external EEPROM, or keeping a sector in flash and programming 

the serial number using CycloneMAX (see the Cyclone_MAX_User_Manual). 

 Reserved: The user can customize it based on user-specific requirements. 

 Data Length: For the command frame: Data Length = Boot Code length + Specific Data length. 

For the response frame: Data Length = Specific Data length. 

 Data: The command frame is the data bytes from the bootloader frame, from the PC to the target 

MCU. The response frame are the data bytes from the bootloader frame, from the target MCU to 

PC. See Table 1 for more details. 
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 Frame End: This two-byte field is always filled with 0xAA55 as the end of frame. To improve 

robustness, users can add CRC data here and revise the bootloader code and GUI code 

accordingly. 

 Boot Code: See Table 1 for more details. 

 Specific Data: See Table 1 for more details. 

2.2. Command and Response Frame 

A Bootloader Frame command and response Frame as shown in below figure: 

 Command Frame direction: PC GUI -> target MCU 

 Response Frame direction:  Target MCU -> PC GUI 

 

Table 1. Command and Response Frame 

NO. Frame 

type 

Data Length Boot 

Code 

Specific Data Function 

1 command 1 ‘B’ n/a Forces target to enter bootloader mode. 

response No response. The program jumps to bootloader immediately. 

2 command 1 ‘V’ n/a Forces target to enter verification mode. 

response No response. The program jumps to bootloader immediately. 

3 command 1 ‘I’ n/a Identification of target information. 

response Target responds with a string of MCU identification.  

4 command 1 ‘G’ n/a Forces target to run. 

response No response. The bootloader program forces a system reset and runs the application code. 

5 command 4 ‘E’ Addr2 Addr1 Addr0  Forces target Erase-specific flash block. 

response If target executes the command successfully, it responds a 0 length frame. I.e., 0x24 0x01 0x00 

0x00 0xAA 0x55. Otherwise, there is no response. 

6 command 5+LEN ‘W’ Addr2 Addr1 Addr0 

LEN Data 

Forces target Program-specific flash block. 

response If target executes the command successfully, it responds a 0 length frame. I.e., 0x24 0x01 0x00 

0x00 0xAA 0x55. Otherwise, there is no response. 

7 command 5 ‘R’ Addr2 Addr1 Addr0 

LEN 

Forces target Read-specific flash block. 

response LEN n/a LEN Data Sends specific flash block content to PC. 

 

Some of the boot codes are derived from FC protocol commands in Developer’s Serial Bootloader 

(document AN2295) and HCS08 Bootloader to Update Multiple Devices in a Field Bus Network 

(document AN4440). For more detailed descriptions of the boot codes: 

http://fsls.co/doc/AN2295
http://fsls.co/doc/AN4440
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‘B’ (0x42 in hex): This command forces the target to enter bootloader mode. It does not wait for a 

response. Follow with the ‘I’ command to check whether the target MCU is in bootloader mode. Use 

“APP_OK” to erase the last 8 bytes of unprotected flash memory. If there is a power down event during 

the boot load procedure, the MCU is forced into bootloader mode in the next power up. 

 

‘V’ (0x56 in hex): This command forces the target to enter verification mode. It does not wait for a 

response. Follow with the ‘I’ command to check whether the target MCU is in verification mode. In 

verification mode, it only compares the contents in the target MCU with a specific S19 file. Nothing 

changes in the target MCU. 

 

‘I’ (0x49 in hex): After receiving the ‘I’ command, the MCU responds with a string of MCU 

identification from bootloader. 

An example of a Response Frame to command ‘I’: 

0x24 0x01 0x00 0x1F 0x4D 0x4B 0x4C 0x32 0x36 0x5A 0x31 0x32 0x38 0x23 0x31 0x2E 0x30 0x23 

0x00 0x40 0x04 0x00 0x02 0x00 0x00 0x00 0x03 0xFC 0x00 0x03 0xFF 0x00 0x10 0x00 0x01 0xAA 

0x55 

In the above series, the “Specific Data” of the Response Frame is highlighted (See Figure 2 and Table 

2). This means the target part number is “MKL26Z128”, the bootloader version is “1.0”, target write 

block size is 0x0040, target erase block size is 0x0400, target flash address end address is 0x00020000, 

The bootloader does not care memory start address is 0x0003FC, bootloader doesn’t care memory end 

address is 0x0003FF, user application start address is 0x001000, and target is ARM Cortex M0+ core. 

“Specific data” of Response Frame to command ‘I’: 

 

Table 2: Specific data” of Response Frame to ‘I’ command 

NO. Info length Specific data Description 

1 1 length The specific data length for responding to the ‘I’ command. 

2 Not fixed part number Target part number, ending with ‘#’. I.e., "MKL26Z128#". 

3 Not fixed Boot version Bootloader version information, ending with ‘#’. I.e., “1.0#”. 

4 2 Size1 size0 Target-write-block size. 

5 2 Size1 size0 Target-erase-block size. 

6 3 Addr2 Addr1 

Addr0 

Target flash address end address. I.e., MKL26Z128 end address is 

0x00020000. 

7 3 Addr2 Addr1 

Addr0 

Bootloader doesn’t care memory start address. The GUI does not verify no-

care memory when executing the verify command. 

8 3 Addr2 Addr1 

Addr0 

Bootloader doesn’t care memory end address. 

9 3 Addr2 Addr1 Application start address. 
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Addr0 

10 1 Target core 1: Cortex M0+    2:Cortex M4 

 

 

‘G’ (0x47 in hex): After receiving the ‘G’ command, the MCU exits bootloader and forces the user 

application code to run. It does not respond to a frame. The user can use application software to ensure 

that the target MCU is running the user code. 

 

‘E’ (0x45 in hex): This command is used to erase a block of the flash in the target MCU. Based on the 

Kinetis memory map, the address is 24 bits. Addr2 contains the highest bits, and Addr0 contains the 

lowest bits. After executing the command, it responds with a zero length frame. For example, 0x24 0x01 

0x00 0x00 0xAA 0x55.  Otherwise, there is no response from the target. 

 

‘W’ (0x57 in hex): the command is used to program a block of the flash in the target MCU. Based on 

the Kinetis memory map, the address is 24 bits. Addr2 contains the highest bits and Addr0 contains the 

lowest bits. LEN is the data length to be programmed and follows the data to be programmed. After 

executing the command successfully, the MCU responds a zero length frame. I.e., 0x24 0x01 0x00 0x00 

0xAA 0x55. Otherwise, there is no response from the target. 

 

‘R’ (0x52 in hex): This command is used to read a block of flash from the target MCU. Based on the 

Kinetis memory map, the address is 24 bits. Addr2 contains the highest bits, and Addr0 contains the 

lowest bits. LEN is the data length to be read. After executing the command successfully, the MCU 

responds a Bootloader Response Frame beginning with LEN (the length read data) and following the 

read data. 

 

NOTE 

When using the 24-bit address, the supported address range is 0x000000 to 

0xFFFFFF (16 M). 

3. Memory relocation and code implementation 

3.1. Memory and vector relocation 

The left side of the below figure is the default memory map of an MCU. The example is based on 

MKL26Z128. On the right side of the figure is relocated memory and vectors. In this example, the flash 

range from 0x00000000 to 0x00000FFF is protected. In this protected area, 0x00000000 to 0x000000C0 

are the original vectors. The range from 0x00000410 to 0x00000FFF is for the bootloader code.  

The unprotected flash from 0x00001000 to 0x0001FFFF is for the user code and can be updated in the 

system.  
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The reset vector is 0x00000000, and it is the entry of bootloader code. When exiting the bootloader 

code, it goes to the user application code by setting the Vector Table Offset Register (VTOR) and 

loading the new SP and PC values.  

 

 

Figure 3. Memory allocation and vector relocation 

 

 

When bootloader code runs, it uses the whole RAM space except the highest 8 bytes of RAM memory. 

For the KL26Z128 part, the address of the 8 bytes is 0x20002FF8-0x20002FFF. The stack pointer points 

to (RAM end - 8) but not the RAM end. The end 8 bytes of non-initialized RAM memory is reserved for 

application instruction to program or verify (see Section 3.3.3, “Bootloader Linker File Revision”). 

When the program switches from bootloader to application, all RAM memory space (except the end 8 

byte address) is released to the user code. Both the user code and bootloader can only access 

0x20002FF8-0x20002FFF by the pointer. 
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3.2. Bootloader flowchart 

The on-chip flash programming routines simplify the bootloader and improve memory usage. The 

communication between the MCU and PC uses UART. 

The following flowchart shows the basic principle of the bootloader algorithm: 

 

Figure 4. Bootloader flowchart 
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3.3. Bootloader implementation 

The bootloader implementation is based on CodeWarrior v10.6. Additionally, this project is also ported 

to Kinetis Design Studio (KSD) IDE v3.0, Keil v5.15 and IAR v7.40. The user can locate these in the 

bootloader software package. The application demo projects are also provided. 

3.3.1. Bootloader clock initialization 

The Kinetis L family has an Internal Reference Clock (IRC) Module which allows effective 

implementation of the bootloader without a crystal. In the bootloader, the user can choose either a 

default internal clock or external clock.  

When using the default internal clock, the FEI mode is selected and the UART0 source is 

MCGFLLCLK. In the bootloader code, it is set to the same mode as the core clock. 

 

Figure 5. Default internal clock 

 

When using external crystal in bootloader demo, enabling macro USE_EXTERNAL_CLOCK can 

enable PEE with an 8 M crystal, 48 MHz core clock, and 24 MHz bus clock. The UART0 clock source 

is MCGPLLCLK/2. In the bootloader code, it is set to the same mode as the core clock. 

 
Figure 6. External clock 

3.3.2. Bootloader flash program routine  

Using a Kinetis Cortex-M0+ core, the Platform Control Register (MCM_PLACR) is added. The 

MCM_PLACR register selects the arbitration policy for the crossbar masters and configures the flash 

memory controller. Enabling the ESFC bit can stall the flash controller when flash is busy. Setting the 

ESFC bit can well-balance the time sequence of flash reading and writing. When writing flash, reading 

the flash instructions can wait, and vice versa. Using the ESFC bit can make flash programming easier. 

Therefore, one flash can write itself, which is not possible for the other one flash MCU without ESFC 

bit control. 
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The following is the flash initialization example for ARM Cortex-M0+. The ESFC bit is easy to be set in 

C code. 
#define  MCM_PLACR_ESFC_MASK                      0x10000u 

 

Figure 7. ESFC bit in C code 

For ARM Cortex-M0+ products, the user does not need to copy the flash operating routines to RAM. 

For the ARM Cortex-M4 core Kinetis, the CopytoRam code must be used for the flash programming 

routine. Therefore, the flash programming routine is executed from RAM but not flash. 

The following is an example for flash initialization in ARM Cortex-M4.  

Byte buffer[200]={0}; 
void FLASH_Initialization(void) 
{ 
  LWord i; 
  // copy flash code from flash to ram 
  for(i=0;i<200;i++_ 
     buffer[i] = ((Byte*)FLASH_FlashCommandSequenceStart)[i-1]; 
} 

3.3.3. Bootloader linker file revision  

According to the memory allocation and vector relocation, the linker file should be revised. The 8 

highest bytes should be allocated to RAM memory. For KL26Z128, the address 0x20002FF8-

0x20002FFF is reserved without definition in the linker file. Therefore, it can be prevented from being 

initialized. The modification is highlighted in the figure below. 

 

 

Figure 8. Bootloader linker file configuration 
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3.3.4. “Program” and “Verify” indicator 

Although the linker file does not define 0x20002FF8-0x20002FFF, the code can still access it via 

pointer. In the bootloader demo code, the pointer to access it is defined as AppIDC. 

 

Figure 9. Program and verification indicator 

 

The GUI is for sending either “program” or “verify” instructions to the target MCU. When the target 

receives a “program” instruction, it writes 0x0000000B to AppIDC, then forces a system reset and the 

bootloader goes into boot mode. When the target receives a “verify” instruction, it writes 0x0000000A 

to AppIDC, then forces a system reset and the bootloader goes into verify mode. 

 

 

Figure 10. Bootloader verify mode 

3.3.5. Application completeness symbol  

Flash memory 0x00001400 - 0x00001407 for KL26Z128 is defined as the application code 

completeness symbol. The start address is defined as the following: 

 

 After successfully updating an application in the bootloader, the address is filled as "APP_OK". 

It erases when entering boot mode. If the updating process stops, or there is a power down event 

during the upload procedure, the new application is not successfully programmed, but the old 

application will be corrupted. When powering on the target, it goes directly to the bootloader 

because "APP_OK" is not detected. 

 In the user application, “APP_OK” is initialized as a const string at 0x00001400: 

 

In the case where the user is burning the combined bootloader and application together with the target, 

“APP_OK” can also be programmed. The next time the user is powering on the target, the bootloader 

program detects that “APP_OK” exists, and jumps to the application code.  
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In the GUI, the following are steps for handling the “APP_OK” symbol: 

1. The GUI reads out the application burning file into an array. 

2. The GUI removes the content of “APP_OK” at APPOK_START_ADDRESS from the array. 

3. The GUI burns Step 2-generated array to the target. 

4. The GUI burns “APP_OK” to the target at APPOK_START_ADDRESS 

The above steps guarantee that “APP_OK” is only programmed after a full application code is 

programmed. 

3.3.6. Flash protection 

In bootloader, the flash range from 0x00000000 to 0x00000FFF is protected. The protection is defined 

in bootloader code: 

 

Here, bootloader regions (0x00000000 to 0x00000FFF) within the flash memory are protected from 

program and erase operations. Protection is controlled by NVM Flash Configuration Field (at address 

0x00000408 - 0x0000040B).  

Each bit of this field protects a 1/32 region of the program flash memory except for memory 

configurations with less than 32 KB of program flash, where each assigned bit protects 1 KB.  

 

In the user application code, when powering on, the content of NVM Flash Configuration Field is loaded 

into the flash option register (FTFA_FPROTn) at 0x40020010 to 0x40020013.   

NOTE 

The NVM Flash Configuration Field is configured only to protect from 

0x00000000 to 0x00000FFF in the bootloader. If application needs all 

FLASH memory be protected, FTFA_FPROTn need to be set as 0.  

The following code can be used to protect all flash memory: 
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3.3.7. Watchdog 

In the Kinetis device example, KL26Z128_SIM_COPC is a write-once register after reset. 

 
Figure 1. KL26Z128_SIM_COPC 

The following lists the description of the COPT[3:2] bits: 

 00 – COP disabled. 

 01 – COP timeout after 25 LPO cycles or 213 bus clock cycles. 

 10 – COP timeout after 28 LPO cycles or 216 bus clock cycles. 

 11 – COP timeout after 210 LPO cycles or 218 bus clock cycles. 

The COPT bits in SIM_COPC are 1:1 after reset. If COPT bits are set with another value in the 

bootloader source code, the user cannot change COPT again in the user application code, because 

SIM_COPC is a write-once register. 

In some IDEs for example CodeWarrior v10.6, the default generated startup code disables the watchdog 

by manually setting the SIM_COPC register. Therefore, any other change of SIM_COPC in the user 

application code cannot be successfully performed again. The following is hardware initialization code 

in the CodeWarrior auto generated Kinetis_sysinit.c file.  

 

In the bootloader implementation, because of the above reason, it is not suggested to change the default 

watchdog settings. If the default initialization code has completed it, it is suggested that the user 

comment it out.  
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Then, set BOOTLOADER_INT_WATCHDOG as 1 in bootloader.h to enable the watchdog feed. 

 

3.3.8. User application code 

The user can add bootloader communication code to a customized user application project with the 

following steps. The code has passed the test under CodeWarrior v10.6. 

1. Revise the application linker file for vector relocation, and the last 8 bytes of RAM memory 

reservation: 

 

2. Add bl_communication.c/bl_communication.h to the user application project. 

3. Add the three functions to the user application file:  

INIT_CLOCKS_TO_MODULES;    // init clock module  
UART_Initialization();     // init UART module  

while(1) 
 { 
  UpdateAPP();         // update user's application  
 } 

Now the user can use the bootloader to update the user application. Steps 2 and 3 enable the user 

application code to receive bootloader commands, and enter boot or verify mode. If this is not needed, 

then only Step 1 is required. 
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4. Communication between GUI and Target 

The graphics user interface on the PC side is written using Microsoft Visual Express® 2013. It is a free 

edition of the program which can be downloaded from the Microsoft® website.  

The GUI is compatible with 32/64-bit Windows® OS 7. For Windows® OS XP, Microsoft .NET 

Framework 4.0 needs to be installed. It can be downloaded from the Microsoft website, 

www.microsoft.com/.  

The below figure displays the GUI. 

 

Figure 11. Graphics User Interface (GUI) 

 

When clicking the “Program” button, the opened file will be programmed to the target nodes one-by-

one, as defined in the Target Address. During implementation, the Target Address is limited to 1 to 32 

(The user can revise the bootloader and GUI to expand the address range). After checking the Verify 

box and programming one block of flash, the contents are read back and compared with the S19 file. 

While in the programming process, the user should be able to terminate the process anytime.  

The “Verify” button is used to compare a selected S19 file with target nodes one by one. It does not 

change the contents in the target MCUs.  

Note that both program and verify commands will stop the target node from running. A ‘G’ command is 

issued automatically after the process successfully finishes, which forces the target node to run. 

Remember to open the S19 file and open the COM port first. In the boot mode, the LED on the FRDM-

KL26 Freescale Freedom development board is blue.  

 

http://www.microsoft.com/
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4.1. Program execution – Program without verify 

The following flowchart shows what happens when clicking the “Program” button when “Verify” is not 

checked. 

 

Figure 12. GUI communicates with Target – program without verify 

 

1. The GUI sends a ‘B’ command to the target. If the target is in the running application, the target 

performs a system reset to the bootloader in program mode so it is ready for the next command. 

2. The GUI sends an ‘I’ command, then the target erases APP_OK and answers the GUI with the 

target identification. 

3. The GUI sends an ‘E’ command, and the target erases one block flash, size 0x400. If successful, 

the answer is 0x00. 

4. The GUI sends 16 ‘W’ commands successively. Each command requests that a target writes 

0x40 data to flash. 

5. The GUI continues to perform step 3 and step 4 until the user application s19 file finishes 

programming. 
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6. The GUI sends a ‘G’ command, and the target writes APP_OK in flash, then performs a system 

reset and runs the application code. 

 

Figure 13. Running GUI – program without verify 
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4.2. Program execution - Program with verify 

The flowchart below shows that when clicking the “Program” button, the “Verify” button is checked. 

 

Figure 14. Running GUI – program with verify 

 

1. The GUI sends a ‘B’ command to the target. If the target is in a running application, the target 

performs a system reset to the bootloader in program mode so it is ready for the next command. 

2. The GUI sends an ‘I’ command, and the target erases APP_OK and answers the GUI with the 

target identification. 

3. The GUI sends an ‘E’ command, and the target erases one block of flash, size 0x400. If 

successful, it answers 0x00. 

4. The GUI sends 16 ‘W’ and ‘R’ commands successively. The ‘W’ command request target writes 

0x40 data to flash, and the ‘R’ command reads data back 0x40 data from flash, then sends it to 

the GUI. 

5. The GUI continues to perform step 3 and step 4 until the user application s19 file finishes 

programming. 
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6. The GUI sends a ‘G’ command and the target writes APP_OK in flash, then performs a system 

reset and runs the application code. 

 

 

Figure 15. Running GUI – program with verification 

4.3. Verify execution  

The following flowchart determines when to click the “Verify” button. 

 

Figure 16. Running GUI – verify 

1. First, the GUI sends a ‘V’ command to the target. If the target is in the running application, the 

targets perform a system reset to the bootloader in verify mode so it is ready for the next 

command. 
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2. The GUI sends an ‘I’ command, and the target answers with the target identification. 

3. The GUI sends an ‘R’ command and the target reads out a 0x40 byte, then answers it back to the 

GUI. 

4. The GUI continues performing Step 3 until the user application s19 file finishes verification. 

5. The GUI sends a ‘G’ command, then performs a system reset and runs the application code. 

 

 

Figure 17. Running GUI – verification 
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4.4. Log file generation 

A log file named boot log.txt is created in the same folder where the opened s19 file is stored. The 

operating history is recorded with time stamps. 

 

Figure 18. Boot log file 

 

5. Conclusion 

This application note along with the MKL26Z128 device provides a detailed description regarding how 

to implement a bootloader. The bootloader and application code are separate projects. The user can use 

the user application S19 file for mass production and upgrading. A single user application S19 record 

file can be used for both mass production and in-system firmware upgrading. The application can be 

used for a single control unit, or to control units connected by networks. The firmware and GUI are the 

FRDM-KL26 Freescale Freedom development platform. Additionally, the codes can be easily migrated 

to other chips. 
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