NXP Semiconductors Document Number: MBOOTQSPIUG
User's Guide Rev 2, 05/2018

MCU Bootloader QuadSPI User's Guide

h
P

Contents

Contents
Chapter 1 IntroducCtion.......cueeeeeeeiiiiiiiiiirrrrrrs e 4
Chapter 2 OVErVIEW.......cuuiiiiimmimmrirmssnsss s s s s s s s s ssssssssssssssssnnssas 5
P2 B =T 001 [T] (oo PSPPI 5
2.2 BeQUINEMENES. ..o 6
2.2.1 Hardware reqUIrEMENTS.uueiieeiieiie e e e e e st e e e e e e e e e e s s e e e e e e e e e e e e s snnnnrneeeeeeeeeeeesannnnns 6
2.2.2 HOSEHOOIS. ...ttt n e s e e n e s e e e nne e e 6
P2 2RC T D 1T 0 a o JF=T o o1 [= i o o 1S 6
P2 o 1= Yo [(=Y I (o o) [o =1 o S 6
2.2.4.1 FirMWAIE PIOJECT. ...ceiitiii ittt ettt et e e e ebe e e e et e e e ne e e e abee e e aabe e e nnreesnnneeean 6
2.2.4.2 HOSE PIOJECT......ceeieeetee ettt ettt e bt e e e s e e e bt e s eane e e s b e e e e nn e e e ennes 7
2.3 QuadSPIl image boot ProCeaUre...........c.oiuiiuiiicicieie 7
2.3.1 Plaintext QuadSPIl image boot flow.............cceiiiiiiii 7
2.3.2 Encrypted QuadSPIl image boot flow.............ccueiiiiiiiii 7
Chapter 3 Creating application for QuadSPI memory........cccccceciiiirrrrrrnnnnes 9
3.1 Starting point: Basics of internal flash memory mapped led-demo example project........... 9
3.2 Changes t0 the 1ed-demO PrOJECT.......ouii i 10
3.2.1 Changes t0 the INKET fil........ocuiiiiei e 10
3.2.2 Changes t0 flash CONfig @rea.........cooiuuiiiiiiiiiii et 11
3.2.3 CoNFIGUIE BCAL.... . ettt ettt e e et e e s st e e e eate e e sbe e e s nte e e e neeeeneeeeanreeeanneas 11
3.3 Generate QUB..... ... e e e nraeaeeaans 13
3.3.1 The QCB SITUCLUIE......cce ittt e s e e e e st e e e e s eata e e e e s sbaeeaeseenreneaeeanns 13
3.3.2 Example QCB for MX25U3235F device on TWR-K80F150M Tower System module......... 21
3.3.3 Generate the QCB with a simple example ProjecCt...........ooceieieeeiiiieeie e 24
Chapter 4 Configure QuadSPI with MCU bootloader..........ccceeemmmmnnnnssnnnnns 28
4.1 Configure QUAdSPI at rUNTIME.......coiiiiiii e 28
4.2 Configure QUAdSPI at STart-Up........ooueiiiiiiii e e 29
Chapter 5 Flash QuadSPI image via SB file.............cccommmmmmmmmmmnnniinnnnnnnnnnn. 31
5.1 Brief introduction of SB file.........coo i 31
5.2 Generate SB file for QUadSPI IMage.cocuuiiiiiiiiiie e 31
5.3 Flash QuadSPIl image via MCU bootloader.............ccueiiiiiiiiiiiiieee e 33
Chapter 6 Advanced Usage: Encrypted QuadSPIl image.........ccccurrrrrrnnnnn 35
6.1 Generate an SB file with KEK and SB KEYcccuiiiiiiiiieceeee e 36
6.2 Generate an SB file with encrypted QuadSPl image.........cccoeeeiiiiiiiiiiiee e 37
2 B N U= G174 =1 o o N = oo SRS 38
6.2.2 ENcrypt QUAASPIMAGE.eiiiiiiiiiieie ittt e e s e s s e e e s anneeea s 38
6.2.3 Encrypting SB file With the SB KEY......ccoiuiiiiiiiie e 39
Chapter 7 Change QuadSPI clock in QuadSPI image.........cccceecuuuunnnnnneeees 41
7.1 Create a RAM function via IAR EWARM.........oooiiiiiiii e, 41

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
2 NXP Semiconductors

Contents

7.2 Create a RAM function via Keil MDK.............ouiiiiiiiiiiiiieee e ee e e e e e 42
7.3 Create a RAM function with MCUXPresso IDE............ccoooiiiiiiiiiiee e 43
7.4 Ensure no timing issue after clock change............c.uuiiiiiiiiiiii e 45
Chapter 8 Application running on QuadSPI alias area.......cc...cccvmeemenninennns 46
8.1 Create an application to run on QuUadSPI Alias Area..........cocccuveeeeieeeeeeiciieeee e 46
8.2 Create a simple boot appliCatioN.............uuiiiiiie e 48
8.3 Downloading application running on QuadSPI alias memory with SB file...........cccccccee.... 51

8.4 Creating encrypted QuadSPI application running on QuadSPI Alias memory with SB file52

Chapter 9 Appendix A - QuadSPI configuration procedure...........ccceeene. 54
Chapter 10 Appendix B - Re-enter MCU bootloader under direct boot

1 Lo T = 55

Chapter 11 Appendix C - Explore more features in QCB...............c........... 56

11,1 Parallel MOE. nnennnennnennnennnnnnne 56

11.2 CoNtiNUOUS 10 MOGE.......cciiiiiiitiiiiie e e et e e e e e e e e e e e e e e e s rereeeaeeeeessssneneeeeeeeannns 58

Chapter 12 Appendix D - DDR mode issue workaround................cceeeeeuee. 60

12.1 Example QCB for QuadSPI device N25Q256A with DDR mode support.........ccccceeeeennee 60

12.2 Example QCB for QuadSPI device S26KS128S with Octal DDR mode support............. 61

12.3 Changes to user application for implementing DDR mode path..............oooiiiiieiernnnnes 63

12.3.1 WOrkaround SOIULION.coeiiiiiiiiie ettt e e e e e e e e e 63

12.3.2 Changes 10 INKEY file......couiiiieee e 64

12.3.3 Changes 10 Startup fil€........ooeii i s 65

12.3.4 Changes to system_MK82F25615.C file........cceiiiiiiiiieieiee e 65

12.4 Workaround DIOCK Qi@gram..........ooiueiiiiiiiiee e e e 67

12.5 BD file for downloading QuadSPI image under DDR mMode..........ccevviiiiiiiiiniiiiee e 68

Chapter 13 Revision hiStory.........ccccoiiiiinnnnnnnnnnnnnnnnnnenneeeeee s 70

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 3

Introduction

Chapter 1
Introduction

The QuadSPI controller available on selected Kinetis devices supports execute-in-place (XIP) for external SPI flash memory
devices. This document describes the usage of MCU bootloader (MCUBOQOT) in configuring various features of QuadSPI

block, including XIP, generating plaintext and encrypted bootable SB file image, and flashing QuadSPI memory with the SB
file image.

QuadSPI features supported by MCU bootloader:

Various types of SPI NOR flash memory devices available in the market.
Flash memory booting from QuadSPI directly, using MCU bootloader.
Single/Dual/Quad and Octal SPI NOR flash memory devices.
High-performance read/write operation with parallel and DDR modes.

Protecting intellectual property with AES-128 algorithm.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

NXP Semiconductors

Chapter 2
Overview

Overview
Terminology

This document mainly focuses on the following topics:

* QuadSPI image boot procedure

* Creating an application image running on QuadSPI memory

* Configuring QuadSPI with MCU bootloader

* Programming QuadSPI memory with SB file

* Advanced usage: QuadSPI encrypted boot image

* Application requirements for re-configuring QuadSPI clock

In addition, the following topics are also covered in the appendix sections:

¢ QuadSPI configuration block (QCB)

¢ Re-enter MCU bootloader under direct boot mode

e Explore features supported in QCB

* Working around ROM issues in supported DDR mode devices

2.1 Terminology

The following table summarizes the terms and abbreviations included in this user's guide.

Table 1. Terminology and abbreviations

Terminology

Description

MCUBOOT
BCA

QCB

KeyBlob

KEK

MCU bootloader

Bootloader Configuration Area, which provides customization of bootloader
options, such as enabledPeripherals, peripheralDetectionTimeout, and so on.

See the MCU bootloader chapter in the silicon's reference manual for more details.

QuadSPI Configuration Block, a structure containing configurable parameters
needed by the MCU bootloader to configure the QuadSPI controller.

See the MCU bootloader chapter in the silicon's reference manual for more details.

A data structure which holds the KeyBlob entries. Each keyblob entry defines the
encrypted QuadSPI memory region, decryption key, and so on.

See the MCU bootloader chapterin the silicon's reference manual for more details.
KeyBlob Encryption Key, an AES-128 key used for encrypting plaintext KeyBlob
and decrypting encrypted KeyBlob.

See the MCU bootloader chapter in the silicon's reference manual for more details.

Table continues on the next page...

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

NXP Semiconductors

Overview
Requirements

Table 1. Terminology and abbreviations (continued)

Terminology Description

SB file The SB file is the NXP binary file format for bootable images. The file consists of
sections and sequence of bootloader commands and data that assists MCU
bootloader in programming the image to target memory. The image data in the
SB file can be encrypted as well. The file can be downloaded to the target using
the MCU bootloader receive-sb-file command.

See the MCU bootloader chapter in silicon's reference manual for more details

OTFAD On-the-fly AES Decryption is a powerful IP block in MK81F256 and MK82F256,
which supports decryption of the encrypted QuadSPI image on-the-fly using
KeyBlob.

See the MCU bootloader chapter in the silicon's reference manual for more details

2.2 Requirements

2.2.1 Hardware requirements

* TWR-K80F150M Tower System module

* FRDM-K82F Freedom Development platform
e TWR-KL82 Tower System module

* FRDM-KL82 Freedom Development platform

2.2.2 Host tools

The following host tools are available with the release package. They assist in generating and provisioning of QuadSPI
bootable image for the target device.

* blhost: command line host tool for MCU bootloader.
¢ elftosb: command line host tool for SB file generation.

¢ KinetisFlashTool: GUI host tool for MCU bootloader.

2.2.3 Demo application

Led_demo running in internal flash and QuadSPI memory, under <sdk_package>/boards/<board>/bootloader_examples/
demo_apps

QCBGenerator, under <sdk_package>/middleware/mcu-boot/apps/QCBGenerator/build

2.2.4 Required toolchains
2.2.4.1 Firmware project

The following toolchains can be used to build the example led_demo firmware application provided with the release package.
« ARM® Keil® development tool v5.24a with corresponding device pack

+ IAR Embedded Workbench for ARM® v8.20.2

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
6 NXP Semiconductors

Overview
QuadSPI image boot procedure

* MCUXpresso IDE v10.1.1

2.2.4.2 Host project

The following toolchains can be used to build the example QCBGenerator application provided with the release package.
« Microsoft Visual Studio® Professional 2015 for Windows® OS Desktop

* Codeblocks

* GCCv54.0

2.3 QuadSPI image boot procedure

To understand how to boot a QuadSPI image with MCU bootloader, it is necessary to understand the QuadSPI image boot
flow. There are two types of QuadSPI image boot flow:

* Boot from a plaintext QuadSPI image. This method can be used on all targets with QuadSPI support.

* Boot from an encrypted QuadSPI image. This method can only be used on K8x processors that include OTFAD support,
such as MK81F256 and MK82F256.

2.3.1 Plaintext QuadSPI image boot flow

The figure below shows the boot flow of MCU bootloader in booting the device with a plaintext QuadSPI image.

Enter bootloader > Init hardware > Load BCA » Init Flash driver
Yes
v Y
Configure \ . QCBin QCBH at N FIjP'[?:E]
Quadsp| (¥ ves Flash <+No 800 00007 ¥ YES —=0bi0?
Mo Mo
' Peripheral Y
bootFlags) No Wait for
L __ Mo Dretection | S
== xFE? Timeouts? communication
Fy
es
v
Tes > Image valid? Mo
es
v
Jump to
application

Figure 1. Plaintext QuadSPI image boot flow

2.3.2 Encrypted QuadSPIl image boot flow

The below figure shows the boot flow of MCU bootloader in booting the device with an encrypted QuadSPI image.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 7

Overview
QuadSPI image boot procedure

Enter bootloader Init hardware

l Yes

Load BCA

Init Flash driver

L 4
L 4

Configure QCB in
Quadspl [¥7Yes Flash? No—_ox6800_000Q Yes
Mo

eriphera
Detection
imeouts?

Wait for
communication

Yes

KeyBElob
Walid?

QuadSPI1

Yes Yes Configured?

No
h 4
Yes o—————»{ Treat as plaintext
No
Configure OTFAD
With decrypted #<___Image valid?
KeyBlob
Yes

Jump to
application

Figure 2. Encrypted QuadSPI image boot flow

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
8 NXP Semiconductors

Creating application for QuadSPI memory
Starting point: Basics of internal flash memory mapped led-demo example project

Chapter 3
Creating application for QuadSPlI memory

This section describes how to modify a normal flash application (led_demo) to run from QuadSPI. The fully functional LED
demo example for QuadSPI with source code can be found in <sdk_package>/boards/<board>/bootloader_examples/
demo_apps. The chapter also discuss on how to create QCB data structure for a typical QuadSPI flash memory device.

3.1 Starting point: Basics of internal flash memory mapped
led-demo example project

Start from the LED demo example project code for the MK82F256 device. The example led-demo project files for each of the
supported toolchains are available in <sdk_package>/boards/<board>/bootloader_examples/demo_apps folder of the
package. This document focuses on the IAR project examples only. Open the led_demo.eww file from the /AR folder and
select the led_demo_PFLASH project as the active project. See the following figure.

Note that the linker file for the led_demo_PFLASH project shows all sections located in the internal flash memory region,
including the vector table, flash config area, and text sections.

When the led_demo_PFLASH image is built and flashed to the internal flash memory of the target device and begins its
execution, it causes the blue and green LEDs to blink on the target board.

The subsequent sections show the changes needed to convert the led_demo_PLASH project to run on the QuadSPI memory
for the target device.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 9

Creating application for QuadSPI memory

Changes to the led-demo project

& led_demo - IAR Embedded Workbench IDE A S——— 3
File | Edit | View Project Tools Window Help
D W@ = | | - (DR B2 D
Workspace x)) .
system_MK82F25615_qspi.c | startup_MKB2F25615_gspi.s | led_demo_QSPLmap | MKS2FN256xxx15_gspi.icf MKS2FN256xxx15_
[Helease - 46 w%
Files s B jz :; FHiH N R R R R H R R R S
B led_demo_PFLASH-Rel... « 49
= [J application 50 define symbol _ ram vector_table size = isdefinedsymbol(_ ram vector_table_) 3
led_demo.c - o define symbol _ ram wector table offset = isdefinedsymbol(_ ram wvector_table)
milliseconds_delay.c 2 B)
-2 T3 linker ii :e:_;.ne s;ﬁci m_:.Lnterrupts_stadrt = 3}(333332;3.
: . efine symbol m_interrupts_en = 0Ox H
L— B MKB2FMN2E G E_flash.ict 55 - -
—& (OMKB2F25616 56 define symbol m bootloader config start = O0x000003C0;
startup.c 57 define symbol m bootloader config end = Ox000003FE;
fom startup_MKA2F2E615.5 . 3
Sygtem_MKSQFZEB']E_C x 59 define symbol m flash config start = 0x00000400;
L= (3 Output &0 define symbol m flash _config end = 0x0000040F;
[led_dema_PFLASH.out . & B
2 define symbol m text_start = 0x00000410;
63 define symbol m text_end = Ox0003FFFE;
64
85 define symbol m interrupts_ram start = O0x1FFF0000;
66 define symbcl m interrupts_ram end = Ox1FFF0000 + _ ram vector_table offset_ ;
67
6 define symbol m data_start = m_interrupts_ram 3tart + _ ram vector tak
69 define symbol m data_end = Ox1FFFFFFF;
70
71 define symbol m data_2 start = 0x20000000;
72 define symbol m data 2 end = Ox2002FFFF;
73
74 /* Sizes */
75 if (isdefinedsymbol (_ stack_size)) |
76 define symbol _ size catack = _ stack size_ ;
77 1 elase {
T8 define symbol _ size catack = 0x0400;
YT
a0
g1 if (isdefinedsymbol (_ heap size_)) {
a2 define symbol _ size heap = _ heap s3ize ;
g3 1 else {
24 define symbol _ size heap = 0x0400;
85 1

3.2 Changes to the led-demo project

Figure 3. The led_demo_PFLASH project

The following subsections describe the steps to map the led-demo to run from the external QuadSPI flash memory.

3.2.1 Changes to the linker file

The first step is to update the linker file. The m_text start, andm_text end symbol names must be updated. The address
of m_text_start should be changed to 0x68001000, and m_text_end to OX6FFFFFFF or the actual end address of the
selected SPI flash device. See the changes in the following figure.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

10

NXP Semiconductors

Creating application for QuadSPI memory
Changes to the led-demo project

% led_demo - IAR Embedded Workbench IDE

File Edit View Project Tools Window Help

DT S| | | - W mEe e |EE AL D
LS * | led_demo_gspi.c | misc.h | msic.c | miliseconds_delay.c | system_MK82F25615_gspi.c | startup_MK82F25615_gspi.s | led_demo_QSPLmap MKB2FN25
Release -

X fe PR define symbol _ ram vector_table_size = isdefinedsymbol({__ram vector_table_) 2 O0x000003C0 : 0»
Files o " define symbcl _ ram wvector_ table offset_ = isdefinedsymbol({_ ram vector_table_) 2 Ox000003BF : 0O;
2 (G led_demo_QS5PI - Release v
H& (] application define symbol m_interrupts_start = 0x00000000;

led_demo_gspic define symbol m_interrupts_end = 0x000003BF;

milliseconds_delay.c . .

B msic.c de;lne aymbol m_bc:ctlcader_ccn;lg_start = O0x000003C0;

define symbol m bootloader config end = 0x000003FF;

& L linker - - -

— -- define symbol m flash config start = 0x00000400;
51 L0 MK define symbol m_flash_config_end = 0x0000040F;

startup.c

@“StanupiMKBZFZEE'I57q5p|_5 define symbol m Lext_SCart = Oxe300I000;

system_MK82F25615_qspi.c define symbcl m text end = OxEFFFFFFF;

Figure 4. Linker file changes

3.2.2 Changes to flash config area

The bit 7-6 in the FOPT (0x40D) must be changed to 0b’10 to select the ROM as the boot source upon reset. The QuadSPI
is configured after the ROM starts and when the QCB is present. After this operation, the flash config area is changed, as
shown in the following figure.

318 SECTION FlashConfig:CODE

319 __FlashConfig

320 DCD OxFFEFFFFF

321 DCD OxFFEFFFFF

322 DCD OxFFEFFFFF

323 DCD a xFFF@FE

324 __FlashConfig End

325

324 __Wectors EQU _ wector_takle

327 __Wectora_3Size EQU _ Vectors_End - _ Vectors

Figure 5. Change flash config area for QuadSPI image

See the startup_MK82F2515_qgspi.s file in the led_demo-><sdk_package>/middleware/mcu-boot/apps/demo_qgspi/
led_demol/devices/MK80F25615/startup/<toolchain> folder for more details.

3.2.3 Configure BCA

After the previous step, the target is able to run the led-demo application once the active peripheral detection timeout occurs.

To customize the boot option for the QuadSPI image, the BCA is required. The first step to is to define
BOOTLOADER_CONFIG in the project. Implement the operation shown in the following figure for IAR EWARM toolchain as
an example.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 1

Creating application for QuadSPI memory
Changes to the led-demo project

Opions s et T R ==

Cateqgary: [Factary Settings]

General Options [bulti-file: Carmpilation

Static Analysis Dizzard Unuzed Publics
Runtime Checking

| Language 2 I Code | Optimizations | Cutput I List | Preprocessor || 4 |+

Aszembler
Output Converter [] Ignare standard include directories

Custom Build Additional include directories: (one per line)

Build Actions SPROJ_DIRS\ A\ \. \devices - [
Linker SPROJ_DIRS\. .\ \ \. \devices\MKB2F 25615 startup

Debugger
Simulator
Angel
CMSIS DAP Preinclude file:
0B Server E]
TAR. ROM-monitor
Idet/TTAGjet Defined symbals: {one perling)

ILink/1-Trace NOEBUG " [| Preprocessor output to file
1 Stellarie CPU_MKEZFN256VDC1E Preserve comments

Macraigor ! i Generate Hine directives

PE micro

RDOI

ST-LIMNK
Third-Party Driver
TI ¥D5

[Ok J [Cancel

Figure 6. Enable BCA in EWARM

There are two ways to configure the QuadSPI image boot option:
1. Change the peripheralDetectionTimeoutMs. For example, change it to 0x01F4 (500 ms).

2. Change the bootFlags to OxFE, which means boot directly from application without delay. To re-enter MCU bootloader
again, see Appendix B.

NOTE
The first way to configure the QuadSPI image boot option is recommended.

In this example, there is a BootloaderConfig constant variable defined in system_MK82F25615.c. It can be changed as shown
in the following figure.

When the BCA change is complete, the target supports execution of led demo image if it has been programmed to internal
flash or QuadSPI memory.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
12 NXP Semiconductors

Creating application for QuadSPI memory
Generate QCB

#ifdef BOOTLOADER_CONFIG

/% Bootlader configuration sresa */
#if defined(_ IZR S¥YSTEMS ICC_)

/* Pragma to place the Bootloader Configuration Aryay on cory¥ect location defined in

#pragma langquage=extended

#pragma location = "BootloaderConfig™

__root const system bootloader config t Bootloaderlonfig B "BootloaderConfig™ =
#elif defined(_ GNUC)

__attribute__ (({section (".Bootloaderlonfig™))) const system bootloader config t Boo
#elif defined(_ CC_ARM)

__attribute__ (({section ("BootloaderConfig™))) const system bootloader config t Boot
gelze

#error Unsupported compiler!

#endif

{
.tag = OxGTERA36ET, /* Magic Number *#/
.creStarthddress = OxFFFFFFFFU, /% Disable CRC check */
.crcByteCount = OxFFFFFFFFU, /% Disable CRC check */
.crcExpectedValus = (xFFFFFFFFU, /* Disable CRC check */
.enabledPeripherals = 0x17, /% Enable all peripherals */
.12c5lavelddress = 0xFF, /* Use default I20 address +/
.peripheralDetectionTimecutMs = 0x01F40, /% timeout: 500ms *V_J
.usbEVid = URFFFF, 7* Use default UEH WVendor ID *#/
.uskPid = 0xFFFFT, /* Use default USB Product ID */
.uskStringsPointer = (xFFFFFFFFU, /#* Use default USB Strings +#/
.clockFlags = 0x01, /% Enable High speed mods *#/
.clockDivider = 0OxFF, A% Use clock divider 1 #/
.bootFlags = 0x01, /% Enable communication with host #/
.mmcauConfigPointer = OxFFFFFFFFU, /# No MMCAU configuration #*/
. keyBlobPointer = 0x000001000, /* keyblob data 1is at Ox1000 */
.g3piConfigBlockPtr = OxFFFFFFFFU /#* No OS5PI configuration */

Ir

#endif

Figure 7. Set peripheralDetectionTimeoutMs to 500 ms

3.3 Generate QCB

QuadSPI Config Block (QCB) is required for MCU ROM bootloader to properly configure and access the QuadSPI device.
This section shows the QCB structure, determines the QCB parameters for the specified SPI flash device, and generates
the QCB with a simple project.

3.3.1 The QCB structure

The QCB is a data structure containing the most common used parameters for QuadSPI module. See the MCU bootloader
chapter in the silicon’s reference manual for more details. The QCB is organized as follows.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 13

Creating application for QuadSPI memory

Generate QCB

Table 2. QuadSPI configuration block

Offset

Size (bytes)

Configuration field

Description

0x00 - 0x03

0x04 - 0x07

0x08 - 0x0b

0x0c - OxOf

0x10 - 0x13

0x14 - Ox1b
Ox1c - Ox1f

0x20 - 0x23

4

tag

version

lengthinBytes

dgs_loopback

data_hold_time

device_mode_config_

en

device_cmd

Table continues on the next page...

Magic number to verify whether QCB is valid.
Must be set to ‘kqcf.

[31:24] - 'f’ (0X66)
[23:16] - ‘C’ (0X63)
[15: 8] - ‘q'(0x71)
[7: 0] - ‘K (0xBB)

Version number of QuadSPI config block.
[31:24] - name: must be ‘Q’(0x51)

[23:16] - major: must be 1

[15: 8] - minor: must be 1

[7: O] - bugfix: must be 0

Size of QuadSPI config block, in terms of
bytes.

Must be 512.

Enable DQS loopback support:
0 DQS loopback is disabled.

1 DQS loopback is enabledd, the DQS loopback
mode is determined by subsequent
'dgs_loopback_internal' field.

Serial flash data hold time. Valid value 0/1/2.
See the QuadSPI Chapter for details.

Reserved.

Configure work mode enable for external flash
devices:

0 Disabled - ROM does not configure work mode
of external flash devices.

1 Enabled - ROM configures work mode of
external flash devices based on "device_cmd"
and LUT entries indicated by "write_cmd_ipcr".

Command to configure work mode of external
flash devices. Effective only if
"device_mode_config_en" is set to 1.

This command is device-specific.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

14

NXP Semiconductors

Creating application for QuadSPI memory
Generate QCB

Table 2. QuadSPI configuration block (continued)

Offset

Size (bytes)

Configuration field

Description

0x24 - 0x27

0x28 - Ox2b

0x2c - Ox2f

0x30 - 0x33

0x34 - 0x37

0x38 - 0x3b

0x3c - Ox3f

0x40 - 0x43

0x44 - 0x47

4

write_cmd_ipcr

word_addressable

cs_hold_time

cs_setup_time

sflash_A1_size

sflash_A2_size

sflash_B1_size

sflash_B2_size

sclk_freq

Table continues on the next page...

IPCR pointed to LUT index for the command
sequence of configuring the device to work
mode.

Value = index<<24

Word addressable:
0 Byte addressable serial flash mode.
1 Word addressable serial flash mode.

Serial flash CS hold time in terms of flash clock
cycles.

Serial flash CS setup time in terms of flash
clock cycles.

Size of external flash connected to ports of
QSPIOA and QSPIOA_CSO, in terms of bytes.

Size of external flash connected to ports of
QSPIOB and quadSPIOA_CS1, in terms of
bytes.

This field must be set to 0 if the serial flash
devices are not present.

Size of external flash connected to ports of
QSPIOB and quadSPIOB_CSO, in terms of
bytes.

This field must be set to 0 if the serial flash
devices are not present.

Size of external flash connected to ports of
QSPIOB and quadSPIOB_CS1, in terms of
bytes.

This field must be set to 0 if the serial flash
devices are not present.

Frequency of QuadSPI serial clock:

0 Low frequency

1 Mid frequency

2 High frequency

See the MCU bootloader chapter in silicon’s
reference manual for the definition of low-
frequency, mid-frequency and high-frequency. In
MK82F256, they are 24 MHz, 48 MHz, and 96
MHz.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

NXP Semiconductors

15

Creating application for QuadSPI memory
Generate QCB

Table 2. QuadSPI configuration block (continued)

Offset Size (bytes)

Configuration field

Description

0x48 - Ox4b 4

Ox4c - Ox4f 4

0x50 - 0x53 4

0x54 - 0x57 4

0x58 - 0x5b 4

0x5c¢ - Ox5f 4

0x60 - 0x63 4

busy_bit_offset

sflash_type

sflash_port

ddr_mode_enable

dgs_enable

parallel_mode_enable

portA_cs1

Table continues on the next page...

Busy bit offset in status register of Serial flash
[31:16]:

0 - Busy flag in status register is 1 when flash
devices are busy.

1 - Busy flag in status register is 0 when flash
devices are busy.

[15:0]:

The offset of busy flag in status register, valid
range 0-31.

Type of serial flash:
0 Single-pad

1 Dual-pad

2 Quad-pad

3 Octal-pad

Port enablement for QuadSPI module:
0 Only pins for QSPIOA are enabled.

1 Pins for both QSPIOA and QSPIOB are
enabled.

Enable DDR mode:
0 DDR mode is disabled.
1 DDR mode is enabled.

Enable DQS:
0 DQS is disabled.
1 DQS is enabled.

Enable Parallel Mode:
0 Parallel mode is disabled.

1 Parallel mode is enabled.

Enable QuadSPIOA_CS1:
0 QuadSPIOA_CSH1 is disabled.
1 QuadSPIOA_CS1 is enabled.

This field must be set to 1 if sflash_A2_size is
not equal to 0.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

16

NXP Semiconductors

Creating application for QuadSPI memory
Generate QCB

Table 2. QuadSPI configuration block (continued)

Offset Size (bytes) Configuration field Description
0x64 - 0x67 4 portB_cs1 Enable QuadSPIOB_CSt1
0 QuadSPIOB_CS1 is disabled
1 QuadSPIOB_CS1 is enabled
This field must be set to 1 if sflash_B2_size is
not equal to 0.
0x68 - 0x6b 4 fsphs Full Speed Phase selection for SDR
instructions:
0 Select sampling at non-inverted clock.
1 Select sampling inverted clock.
0x6c - Ox6f 4 fsdly Full Speed Delay selection for SDR
instructions:
0 One clock cycle delay.
1 Two clock cycles delay.
0x70 - 0x73 4 ddrsmp DDR sampling point:
Valid range: 0 - 7.
0x74 - 0x173 256 look_up_table Look-up-table for sequences of instructions.
See the QuadSPI chapter in silicon’s reference
manual for more details.
0x174 - Ox177 4 column_address_spac | Column Address Space:
e The parameter defines the width of the column
address.
0x178 - Ox17b 4 config_cmd_en Enable additional configuration command:
0 Additional configuration command is not
needed.
1 Additional configuration command is needed.
0x17c - 0x18b 16 config_cmds IPCR arrays for each connected SPI flash.

Table continues on the next page...

"config_cmds[n]" provides IPCR value, namely
seq_id << 24.

All fields must be set to 0 if config_cmd_en is not
set.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

NXP Semiconductors

17

Creating application for QuadSPI memory

Generate QCB

Table 2. QuadSPI configuration block (continued)

Offset

Size (bytes)

Configuration field

Description

0x18c - 0x19b

0x19c - Ox19f

0x1a0 - 0x1a3

Ox1a4 - Ox1a7

Ox1a8 - Ox1ab

Ox1ac - Ox1af

0x1b0 - 0x1b3

0x1b4 - 0x1b7

16

config_cmds_args

differential_clock_pin_
enable

flash_CK2_clock_pin_
enable

dgs_inverse_sel

dgs_latency_enable

dgs_loopback_internal

dgs_phase_sel

dgs_fa_delay_chain_s
el

Table continues on the next page...

Command arrays needed to be transferred to
external SPI flash.

"config_cmds_args[n]" provides commands to
be written.

All fields must be set to 0 if config_cmd_en is not
asserted.

Enable differential flash clock pin:
0 Differential flash clock pin is disabled.

1 Differential flash clock pin is enabled.

Enable flash CK2 clock pin:
0 Flash CK2 clock pin is disabled.
1 Flash CK2 clock pin is enabled.

Select clock source for internal DQS
generation:

0 Use 1x internal reference clock for DQS
generation.

1 Use inverse 1x internal reference clock for the
DQS generation.

DQS Latency Enable:

0 DQS latency disabled.

1 DQS feature with latency included enabled.

DQS loop back from internal DQS signal or
DQS Pad:

0 DQS loop back is sent to DQS pad first and
then looped back to QuadSPI.

1 DQS loop back from internal DQS signal
directly.

Select Phase Shift for internal DQS
generation:

0 No Phase shift.

1 Select 45 degree phase shift.
2 Select 90 degree phase shift.
3 Select 135 degree phase shift.

Delay chain tap number selection for
QuadSPIOA DQS:

Valid range: 0-63

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

18

NXP Semiconductors

Creating application for QuadSPI memory
Generate QCB

Table 2. QuadSPI configuration block (continued)

Offset

Size (bytes)

Configuration field

Description

0x1b8 - Ox1bb

Ox1bc - Ox1c3
Ox1c4 - Ox1c7

0Ox1c8 - Ox1cb

Ox1cc - Ox1cf

0x1dO - 0x1d3

0Ox1d4 - 0x1d7

0x1d8 - Ox1db

Ox1dc - Ox1df

0x1e0 - 0x1e3

Ox1e4 - Ox1e7

4

dgs_fb_delay_chain_s
el

page_size

sector_size

timeout_milliseconds

ips_cmd_second_divi
der

need_multi_phase

is_spansion_hyperflas
h

pre_read_status_cmd
_address_offset

pre_unlock_cmd_addr
ess_offset

unlock_cmd_address_
offset

Table continues on the next page...

Delay chain tap number selection for
QuadSPIOB DQS:

Valid range: 0-63
Reserved.

Page size of external flash.

Page size of all SPI flash devices must be the
same.

Sector size of exernal SPI in flash.

Sector size of all SPI flash devices must be the
same.

Timeout in terms of milliseconds:

0 Timeout check is disabled.

Other: QuadSPI Driver returns timeout if the
time that external SPI devices are busy lasts
more than this value.

Second driver for IPs command based on
QSPI_MCR[SCLKCFG], the maximum value of
QSPI_MCR[SCLKCFG] depends on specific
devices.

0 Only one phase is needed to access external
flash devices.

1 Multiple phases are needed to erase/program
external flash devices.

0 External flash devices do not belong to
Cypress HyperFlash family.

1 External flash devices belong to Cypress
HyperFlash family.

Additional address for the PreReadStatus
command.

Set this field to OXFFFFFFFF if it is not required.
Additional address for PreWriteEnable

command.

Set this field to OXFFFFFFFF if it is not required.

Additional address for WriteEnable command.

Set this field to OxFFFFFFFFF if it is not
required.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

NXP Semiconductors

19

Creating application for QuadSPI memory

Generate QCB
Table 2. QuadSPI configuration block (continued)
Offset Size (bytes) Configuration field Description
O0x1e8 - Ox1eb 4 pre_program_cmd_ad | Addtional address for PrePageProgram
dress_offset command.
Set this field to OXFFFFFFFF if it is not required.
Ox1ec - Ox1ef 4 pre_erase_cmd_addre | Additional address for PreErase command.
ss_offset Set this field to OXFFFFFFFF if it is not required.
0x1f0 - 0x1f3 4 erase_all_cmd_addre | Additional address for EraseAll command.
ss_offset Set this field to OXFFFFFFFF if it is not required.
0x1f4 - Ox1ff 12 - Reserved.
NOTE

Though there are several parameters in QCB, only a few parameters need to be configured for
most SPI flash devices available on the market. See the example QCB for more details.

. While using MCU ROM bootloader, make sure the "ips_cmd_second_divider" is not greater

than 0x08 under SDR mode, and it is not greater than 2 under DDR mode.

. Itis recommended to configure QSPI to SDR mode and switch to DDR mode in the application

where possible to achieve higher program performance with MCU bootloader.

In the QCB, the most important field is the Lookup Table (LUT), which contains command sequence for QuadSPI instructions,
such as erase, read, and program. The command sequence in the LUT should appear in the order as shown in the following

table:
Table 3. Look-up table entries for MCU bootloader

Index Field Description

0 Read Sequence for read instructions.

1 WriteEnable Sequence for WriteEnable instructions.

2 EraseAll Sequence for EraseAll instructions, optional.

3 ReadStatus Sequence for ReadStatus instructions.

4 PageProgram Sequence for Page Program instructions.

6 PreErase Sequence for Pre-Erase instructions.

7 SectorErase Sequence for Sector Erase.

8 Dummy Sequence for dummy operation if needed
For example, if continuous read is configured in
index 0, the dummy LUT should be configured to
force external SPI flash to exit continuous read
mode. If it is not required, this LUT entry must be
setto 0.

9 PreWriteEnable Sequence for Pre-WriteEnable instructions.

Table continues on the next page...

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

20

NXP Semiconductors

Creating application for QuadSPI memory

Generate QCB
Table 3. Look-up table entries for MCU bootloader (continued)
Index Field Description
10 PrePageProgram Sequence for Pre-PageProgram instructions.
1 PreReadStatus Sequence for Pre-ReadStatus instructions.
5,12, 13, 14,15 Undefined All of these sequences are free to be used for other

purposes. l.e., index 5 can be used for enabling
Quad mode of SPI flash devices. For more details,
see Section 3.3.2, "Example QCB for
MX25U3235F device on TWR-K80F150M Tower
System module".

For most types of SPI, flash devices are available in the market. Only index 0, 1, 3, 4, 7, and 8 are required. However, for
other types of high-end SPI flash devices, such as Cypress HyperFlash, additional indexes listed above may be required.

3.3.2 Example QCB for MX25U3235F device on TWR-K80F150M
Tower System module

This section creates an example QCB data structure for TWR-K80F150M Tower System module. There are two MX25U3235F
QuadSPI flash devices connected to QuadSPIOA and QuadSPIOB ports, respectively, on the board. The datasheet for
MX25U3235F are available on the MXIC website, and the schematics for the TWR-K80F150M Tower System module is
available on the NXP website.

The following are some attributes which are essential to create the QCB for the MX25U3235F flash device. The same (but
not limited to the following) information can be found in its data sheet as well:

Table 4. MX25U3235F features for QuadSPI configuration

Attribute Value/timing Description

Maximum supported frequency (4 I/0) | 104 MHz (6 dummy cycles) -

Page size 256 bytes -

Sector size 4 KB/32 KB/64 KB 4 KB is selected in this guide.

Chip size 4 MB -

Busy/WriteInProgress bit in status Bit 0 Bit 0 in status registers is called busy
register flag.

1 means SPI flash device is busy.
0 means it is idle.

The value needs to be set to
'busy_bit_offset' in QCB.

Table continues on the next page...

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 21

Creating application for QuadSPI memory

Generate QCB
Table 4. MX25U3235F features for QuadSPI configuration (continued)
Attribute Value/timing Description
Enable Quad mode Write status register, bité must be set to
G wnmman 1 in order to enable Quad mode.
o —fe s ——f — | Following the QuadSPI chapter, the
PEYVA0'00/0'0/0,000.0,0.00,00.0 ; ;
— LOEEEEOEEEEEENE] command sequence for this operation
is:
1. CMD: 01, single pad
2. Write: length=1, single pad
The data to be written is 0x40, and is
configured to 'device_cmd' in QCB.
Write Enable This is required before issuing any write/
s \ /_ erase operations to SPI flash devices.
Moy _ G L2880 6 T - | The command sequence for this
SCK Modeo | operation is:
< command] 1. CMD: 0x08, single pad
. : 0x086, single pa
si \ / \/
Hi-Z
S0
Sector Erase o Each sector must be erased before
s © 123 4 s 61 13w omomoww doing any program operation.
f—— Commana ——sle— 24 b Adcrss ——»| The command sequence for this
o\ RO | peration is:
* 1. CMD: 0x20, single pad
2. ADDR: 0x18 (24-bit address), single
pad
Chip Erase This command can be used to erase the
oS \ /_ entire content on SPI flash device.

The command sequence for this
operation is:

. A / C_ |1 omp: 0x60, single pad

Table continues on the next page...

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
22 NXP Semiconductors

Creating application for QuadSPI memory
Generate QCB

Table 4. MX25U3235F features for QuadSPI configuration (continued)

Attribute Value/timing Description

4 x /0O Page program o This command is used to program the

T I L L desired data to SPI flash device. Here,
e —f— 2= — | we use 4 x I/O page program command
- O -OOUEHEKIE | in order to improve the program
wancores el | performance.

HOLDHIOS RO OO OE

The command sequences for this
operation are:

1. CMD: 0x38, single pad
2. ADDR: 0x18 (24 bit address) quad

pads
3. WRITE: 0x40 (ignore this value)
quad pads
4 1/0 Read o\ This command is used to read data from
ciaaississ sussnenaxasa | OPIflash device. Here, we use 4 x /0
- e e ﬂﬂﬂﬂjﬁumﬂ;l} Read in order to improve read
S D WARAVAWARC'CS00/0; performance.
- j The command sequence for this
U W P wi o | Operation is:

1. CMD: 0xEB, single pad

2. ADDR: 0x18 (24 bit address) quad
pads

3. DUMMY: 0x06 (6 cycles) quad pads

4. READ: 0x80 (128 byte at one pass)
quad pads

5. JUMP_ON_CS: 0 (single pad)
Read Status —\ This command is used to check if the
Cs#

SPI flash device is busy after having
issued a program/erase command to it.

Modes 0 1 2 3 4 5 6 7 8 9 10 111213 14 15

[4— Command ——»

The command sequence for this

SR\

operation is:
so HZ @QGQBG@ 1. CMD: 0x05, single pad

s Status Register Out
2. READ: 1 (byte) single pad

The information needed for QCB creation for the TWR-K80F150M Tower System module is summarized in Table 4. The
“Programmable Sequence Engine” and "Example Sequences" sections within the QuadSPI chapter of the MK80F256
Reference Manual can be referenced to create customized QCBs. The “Description” column in Table 4 also provides the LUT
instructions for each command.

Based on the above summary, the ‘gspi_config_block_generator’ project is provided with the package as an example along
with this user's guide. The example project can be used as a basis to generate customized QCBs.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 23

Creating application for QuadSPI memory
Generate QCB

3.3.3 Generate the QCB with a simple example project

The project can be found in the package at location <sdk_package>/middleware/mcu-boot/apps/QCBGenerator/build.
Currently, two projects are provided to build from toolchains Microsoft Visual Studio 2013 and codeblocks. Launch Microsoft
Visual Studio example project available in the Visual Studio folder. Edit the file gspi_config_block_generator.c to configure
gspi_config_block in the main function.

There are two examples using different ways to enable Quad mode. The first one enables Quad mode using the device mode
config feature, while the second one enables Quad mode using the config cmd feature. See the below examples for more
details.

1. QCB using the device mode config feature:

const gspi config t gspi config block =

{

.tag = kQspiConfigTag, // Fixed value, do not change.

.version = { .version = kQspiVersionTag }, // Fixed value, do not change.
.lengthInBytes = 512, // Fixed value, do not change.

.sflash_Al_size = 0x400000, // 4MB - MX25U3235F connected to QSPIOA
.sflash Bl size = 0x400000, // 4MB - MX25U3235F connected to QSPIOB

// In K80 ROM bootloader, QSPI serial clock frequency is 96MHz

.sclk freq = kQspiSerialClockFreq High, // High frequency, 96MHz / 1 = 96MHz
.sflash type = kQspiFlashPad Quad, // SPI Flash devices work under quad-pad mode
.sflash port = kQspiPort EnableBothPorts, // Both QSPI0OA and QSPIOB are enabled.

.busy bit offset = 0, // Busy offset is 0

.ddr mode_enable = 0, // disable DDR mode

.dgs_enable = 0, // Disable DQS feature

.parallel mode enable = 0, // QuadSPI module work under serial mode
.pagesize = 256, // Page Size: 256 bytes

.sectorsize = 0x1000, // Sector Size: 4KB

.device mode config en = 1, // configure quad mode for SPI flash device
.device cmd = 0x40, // Enable quad mode

.write cmd ipcr = 0x05000000U, // IPCR indicating enable segid (5<<24), see QCB structure
// Set second divider for QSPI serial clock to 3 if K80 ROM Bootloader cannot program
// SPI flash at 96 MHz, in this configuration, the program speed is 96MHz/4 = 24MHz
.ips_command_ second divider = 3,
.look_up_table =
{

// Seg0: Quad Read (maximum supported freq: 104MHz)

/ *

CMD: OxEB - Quad Read, Single pad

ADDR: 0x18 - 24bit address, Quad pads

DUMMY: 0x06 - 6 clock cycles, Quad pads

READ: 0x80 - Read 128 bytes, Quad pads

JUMP_ON_CS: 0

=/

[0] = 0x0A1804EB,
[1] = 0x1E800E06,
[2] = 0x2400,

// Seql: Write Enable (maximum supported freqg: 104MHz)

/*

CMD: 0x06 - Write Enable, Single pad
=f

[4] = 0x406,

// Seg2: Erase all (maximum supported freq: 104MHz)
/*

CMD: 0x60 - Erase All chip, Single pad

=

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
24 NXP Semiconductors

s
b

[8] = 0x460,

// Seg3: Read Status (maximum supported freq:
/*

CMD: 0x05 - Read Status, single pad

READ: 0x01 - Read 1 byte

=/

[12] = 0x1c010405,

104MHz)

Creating application for QuadSPI memory
Generate QCB

// Seg4: 4 I/O Page Program (maximum supported freq: 104MHz)

/*
CM
AD.
WR
(I

Y/
[1
[1

D: 0x38 - 4 I/O Page Program, Single pad
DR: 0x18 - 24bit address, Quad pad

ITE: 0x40 - Write 64 bytes at one pass,
gnore the 64,

6] = 0x0A180438,

7] = 0x2240),

Quad pad,
because it will be overwritten by page size)

// Seg5: Write status register to enable quad mode

0 - Dummy command, used to force SPI flash to exit continuous read mode.

/*

CMD: 0x01 - Write Status Register, single pad
WRITE: 0x01 - Write 1 byte of data, single pad
=/

[20] = 0x20010401,

// Seq7: Erase Sector

/*

CMD: 0x20 - Sector Erase, single pad

ADDR: 0x18 - 24 bit address, single pad

=

[28] = 0x08180420,

// Seq8: Dummy

/*

CMD:

Unnecessary here because the continuous read mode isn't enabled.
=

[32] = o0,

2. QCB using the config cmd feature:

const gspi_config t gspi_ config block = {

= 96MHz

.tag =
.version =
.lengthInBytes =
.sflash Al size =
.sclk_freq =

.sflash type =
.sflash port =

kQspiConfigTag,
{.version = kQspiVersionTag},
512,

0x400000,

kQspiSerialClockFreq High,

kQspiFlashPad_ Quad,
kQspiPort_EnableBothPorts,

.busy bit offset = 0,

.ddr mode_ enable = 0,
.dgs_enable = 0,
.parallel mode enable = 0,
.pagesize = 256,
.sectorsize = 0x1000,

!/
!/
!/
/!
/!

!/
!/
!/
/!
/!
//
!/
//

Fixed value,
Fixed value,
Fixed value,

4MB

High frequency,

do
do
do

not change
not change
not change

in K82-256, it means 96MHz/1

SPI Flash devices work under quad-pad mode

Both QSPIOA
Busy offset
disable DDR
Disable DQS

and QSPIOB are enabled.
is 0

mode

feature

QuadSPI module work under serial mode

Page Size

Sector Size:

256 bytes
4KB

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

NXP Semiconductors

25

Creating application for QuadSPI memory

Generate QCB
.config cmd en = 1, // Enable config cmd feature
.config cmds = {[0] = SUL << 24}, // IPCR indicating seq id for Quad Mode Enable
.config cmds _args = {[0] = 0x40}, // Enable quad mode via setting bit 6 in status
register to 1
.ips_command second divider = 3, // Set second divider for QSPI serial clock to 3

{

.look_up table =

// Seg0 : Quad Read (maximum supported freq: 104MHz)
/*

CMD: 0xXEB - Quad Read, Single pad

ADDR: 0x18 - 24bit address, Quad pads

DUMMY : 0x06 - 6 clock cycles, Quad pads
READ: 0x80 - Read 128 bytes, Quad pads
JUMP_ON_CS: 0

7/

[0] = O0xO0A1804EB, [1] = 0x1E800E06, [2] = 0x2400,

// Seql: Write Enable (maximum supported freq: 104MHz)
/*

CMD: 0x06 - Write Enable, Single pad
=)
[4] = 0x406,

// Seg2: Erase All (maximum supported freq: 104MHz)
/*

CMD: 0x60 - Erase All chip, Single pad
s/
[8] = 0x460,

// Seg3: Read Status (maximum supported freqg: 104MHz)
/*

CMD: 0x05 - Read Status, single pad
READ: 0x01 - Read 1 byte

=

[12] = 0x1c010405,

// Seg4: 4 I1/0 Page Program (maximum supported freq: 104MHz)
/*

CMD: 0x38 - 4 I/O Page Program, Single pad
ADDR: 0x18 - 24bit address, Quad pad
WRITE: O0x40 - Write 64 bytes at one pass, Quad pad
=/
[16] = 0x0A180438, [17] = 0x2240,
// Seg5: Write status register to enable quad mode
/*
CMD: 0x01 - Write Status Register, single pad
WRITE: 0x01 - Write 1 byte of data, single pad
=/
[20] = 0x20010401,

// Seq7: Erase Sector

/*

CMD: 0x20 - Sector Erase, single pad
ADDR: 0x18 - 24 bit address, single pad
=

[28] = 0x08180420,

// Seq8: Dummy
/*

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

26

NXP Semiconductors

Creating application for QuadSPI memory
Generate QCB

CMD: 0 - Dummy command, used to force SPI flash to exit continuous read
mode .

unnecessary here because the continuous read mode is not enabled.
=
[32] = o0,

IF:

After modifying the gspi_config_block variable, right-click the QCBGenerator project and choose to build.

If the project successfully builds, run QCBGenerator.exe from the Debug folder. The output file named 'gspi_config_block.bin'
is generated under the Debug folder.

Both the QuadSPI project and QCB are ready. The next chapter describes how to flash the QuadSPI image to the target
device with MCU bootloader.

NOTE

For some SPI Flash devices, the Quad mode configuration bit is non-volatile. It is recommended
to set "device_mode_config_en" to 0 after the first configuration completes.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

NXP Semiconductors 27

Configure QuadSPI with MCU bootloader
Configure QuadSPI at runtime

Chapter 4
Configure QuadSPI with MCU bootloader

QuadSPI can be configured using the MCU bootloader by:
1. Configure QuadSPI at runtime.

2. Configure QuadSPI at start-up.

4.1 Configure QuadSPI at runtime

The TWR-K80F150M Tower System module is shipped without any pre-programmed QCB in QuadSPI memory or in internal
flash memory. The following figure shows a simple example demonstrating steps to write and configure QCB. See the following
figure.

1. Hold the NMI button, press the reset button, then release the reset button and NMI button, in that order.

2. Use the blhost property command to get the Reserved Region property value from MCU bootloader. This provides the
RAM region reserved by MCU bootloader.

3. Choose a free RAM region, and using blhost, write QCB to that region.

4. Configure the QuadSPI with the "configure-memory" command.

NOTE
The first command line parameter to configure-memory command is "1" to represent the QuadSPIO0,
and the second parameter "0x2000_0000" to represent the start address of the QCB.

:\work\Tools\SDK_2.3.1_FRDM-K82F\middleware\mcu-boot\bin\Toocls\blhost\win>blhost.exe -- get-property 12
Tnject command 'get-property’
status © (ex®) Success.
word 1 8 (exe)
word 2 40959 (ex9fff)
word 3 536846336 (@x1fffaeee)
word 4 = 536858111 (exlfffcdff)
Regions = Flash: @x@-©x9FFF (48 KB), RAM: ©x1FFFA@@@-©x1FFFCDFF (11.56@ KB)

:\work\Tools\SDK_2.3.1_FRDM-K82F\middleware\mcu-boot\bin\Toocls\blhost\win>blhost.exe -- write-memory ©x20000000 qspi_config_block.bin
Tnject command 'write-memory’
Preparing to send 512 (©x260) bytes to the target.

uccessful generic response to command 'write-memory'
(1/1)100% Completed!

uccessful generic response to command 'write-memory'
Response status = @ (©x8) Success.

Nrote 512 of 512 bytes.

:\work\Tools\SDK_2.3.1_FRDM-K82F\middleware\mcu-boot\bin\Toocls\blhost\win>blhost.exe -- configure-memory 1 ©x20000000
Inject command 'configure-memory'

uccessful generic response to command 'configure-memory’
Response status = @ (@x8) Success.

:\work\Tools\SDK_2.3.1_FRDM-K82F\middleware\mcu-boot\bin\Tools\blhost\win>blhost.exe -- read-memory ©x680060000 16

Inject command 'read-memory'

uccessful response to command 'read-memory'

4 33 22 11 45 33 22 11 46 33 22 11 47 33 22 11

(1/1)100% Completed!

uccessful generic response to command 'read-memory'

Response status = © (©x8) Success.

Response word 1 = 16 (@x1@)

Read 16 of 16 bytes.

Figure 8. configure-memory at runtime with blhost

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
28 NXP Semiconductors

Configure QuadSPI with MCU bootloader
Configure QuadSPI at start-up

4.2 Configure QuadSPI at start-up

The previous sections show how to configure QCB when there is no QCB pre-programmed on the device. For subsequent
boots, it makes sense to save the QCB to non-volatile memory, such as internal flash pointed by the BCA member field,
'gspiConfigBlockPtr', or at the start offset of QuadSPI memory. Next time the device boots from the ROM, the MCU bootloader
in ROM detects the presence of the QCB and configure the QuadSPI automatically at start-up. The following steps are the
recommended procedure based on the previous section. To program QCB at the start address of QuadSPI memory, see the
following figure for the blhost command sequence.

1.

Erase the first sector in QuadSPI memory before programming the QCB.

2. Write the QCB to the start of QuadSPI memory.
3.
4. Program the FOPT with the desired value. Make sure FOPT[7:6] (0x40D address in internal flash) is set to 0b10 to default

Erase the flash config area.

to boot from MCU bootloader in ROM.

Reset the target device and use the "read-memory command" to check and ensure if QuadSPI is configured successfully
at start-up, as shown in the following figure.

When all of the above operations are completed, the QuadSPI is configured at start-up.

So far, we understand the basic steps of creating QCB and configuring QuadSP| using the MCU bootloader. The next sections
describe how to program the QuadSPI image.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

NXP Semiconductors 29

Configure QuadSPI with MCU bootloader
Configure QuadSPI at start-up

g'”jﬂ Ok 10000 4096
command eginﬂ'

ful gener - ; command 'flash-era
onse status 5

irite-memory 8000000 gspi_config_block.bin
t command 'write-n
Preparing to send 512 00) bytes to the target.
sful generic r |mmqnd "W memory
ful -
status
rote 512 of 512

gion'
ymmand "egion

{FEBFFFFF]
command '
ful generic r to command
ful generic r
status

$ blhost -u —- re
gnmmaﬂd
fu1 gene "esponse to

I _}

o000 512

Figure 9. Configure QuadSPI at start-up

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
30 NXP Semiconductors

Flash QuadSPI image via SB file
Brief introduction of SB file

Chapter 5
Flash QuadSPI image via SB file

Generally, the QuadSPI image contains separate segments. For example, the vector table and the flash config area are in

the internal flash and the executable code is located in the QuadSPI memory. Additionally, the corresponding regions must
be erased before programming. It is inconvenient to use separate commands to finish this task. Here, we introduce the SB
files and the “receive-sb-file” command to simplify the programming procedure.

5.1 Brief introduction of SB file

The MCU bootloader supports loading of the SB files. The SB file is a NXP-defined boot file format designed to ease the
boot process. The file is generated using the NXP elftosb tool. The format supports loading of elf or srec files in a controlled
manner, using boot commands such as load, jump, fill, erase, and so on. The boot commands are prescribed in the input
command file (boot descriptor .bd) to the elftosb tool. The format supports encryption of the boot image using AES-128 input
key.

elftosb and SB file formats are described in greater detail in the accompanying documentation in the package.

In this user's guide, the typical use case is provided to demonstrate the usage of elftosb host tool and how to download the
SB file with MCU bootloader.

5.2 Generate SB file for QuadSPI image

This section describes the generation of the SB file. The output led-demo srec file is used to generate the SB file (for KEIL,
a similar approach can be followed).

* Open the led_demo_qgspi project using the IAR EWARM toolchain. Using the project options dialog, select the "linker" and
make sure the extension of the output file is ".out".

* Select the "Output Converter" and change the output format to "Motorola" for outputting the .srec format image. See the
following figure.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 31

Flash QuadSPI image via SB file
Generate SB file for QuadSPI image

Options for node “led_demo_ 50T

Catagony.

Genersl Options
Static Analyss
Rruritime Cheding
CJC 4+ Compler
Assembler
Orstput Converter
Cuetnm Buid
Buid Actons
| Leker |
Detrugger
Samulator
Angel
(CMSIS DAP
GDB Server
TAR. ROM-moniter
T-pet{ITAGjet
Hink/3-Trace
TI Seefaris
Macaigor
PE micror
ROT
ST4IN
ThirdFarty Driver
TIXDS

i Facoy Setings |

Corfig | Library | Input._ | Optimizstions | Advanced | Outeet [Lm [<1
Output flename
led_dema_05P1 cat

| Include debug infommation in cutput

Dk || Cancel |

—

WSS Options for node "led dems QSPI"

Calegory:

| General Opbons
| Stale Analysis
| Runtime Cheding

CAC 4+ Complier
Mezembler
Custom Buld
Build Actions
Linker
Debugger
Simulator
Angel
CM3IS DAP
GOB Server
IAR. ROM-moritor
Ijet/ITAGHEL
Jink(}-Trace
TI Steldlaris
Macraigor
PE muro
RDY
STLINK
Third-Party Drver
TI¥DS

Output

V| Generste addtional sulput

Cutput fomat
Motorcla

[Factory Settings. |

—
Chvenide defsul

[ox][Cowel]

Figure 10. Generate led_demo_gspi.srec with EWARM

* Build either the Debug or the Release configuration of the project. When the build is completed, the led_demo_QSPI.srec
file should be available in the output/Debug or output/Release folders.

The next step is to generate the SB file using a command-line host tool, elftosb. The boot descriptor file, gspi_image.bd, is
passed as the input to the elftosb tool on the command line. The following figure shows the BD file content, the "Sources"
section provides the path to the input srec and QCB files and "Section (0)" shows the flow of the boot commands.

After creating the BD file shown in the following figure, copy the "gspi_config_block.bin", elftosb.exe, "led_demo_QSPI.srec",
and BD files into the same directory. Then open the window with the command prompt and invoke the elftosb as “elftosb -V
—C gspi_image.bd —o image.sb” The elftosb processes the gspi_image.bd file and generates the image.sb file. The elftosb
also outputs the commands list, as shown in Figure 12. Notice that the list corresponds to the BD file Section(0) statements.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

32

NXP Semiconductors

Flash QuadSPI image via SB file
Flash QuadSPI image via MCU bootloader

The sources block assigns file names to identifiers.

sources {
SREC File path
mysrecFile = "led_demo_QSFI.srec”;

gce file path
gspiconfigBlock = "gspi_config_block.bin";

The section block specifies the sequence of boot commands to be written to
the 5B file.
section {0) {

#1. Erase the vector table and flash config field.
erase 0..0xB0OO;

Step 2 and Step 3 are optional if the QuadsPI +is configured at startup
#2. Load the QCB to RAM
load gspiconfigelock = Ox20000000;

#3. Configure QuadsPI with the QCE above
enable gspi 0x20000000;

#41. Erase the QuadsPI memory region before programming.
erase 0Ox68000000..0x68004000;

#5. Load the QCB above
load gspiconfigBlock > 0x&68000000;

#6,7. Load all the ro data from srec file, including vector table,
flash cuﬂfﬁ? area and codes.
Toad mysrecrile;

#8. Reset target
reset;

Figure 11. Create a BD file for the QuadSPI image

i_image.bd -o image

F1g:ﬂxUUUU

Figure 12. elftosb command line usage example and output text

5.3 Flash QuadSPI image via MCU bootloader

When the SB file image is generated, either the blhost or KinetisFlashTool can be used to program the image to the target.
The following figure shows an example of programming the SB file with blhost.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 33

Flash QuadSPI image via SB file
Flash QuadSPI image via MCU bootloader

. 5T -p ;
Ping responded i
t command

Figure 13. Flash SB file with blhost

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
34 NXP Semiconductors

Advanced Usage: Encrypted QuadSPI image

Chapter 6
Advanced Usage: Encrypted QuadSPI image

The SB file generated in Section 5.2 is in plaintext form and not encrypted. This section focuses on several aspects of
encrypted boot with MCU bootloader.

To use the encrypted boot feature, user must have basic knowledge of the SB key, KeyBlob Block, and KeyBlob Encryption
Key (KEK), SB Key, AES-128 CTR, AES-128 CBC-MAC, and so on. See the MCU bootloader chapter in the silicon's reference
manual for a detailed description. The following is a brief introduction to these terms:

* The KeyBlob Block is a data structure that contains up to four groups of KeyBlob entries. Each entry consists of the start
address, length, decryption key, and counter of an encrypted QuadSPI memory region.

* The KeyBlob Block itself is encrypted by another AES key, called Key encryption key (KEK). KEK needs to be pre-
programmed in flash's IFR region. In MK82F256, the Flash IFR index for KEK is from index 0x20 to 0x23. With the Key
Blob and KEK, sections belonging to encrypted QuadSPI memory region (QuadSPI image data) can be encrypted using
elftosb tools. The generated SB file has encrypted image data for the encrypted QuadSPI memory region.

e For devices with flash security enabled, only encrypted SB file images are allowed to be provisioned. MCU bootloader
decrypts the encrypted SB image as it receives from the host using a separate SB key. The SB key is an AES-128 key pre-
programmed into flash's IFR region at word offsets 0x30 to 0x33. The elftosb tool allows generation of encrypted SB file
image using the SB key.

In general, the QuadSPI image is encrypted using the parameters in the KeyBlob with AES-128 CTR mode, the KeyBlob
Block itself encrypted with KEK, and the SB file is encrypted via SB key with AES-128 CBC-MAC. The following figure shows
an SB file containing plaintext QuadSPI image data. The vector table and other regions are in plaintext.

Based on the application type, the user can choose to have plaintext or encrypted QuadSPI image or encrypted SB file image
solution.

Plaintaxt 3B Fila

1| Veclor table: oo 62 78 12 oo 68
Plaintesxd 0O 68
aa oo o

Plaintext Q3F| image

Elftosh

Q5P| Image:
Plaintexd

14 40 1T

Q5P Imags:
Plainlexi

BA 71 i1
F0 04 03 0B

BED 23 4B 70 00

iC &8

Figure 14. Plaintext SB file with Plaintext QuadSPI image

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 35

Advanced Usage: Encrypted QuadSPI image
Generate an SB file with KEK and SB KEY

Flalntext SB File

Flaintext 5P Image

TN Fupesss == 2o o 0o g8 7B 12 00 &8
o £ED 13 09 68 go| Vestorble | oan es g0 oo 0o oo
el) = mo oo 0o oo no| Plantea 00 60 63 14 00 &8
:: e 5050510 &5 14 00 £8 0O 50 00 GO 45 L4 00 €8 ES 11 00 &8
81 14 08 0520 £1 14 00 €8 €1 14 00 68 £1 14 00 68 &1 14 00 &8
DOCONSI 61 14 0O 68 6% 34 0O 8 B3 14 00 68 &1 L4 00 €8
: 3 TOPTTRE 5 2
= bl i P e E? TR P 13 Fe 40 23
> :" A e 78 BT i Encryptad LE FO 0% EF TF BE AF
> o 40 T 51 3% BB A3 #0 AR 4E 3T BE DI

C D4 5F 0

E # AT EF 34 1F 4D ES FB 7A AR IF BA
5 38 FE 4D 34 44 €A I35 CO AT Sk 48

4% 8C &F CA S8 AN AS DX DT BB 54
T4 BS BC TC D CF EA TE O3
83 F> 35 CO C3 7T =
S5 4k 4C &
BL FE F¥ &3 IE ¥

Fd 34 £1 93
A7 F4 81 TE EB

e
L1
&

Figure 15. Plaintext SB file with Encrypted QuadSPI image

The following figure provides an encrypted SB file containing an encrypted QuadSPI image. The entire content of the SB file
is obfuscated.

Elftost Encrypled 3B Fla
Flaintext Q5P Image 3!
KEK
+ CE 9T =4 TD 46 PT DO 28 DO 46 OF
Key Blob 3 02 F) 33 AT P4 4C AD 3¢ 1 41 8
+ LTS E ke 3¢
aE of he =F
3B Key 17 ¥ he
&n e 2
q Encryplad 58 file,
£ i os 42 o2 o Cannot recognize Bl 23 98 34 T8 &L Ee
L _"': 1; i :: = R mands [7 90 93 7C €0 0 o2
i iy - 20 OF 26 4 Iy o i F2 12 £S5 41 5 23 FO
- 03 po 3 and data D 8% &7 78 9% 3¥ 5O
NETEN: ke A% CO 90 1 56 OF
F3 54 07 N KO 34 1L D& 5% BE F¥
A¥ KD FB 4 BO 5B E8 %5 T2 5D 18
4F 38 33 O 7 E3 Té TA 44 52 58
Ef 31 81 B ©1 €5 41 7TF OF 44 ED 3C 146 06 F9 33
34 FD DA 54 %2 1A DE 8C B2 29 D4 25 PO D7 DB T4

Figure 16. Encrypted SB file with Encrypted QuadSPI image

The rest of the sections in this chapter provide step-by-step instructions on programming keys, generating encrypted QuadSPI
image data in the SB file, and encrypting the entire SB file image with the SB key.

6.1 Generate an SB file with KEK and SB KEY

Here is an example of generating an SB file with just the KEK and SB KEY. The generated SB file can be provisioned using
MCU bootloader to program the keys into IFR region of the device.

The SB KEY is a 16 byte array. For example:

uint8 t sbKey[16] = {OXOO, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, Oxaa, 0xbb,
0xcc, 0xdd, Oxee, Oxff}.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

36 NXP Semiconductors

Advanced Usage: Encrypted QuadSPI image
Generate an SB file with encrypted QuadSPI image

The KEK is also a 16 byte array. For example:

uint8_t kek[16] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,
0x0d, 0x0e, 0xO0f}.

Pay attention to the correct order of the data to be programmed to Flash IFR, because each IFR field needs to be programmed
with 32-bit little-endian data. See the example BD file content provided in the following figure to understand how to specify
the SB key and KEK to generate SB file image to program the keys.

To generate SB file, a specified BD file needs to be generated first, assuming the BD file is called "program_keys.bd".

No source file needed, keep this block empty
sources 1

The section block specifies the sequence of boot commands to be written to
the sB file.
section (0) {

Use the "load ifr’ statement to program the SB key to IFR memory.

The 5B key occupies IFR index 0x30-0x33.

The 5B key is 128-bit specified as 4 Tittle-endian Tong-word values.

SB Key = {0x00, Ox11, 0x22, 0x33, Ox44, 0Ox55, Ox66, Ox77, Ox88, 0x99, Oxaa, Oxbb, Oxcc, Oxdd, Oxee, Oxff}
load ifr 0x33221100 = 0x30;
Toad ifr 0x77665544 > 0x31; SB KEY
load ifr Oxbbaa9988 = 0x32; | ~

load ifr Oxffeeddcc > 0x33;

Use the "load ifr’ statement to program the OTFAD KEK to IFR memory.

The KEKE s used to unwrap (decryptg the keyblob at boot time in order to

correctly set up the OTFAD engine.

The key is specified as 4 1ittle endian wvalues, with the "least significant”

key word going into the Towest IFR index;

KEK = {0x00, 0Ox01, O0x02, Ox03, Ox04, Ox0%, Ox06, Ox07, Ox08, 0x09, 0Ox0a, Ox0b, OxO0c, Ox0d, OxOe, OxOf}
foad ifr OxOFOEODOC > 0OxZ0;
load ifr Ox0BOAQ908 > Ox21; KEK
Toad ifr 0x07060504 > 0x22;
lToad +ifr 0x03020100 > 0x23;

Ak R

Reset target in order to let these keys take effect.
reset;

Figure 17. Specified BD file for SB key and KEK

Using elftosb, the desired SB file is generated. The elftosb command line and output is shown in the following figure.

4 Y
4
4
4
4
4
4
4

Figure 18. Generate program_keys.sb

Either blhost or KinetisFlashTool can be used to flash the SB file to the target device.

6.2 Generate an SB file with encrypted QuadSPI image

After the previous operation, another SB file (which contains the encrypted QuadSPI image) is still needed. Similar to how
the SB file was generated in the previous section, the BD file is needed to describe all the operations in this SB file. Besides

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 37

Advanced Usage: Encrypted QuadSPI image
Generate an SB file with encrypted QuadSPI image

the operations listed in Chapter 4, it also contains the Key Blob Block, encrypted QuadSPI image, and Key Blob encryption
wrapper.

6.2.1 The KeyBlob Block

This section shows the syntax of the keyBlob entry in the BD file with an example in the following figure. The example shows
one QuadSPI memory region identified by the counter value.

keyblob (0) {

#key blob 0

(

start = addressl,

end = address2,

key=keystring,

counter=counterstring

)

key blob 1, keep this blank if this key blob isn’t needed.
()

key blob 2, keep this blank if this key blob isn’t needed.
()

key blob 3, keep this blank if this key blob isn’t needed.
()

}

B The sources block assigns file names to identifiers.

sources {
SREC File path
mySrecFile = "led_demo_Q5PI.srec”;

qCe file path
gspiconfigBlock = "gspi_config_block.bin";

kL

The keyblob creates a structure with up to 4 keyblob entries.

The empty parentheses syntax specifies an entry of all zeros (no encryption).
Each entry consists of 4 parameters:

start - start address of encrypted block.

end - end address of encrypted block.

kay - AES-CTR mode encryqtinﬂ key for this range.

counter - initial counter walue for AES-CTR encryption for this range.

K

eyb}nb (0 1

start=0x68001000,

end=0x08001FFF, KevBlob
key="000102030405060708090A0B0CODDOEQF" , !
counter="0123456789ABCDEF"

T,
Mo S !

Figure 19. KeyBlob definition

6.2.2 Encrypt QuadSPI image

This section shows BD file changes required to encrypt the QuadSPI image using the KeyBlob. The encrypt (0) section in
the BD file, shown in the following figure, causes elftosb to encrypt the QuadSPI image data falling in the QuadSPI memory
regions pointed by the keyBlob counter.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
38 NXP Semiconductors

Advanced Usage: Encrypted QuadSPI image
Generate an SB file with encrypted QuadSPI image

The keyBlob itself is encrypted with the KEK. The keywrap (0) section in the BD file causes elftosb to wrap the keyBlob using
the KEK specified in the load command of keywrap section.

The syntax for the keywrap section of BD file is as follows:

keywrap (0) {
load {{KEK hex string}} > destination of encrypted key blob block;

}

The memory address 0x1000 in the example shown in the following figure is where the wrapped keyBlob is loaded during
provisioning of SB file to the target device using MCU bootloader.

The section block specifies the sequence of boot commands to be written to
the sB file.
section (0) {

#1. Erase the vector table and flash config field.
erase 0O..0xB0O;

step 2 and step 3 are optional if the QuadspPI is configured at start-up
#2. Load the QCB to RAM
load gspiconfigBlock = 0x20000000;

#3. configure quadsPI with the QCE above
enable gspi 0x20000000;

#4. Erase the quadsPI memory region before programming.
erase Ox&6B000000..0x6B004000;

#5%. Load the qQCB above
load gspiconfigBlock = 0x&68000000;

#6,7. The encrypt statement indicates that Toad commands should encrypt data from the srec file
using AES-CTR mode encryEtion. The encrypt argument (0) specifies the keyblob parameters

to use (see the keyblob block abowve). Section from the srec file that do not fall in the

range of one of the keyblob entries are Teft unecrypted.

ENCrypT (0

{
Load all the RO data from srec file. tire i ' i it cpT i
Toad mysreckile; Entire image including encrypted QuadSPI image

¥

#8. Load the encrypted keyblob block to specified location.

The keywraﬂ statement wraEs (encrypts) the keyblob specified in the ar?ument(o} using the
specified key Encryption key (KEK) and Toads the keyblob to internal flash. The Toad
destination(0x1000) must match the default Tocation (0x410) or the keyblob pointer 1in the
Bootloader Configuration Area(BCA) contained in the srec image, Make sure the sector at
#
#
k

£

0x1000 has not been written by the srec file Toad above, otherwise it will need to be

erased again.
eywrap (0) {

Toad {{0001020304050607080904A0B0CODOEOF}} > 0x1000; | Load encrypted keyblob to 0x1000

#9. Reset target
reset;

Figure 20. Encrypt QuadSPI image and KeyBlob

6.2.3 Encrypting SB file with the SB key

To encrypt the SB file with the elftosb, a file containing the SB key must be created, as shown in the following figure.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 39

Advanced Usage: Encrypted QuadSPI image
Generate an SB file with encrypted QuadSPI image

D:\a'tkey txt — Notepadtt [Administratoer]

File Edit Search ¥iew Encoding Language GSettings Macroe Bun Flugzin
o HE o B %k|(De M|t s|EE

[=] ey txt_]l
1 0011223344556677353958ashbooddesft

Figure 21. Create key.txt containing SB key

The following figure shows the generation of the encrypted SB file using the BD file drafted in the previous sections. The SB
key is passed on the command line to the elftosb using the -k option.

C gspi_image ' :).txt -0 image.:
ting encr I range [
ating wra ob
ction 0x0001 }:

Figure 22. Generate encrypted SB file with encrypted QuadSPI image

The outputimage.sb file can be programmed to the target device using the blhost or KinetisFlashTool, as shown in the earlier
examples. Based on the example BD file, the image.sb file has the wrapped keyBlob, the keyBlob encrypted QuadSPI image
data, and the entire content of the SB file encrypted with the SB key.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
40 NXP Semiconductors

Change QuadSPI clock in QuadSPI image
Create a RAM function via IAR EWARM

Chapter 7
Change QuadSPI clock in QuadSPIl image

When using MCU bootloader, if the target is booted from the QuadSPI image, both the QuadSPI serial clock and core clock
are from MCGFLL. MCG is under FEE mode, using the IRC48M as the clock source. In some cases, this may not meet the
system’s accuracy and performance requirement. The MCG mode needs to be switched from FEE to PEE, with an external
OSC as clock source. Be aware that this operation has great impact on the QuadSPI serial clock, so avoid running the clock
switch function on the QuadSPI image directly. A relatively safer way to avoid this is to either copy this function to SRAM, or
place this function in internal flash.

This chapter provides an example for how to create a clock switch function running on RAM.

7.1 Create a RAM function via IAR EWARM

In order to create a RAM function with IAR EWARM, two sections need to be defined. The first is “ramfunc_section_init} which
is used to store the data of a RAM function, and a “ramfunc_section’ which is the actual execution section of the RAM function.
The following code snippets provide an example of how to define and place code to these sections.

void copy_to_ram(void)

H
uinté t *codeReloccateRom3Start:
uintiZ_t codeRelocatelize:
uinti_t *codeReloocateRamStart:

codeRelocateRomStart = (uintd_t *)_ section begin("ra

codeRelocatedize = (uint3Z_t)_ section size ("ramfunc
codeReloocateRam3tart = (uintd_t *)_ section begin("ramfun

while ({codeRelocateSize)
] {
*codeReloocateRamStart++ = *codeRelocateRomStart++:

codeRelocateSize--;

Figure 23. Declare ram function section in EWARM project

After the previous operation, we still need to define another function. For example, copy_to_ram() to copy the RAM func
codes from QuadSPI memory to RAM. The following figure provides an example.

A4 Bbrief svitch to PEE mode from FEE mode.
A#41 In this function, the JuadSPI source clock 15 changed to MOGFLL,

9

F41 The QuadSPI serial clock divider 1s set Lo 1.
A7 The SvstemCorellock 15 updated Lo 120MHz, Lhe MOGS 15 switheced from FEE Lo PEE mode.
#if defined (_ ICCRERM)

fpragma section = "ramfunc section™

fpragma section = "ramfunc section_init™

wold cleck change (vold) @ "ramfunc section™;

Figure 24. Implement copy_to_ram() function in EWARM project

Finally, change the linker file in order to let the linker know a RAM function section has been defined. The location to place
this section, and the section, need to be copied to RAM manually.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 4

Change QuadSPI clock in QuadSPI image
Create a RAM function via Keil MDK

m_interrupts_ram start + __ram vector_table_size_ ;

define symbol m_data_start

define symbol m data_end = O0x1FFFFBFE;
define symbol m _ramfunc_start = 0x1FFFFC00;
define symbeol m ramfunc end = 0x1FFFFFFF;

define region m_ramfunc_region = mem: [from m_ramfunc_start to m_ramfunc_end];

initialize by copy { readwrite, section .textrw };
do not initialize { section .noinit };

initialize manually {section .ramfunc section};

place in m_ramfunc_region { section ramfunc_section };
Figure 25. Linker file changes for ram function in EWARM project

A complete project for this example can be found in <sdk_package>/boards/<board>/bootloader_examples/demo_apps.

7.2 Create a RAM function via Keil MDK

Keil also supports the creation of a RAM function, using a similar method as described for IAR EWARM. To create a RAM
function via KEIL, declare a section. In this example, "ramfunc_section" has been declared. See the following figure.

extern uint32 t Load$#EXEC m ramfunc{ésBase; // Base address for loading ram function

extern uint32 t Load$$EXEC m_ramfuncislength;// Size of ram function

extern uint3d t Image$fEXEC m ramfuncsiBase;

woid clock_ change {void) _ attribute {{section({"ramfunc section™)}): // Execute address of ram function

Figure 26. Declare RAM function in MDK project

A copy_to_ram function is still necessary to copy the data from ROM to an actual execution address. See the following figure.

vold copy_to ram(wvoid)

{
uinti_t *codeRelocateRomStart:
uint3Z2 t codeRelocatedize;
uint& t *codeReloocateRam3tart:

codeRelocateRomStart = (uintd_t *)Loads5EXEC m ramfuncssBase:
codeRelocatedize = (uint32 t)LoadfsEXEC m ramfuncislength:
codeReloocateRamStart = (uinté_t *) ImagessEXEC_m ramfuncisBase:

while (codeRelocateSize)

{

*codeReloocateRamStart++ = *codeRelocateRomStart++:
codeRelocateSize—-;

Figure 27. Implement copy_to_ram() function in MDK project

To let the linker know a RAM function has been defined, add some information to the linker file. For example:

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
42 NXP Semiconductors

Change QuadSPI clock in QuadSPI image
Create a RAM function with MCUXpresso IDE

fdefine m data start {m_interrupts ram sStart + m interrupts ram size)
/* Beserve 1024 bytes to store ram function */

#gdefine m data_size {0x00010000 - m interrupts_ram size - 0x400)

* Define a region to hold ram function */

define m ramfunc start m data start+ m data size

define m ramfunc_size Ox400

LR m text m text start m text size | ; load region size_region

EF_m text m text start m text size | ; load address = execution address
* (InRootss5ections)
LAWY (+RO)
1
RW_m data m data start m data size [; BW data
LAWY (+BW +ZI)
:
EXEC m ramfunc m ramfunc start m ramfunc size [; execute address = m ramfunc start
* (ramfunc section)

1

Figure 28. Linker file changes for RAM function in MDK project

A complete project for this example can be found in the <sdk_package>/boards/<board>/bootloader_examples/
demo_apps.

7.3 Create a RAM function with MCUXpresso IDE

This section shows the steps required for the MCUXpresso IDE to create the RAM function.

First, declare a section to place the RAM function codes to. In this example, a section called “ramfunc_section” is declared
as follows:

extern uint32 t ramfunc_load address[];

extern uint32_t ramfunc_length;

extern uint32 t ramfunc_execution_address[];

void clock_change(void) _ attribute_ ((section("ramfunc_secticon™))); // Execute address of ram function

Figure 29. Declare a RAM function in MCUXpresso IDE

Then, implement the copy_to_ram() function in the MCUXpresso IDE project. An example is shown in the following figure:

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 43

Change QuadSPI clock in QuadSPI image
Create a RAM function with MCUXpresso IDE

void copy_to_ram(void)

1
uintd t* codeRelocateRomStart;
uint32 t codeRelocateSize;
uintd t* codeRelococateRamStart;

codeRelocateRomStart = (uint8_t*)ramfunc_load_address;
codeRelocateSize = ramfunc_length;
codeReloocateRamStart = (uintd3 _t*)ramfunc_execution_address;

while{codeRelocateSize)

{

*codeReloocateRamStart++ = *codeRelocateRomStart++;
codeRelocateSize--;

Figure 30. Implement copy_to_ram() function in MCUXpresso IDE project

Finally, the linker file must be updated to let the MCUXpresso IDE realize that the RAM function is defined, and must be
placed somewhere. The following figure demonstrates the changes for the RAM function in the linker file. A complete project
for this example can be found in the <sdk_package>/boards/<board>/bootloader_examples/demo_apps folder.

57 /* Specify the memory areas */

58 MEMORY
59 {
6@ m_interrupts (RX) : ORIGIN = ©xPeeceeeee, LENGTH = Bxeeeee3Ce
61 m_bootloader config (RX) : ORIGIN = Ox800003(C@, LENGTH = Ox80000040
62 m_flash_config (RX) : ORIGIN = 0x200004008, LENGTH = Ox00000010
63 m_text (RX) : ORIGIN = @x63001800@, LENGTH = 0x00400000
64 m_data (RW) : ORIGIN = Ox1FFF@@@@, LENGTH = Ox0080FC00
65 m_data_2 (RW) : ORIGIN = @x2000000@, LENGTH = Ox00030000
66 |m_ramfunc (RX) : ORIGIN = Bx1FFFFC@@, LENGTH = Bxe0ees4iee
67 }
245 |ramfunc_section : AT(__ DATA_END)
247 *(ramfunc_section)
248 |} > m_ramfunc
249
258 |/* ram function section parameters*/
251 |ramfunc_load_address = LOADADDR(ramfunc_section);
252 |ramfunc_length = SIZEOF(ramfunc_section);
253 | ramfunc_execution_address = ADDR(ramfunc_section);
754

Figure 31. Linker file changes for RAM function in MCUXpresso IDE

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

44 NXP Semiconductors

Change QuadSPI clock in QuadSPI image
Ensure no timing issue after clock change

74 Ensure no timing issue after clock change

After performing the changes listed in the previous section, the clock switch function can be implemented. Note that the clock
switch function must not violate the timing requirements for the QuadSPI module and the external SPI flash device. For
example, if the external SPI flash is working in the SDR mode and you plan to switch the QuadSPI clock source to PLL 120
MHz, it is required to set the QuadSPI_MCR [SCLKCFG] to at least 1 (which means that the QuadSPI serial clock frequency
is 120 MHz/2 = 60 MHz), because the maximum supported clock for the SDR mode is 100 MHz. See the clock_change()
function in the example for more details.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 45

Application running on QuadSPI alias area
Create an application to run on QuadSPI Alias Area

Chapter 8
Application running on QuadSPI alias area

For reasons such as performance improvements, the application should be addressed to run from QuadSPI alias area
(0x0400_0000 to 0x07FF_FFFF on MK82F256) instead of physical addresses. MCU ROM bootloader does not support
downloading the application running on the alias area directly. However, a workaround solution is described in this section
to allow application to run from the alias region. Here we use the led_demo demonstrated before as an example and show
how to download and run such application from the alias memory region.

NOTE
This section is only applicable to MCU ROM Bootloader in K80, K81, and K82.

8.1 Create an application to run on QuadSPI Alias Area

Using the led_demo_QSPI as a starting point, modify the linker file using the IAR project as an example. The following figure
shows the changes to the address symbols in the linker file to allocate the sections to the QuadSPI alias memory.

23 define symbol m_interrupts start + 0x04001000;
54 define symbol m_interrupts_end + 0x040013BF;
25

56 define symbol m_bootloader config_start 0x040013C0;
57 define symbol m bootloader config end = (0x000013FF:
58

a9 define symbol m flash config start = 0x04001400;
60 define symbol m flash config end = O0x0400140F;
Gl

62 define symbol m_text start = 0x04001000;
63 define symbol m_text end = 0x07FFEFFF;

Figure 32. Linker file changes for QuadSPI Alias image in IAR project

Next, remove the BOOTLOADER_CONFIG macro from the IAR project, because the BCA is placed in the internal flash
memory. In this example, the application is placed in the QuadSPI alias memory. See the following figure for details.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
46 NXP Semiconductors

Application running on QuadSPI alias area
Create an application to run on QuadSPI Alias Area

Optons oo et e 9L oo

Cateqgary: [Factary Settings]

General Options [bulti-file: Carmpilation
Static Analysis Dizcard Unuzed Publics
Runtime Checking —
| Language 1 I Language 2 | Code IDptimizatiuns | Output | List | Flasta |
Aszembler
Qutput Converter
Custom Build
Build Actions [lgnore standard include directories
Linker

Addttional include directories: (one per ling)

Debugger SPROJ_DIRS\.\.\..\..\devices - [

5‘”1“'7‘“” SPROJ_DIRS\ .\ \ \devices\MKB2ZF 25615 \startup
Ange

CMSIS DAP

GOB Server e

IAR. ROM-moriitor Preinclude file:

I-§jet/ITAGjet

JLink/J-Trace E]

TI Stellaris Defined symbals: {one per ling)

Macraigor MDEEUG . [Preprocessor output to file

PE micro CPU MKBZFMNZBEVDC1E Preserve comments

ROI | | Generate Hine directives

ST-LINK =)]

i . Remove BOOTLOADER_CONFIG from here
ird-Party Driver

TILXDS

I k. | [Cancel

Figure 33. Remove BOOTLOADER_CONFIG macro from IAR project

Finally, change the "Output Converter" option, and let the IAR generate a binary file. See the following figure.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 47

Application running on QuadSPI alias area
Create a simple boot application

Options for node "led_demo QSPI alias" m

Cateqgary: [Factary Settings]

General Options
Static Analysis
Runtime Checking

| C/C 4+ Compiler Output |

| Assembler

| Output Converter Generate additional output

Custom Build Gutput format-
Build Actions

Linker [binar:,.r i
Debuager Output file

Simulator)
Angel [] Ovenide default

CMSIS DAP led_demo_(Q5SP1_alias bin
GDE Server

TAR. ROM-monitor
I-§jet/ITAGjet |
JLink/J-Trace
TI Stellaris |
Macraigaor

PE micro

RDI

STLIMNK
Third-Party Driver
TILXDS

]] [Cancel

Figure 34. Let IAR output binary file

8.2 Create a simple boot application

As previously mentioned, MCU boootloader does not support boot from QuadSPI alias memory directly, and as such the
host tool should command MCU bootloader to write the led_demo_QSPI application image to the physical address of
QuadSPI memory starting with 0x6800_0000 address range. The workaround to make the QuadSPI application run out of
alias memory is to create a simple boot application that, when invoked at boot, causes the PC to jump to the alias address
where led_demo_QSPI application is linked. The boot application functionality includes:

* Change the VTOR to the actual base address of the vector table in the led_demo_QuadSPI application.

* Change the stack pointed to the actual address pointed to in the start of the vector table for the led_demo_QuadSPI
application.

* Jump to the led_demo_QuadSPI application.

In addition, the BCA and keyBlob also need to be included in the boot application. The example boot application is provided
along with the led_demo_QuadSPI in <sdk_package>/boards/<board>/bootloader_examples/demo_apps. The following
steps demonstrate how to generate the project for the boot application:

First, use the led_demo_PFLASH as a starting point, and replace the main() function with the code snippet from the following
figure.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
48 NXP Semiconductors

Application running on QuadSPI alias area
Create a simple boot application

typedef woid(*application handler t) (void):

ernam

{
Quad3PI Image Start = 0x04001000ul,
IH

int main (void)

{
static uint32 t =_stackPointer = 0;
static application handler t runfipplication;
F4 Set the VIOR to the application vector table address
SCB->VIOR = Quad3PI_ Image Start;
g_stackPointer = *(uint32 t*)Quad3FI_ Image Start;
runfpplication = *(gpplication handler t#*) (Quad3PFI_Image Start + 4);
__gset_MS5F(s_stackPointer);
__gset_P5F(3_stackPointer);
rundpplication();
/4 Newver run here
while(l)
{
}
}

Figure 35. Jump to application running on QuadSPI Alias Area

Next, change the startup_MK82F25616.s file. Ensure that FOPT [7:6] (loaded from address 0x40D) is set to Ob10. See the
following figure.

319 __FlashConfig

320 DCD 0xFFFFFFFF
321 DCD 0xFFFFFFFF
322 DCD 0xFFFFFFFF
323 DCD OxFFFHBOFE

Figure 36. Change FOPT to 0xBD

Enable BCA in the boot project by defining BOOTLOADER_CONFIG macro. See the following figure.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 49

Application running on QuadSPI alias area
Create a simple boot application

Cptions for node "bmt_t;_qspi_alias_memry:_

Cateqgary:

General Options
Static Analysis
Runtime Checking

C/C++ Compiler

Aszembler
Qutput Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
Angel
CMSIS DAP
GDE Server
TAR. ROM-monitor
IHet/TTAGjet
JLink/J-Trace
TI Stellaris
Macraigaor
PE micro
RDI
STLIMNK

Third-Party Driver

TIXDS

[] b alti-File: Compilation
Dizzard Unuzed Publics

| Language 2 I Code | Optimizations | Cutput I List | Preprocessor || 4 | »

[] Ignare standard include directories

Additional include directories: (one per line)

SPROJ_DIRSY %N Ndevices

EPROJ_DIRE N AN Mdevices \MKE2F2561 Batartup

Preinclude file:

Defined symbols: (one per ling)
NDEBUG -

BOOTLOADER_CONFIG

[Facton Settings]

- [

[

[] Preprocessor output ta file
Preserve comments
Generate Hine directives

| 0K

] [Cancel

Figure 37. Change Enable BCA in IAR project

Change the BCA fields as needed. For example, if 'peripheralDetectionTimeoutMs' needs to be changed to 500 and the
'keyBlobPointer' to 0x1000. The example BCA structure is shown in the following figure.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

50

NXP Semiconductors

126 [|

127 .tag = 0x6766636BT
128 .crcStartiddress = (xFFFFFFFFT,
125 .crcBytelount = (xFFFFFFFFT,
130 .crcExpectedValue = (xFFFFFFFFT,
131 .enabledPeripherals = 0x17,

132 .i2c5lavelddress = (0xFF,

123 .peripheralDetectionTimecutMs = 0x01F40,
134 LaskbVid = 0xFFFET,

135 .asbPid = 0xFFFET,

136 .uskStringsPointer = (xFFFFFFFFT,
137 .clockFlags = 0x01,

138 .clockDivider = (0xFF,

135 .bootFlags = 0x01,

140 .mmcauConfigPointer = (xFFFFFFFFT,
141 .keyBlokPointer = 0x000010001,
142 .g3piConfigBlockPtr = (xFFFFEFFFFT
143 }:

Application running on QuadSPI alias area

Downloading application running on QuadSPI alias memory with SB file

Figure 38. Update BCA

..-”*
..-”*
..-”*
..-”*
..-”*
..-”*
..-”*
..-”*
..-”*
..-”*
..-”*
..-”*
..-”*
..-”*
..-”*
..-”*

Magic Number #/
Disable CRC check
1sable CRC check #/

Disable CRC check #/

Enable 31l peripherals #/

Use default I2C address */

:500ms */

USB Vendor ID #/

USB Product ID *#/

USB Strings +#/

speed mode */

4

Enable communication with host #/
No MMCADU configuration #/

keyblob data is at Ox1000 #/

No Q5FI configuratiom #/

£/

Timeoukt
Use default
Use default
Use default
Enable High
Use clock divider 1

Finally, change the "Output Converter" option, and let the IAR output SREC file.

8.3 Downloading application running on QuadSPI alias
memory with SB file

Assume that the application running on QuadSPI alias memory is called “led_demo_gspi_alias.bin; the boot application is
called “boot_to_gspi_alias_memory.srec’ and the QCB is called “gspi_config_block.bin” An example BD file to generate the
required SB file is shown in the following figure. Note that only one SB file is needed to load both boot application

"boot_to_gspi_alias_memory.srec" and led_demo_QuadSPI_alias.bin.

Configure PINMUX

using values from
ace

Enable QuadsPl
clock gate

Configure SPI flash
device if

config_cmd_en is set

in QCB

Configure Quad5sPl

registers using values
from QCB

r 3

Configure LUT

Congfigure work mode
of SPI flash if needed.

Figure 39. QuadSPI configurations flow in MCU bootloader

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

NXP Semiconductors

51

Application running on QuadSPI alias area
Creating encrypted QuadSPI application running on QuadSPI Alias memory with SB file

As previously mentioned, MCU bootloader does not recognize the QuadSPI alias memory addresses. Therefore, in the BD
file the QuadSPI physical memory addresses should be specified for load and erase commands as shown in the following
figure.

Generate the SB file and download it to the target device following instructions provided in Section 5.3.

The sources block assigns file names to identifiers.

sources {
SREC File path
mySrecFile = "boot_to_qgspi_alias_memory.srec’”;
qCB file path
gspiConfigBlock = "gspi_config_block.bin";
Alias QSFI image File path
) myBinFile = "Ted_demo_QsPI_alias.bin”;

The section block specifies the sequence of boot commands to be written to
the sB file.
section (0) {

#1. Erase the wvector table and flash config field.
erase Ox0000..0x0800;

Step 2 and Step 3 are optional if the QuadsPI is configured at startup
#2. Load the QCB to RAM
load gspiconfigBlock > 0x20000000;

#3. Configure QuadsPI with the QCE above
enable gspi 0x20000000;

#4. Erase the QuadsPI memory region before programming.
erase OxeB000000..0xe8004000;

#5. Load the QCB above
load gspiconfigelock > Ox68000000;

#6 Load all boot_to_gspi_alias_memory application
Toad mysrecFile;

#7 Load alias Q5PI image
load myBinFile > Ox©68001000;

#B. Resel Target
#reset;

Figure 40. Create a SB file contained boot application and QuadSPI demo application

8.4 Creating encrypted QuadSPI application running on
QuadSPI Alias memory with SB file

Using the steps mentioned in Section 6.1 and Section 6.2 and using the same SB key, KEK, and KeyBlob, an encrypted SB
file containing the encrypted QuadSPI alias image can be generated. See the following BD file for more details.

NOTE
1. The application is linked to the alias address range (0x0400_0000).
2. The application is loaded to the physical address range (see BD file step #7).

3. In the KeyBlob block, the OTFAD range is programmed to the physical address range.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
52 NXP Semiconductors

Application running on QuadSPI alias area

Creating encrypted QuadSPI application running on QuadSPI Alias memory with SB file

$ The =osurces block assigns file pames to identifiers.

asurces |

2 SREC File path

mysSrecFlle = “boot to gipl_&allas memory.arec™;
Alisas 5P image File path

myBinfile = "led_damo QSPI_alias bin";

§ RQCB file path

gqapiConfighlock = ®gspi_config block.bin®;

f The keyblob creates & structure wich up to § keyblob sntrisd.
Hote: tha start and and address should be physical QuadSPl address
kayblob (O} {

aEart=0xERI01000,

end=0x63001FFF,
key="0001L0Z030405060703030atb0s0d0anE™,
counter="012345E735abodat™

agction{d) |

#l. Erase the vector table and flash config field.

erase 0. _ Jx800;

#7. Load the QCB to RAM
losd gapiConfigBlock > OMZOO000000;

#3. Configure QuadSPI with the $CE above
enahle gupi Ox20000000;

24 Erase the QusdSPTI memsry region before programeing, using physical adress

erase QxG30Q0000..0RE3009000;

#6. Load all boot_to gepi_alias memory application

load mySrecFile;

2¢. Load QUB to QuadSFI memory
load gapiCeonfigBlock > OxE3000000;

#7. Encrypt QuadsSPI Alias Application and load it to Quad5SPI mamory
encrypt {4]
[

load myBinFile > Ox&3001000;

#2. Enceypt FeyBlok ptructure with KEE and load it to Ox1000
kaywrap (3]
load {{00010203040E060708090a0b0c0dieldE)} > Juwld0d;

£3. Hesast CaADgeT
TREAT]

Figure 41. Create a SB file contained boot application and encrypted QuadSPI alias demo application

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

NXP Semiconductors

53

Appendix A - QuadSPI configuration procedure

Chapter 9

Appendix A - QuadSPI configuration procedure

For MCU bootloader, follow the below steps to perfrom QuadSPI configuration using the QCB data. The following figure
depicts the corresponding flow chart:

Detect the location of QCB from either start address of QuadSPI memory or internal flash

¢ Configure QuadSPI pinmux based on the information from QCB

Enable QuadSPI clock gate, prepare to configure QuadSPI registers

» Configure look-up table

» Configure QuadSPI registers such as AHB buffer size and DDR mode as needed

» Configure work mode of external SPI flash device, for example, Quad Mode or Octal Mode

Additional configuration for external SPI flash device, if required in the QCB

Get QCE Configura Tomux Enable QSPI
Prepare configuring Based on QCB clock gate
Gcn’rlgure_: EF.lI Configure Q5P *
flash device is .
| registers based on |« Configure LUT
config_cmd_en is QCE
sat in QCB
¥
Congfigura work
mode of SP1 flash Done
if needed.

Figure 42. QuadSPI Configuration Flow in MCU bootloader

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

54

NXP Semiconductors

Appendix B - Re-enter MCU bootloader under direct boot mode

Chapter 10
Appendix B - Re-enter MCU bootloader under
direct boot mode

When direct boot is enabled in the BCA with bootFlags field set to 0xFE, ROM configures the QCB and jumps to the QuadSPI
application image directly, bypassing the detection of active peripherals for firmware update from host. In this case, the
QuadSPI application has to implement a workaround to invoke MCU bootloader when the host needs to update the application
image. The QuadSPI application has to detect boot pin (NMI pin) assertion by the user and if asserted can follow below
procedure to invoke MCU bootloader:

1. Erase the first sector of the internal flash to clear the BCA. Note that the flash configuration field of the BCA may have to
be restored back, as shown in the code snippet in Figure 43.

2. Jump to the runBootloader() ROM API using the bootloader API tree pointer.

The following figure shows sample implementation of re-entry into bootloader from application code. The example code with
the package contains the implementation of this feature in the led_demo_QuadSPI application.

vold app enter bootloader (void)

{
/4 Get Kinetis Bootloader Tree pointer.
const bootloader tree_t * bootloaderTree = (const bootloader tree t *)BOOTLOADER TREE ROOT;
Sf Initiaglize Flash Driver
flash_driwver t flashInstance;
bootloaderTree->flashDriver->flash _init{sflashInstance);
S/ Save the flash config field before erase
uint32_t flashConfigField[4];
const uint32 t *flashConfigField3tart = (const uint32 t*)0x400;
for{uint32_t i=0; i<sizeof (flashConfigField)/=sizecf (flashConfigField[0]); i++)
{
flashConfigField[i] = *flashConfigFieldStart++;
!
/¢4 Erase the first sector.
bootloaderTree->flashDriver->flash erase(sflashlnatance, 0, 0x300, kFlashEraseKey):
/4 Write the flash config field back.
bootloaderTree->flashDriver-»>flash program({seflashInstance, 0x400, flashConfigField,
gizeof (flashConfigField));
/7 Enter Kinetis Bootloader
bootloaderTree->runBootloader (0)
}

Figure 43. Implementation of re-entering MCU bootloader in application

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 55

Appendix C - Explore more features in QCB
Parallel mode

Chapter 11
Appendix C - Explore more features in QCB

Several more features of QuadSPI are supported by MCU bootloader such as parallel mode, continuous read mode, and so
on. The following sections provide examples of generating QCB with these modes enabled.

11.1 Parallel mode

This section provides an example of generating a QCB with the parallel mode support. Pay attention to these key points:
» The sector size and page size should be twice the actual size for the parallel mode.
* The 'parallel_mode_enable' field in QCB must be set to 1.

e The Program command should be replaced by the Page Program command, as the QuadSPI module only supports single-
pad parallel programming.

This is the example:

// This is the QCB for the use case that two MX25U3235F are connected to QuadSPIOA and QuadSPIOB
ports.
// Work under parallel mode
const gspi_config t gspi config block =
{
.tag = kQspiConfigTag,
.version = { .version = kQspiVersionTag },
.lengthInBytes = 512,
.sflash Al size = 0x400000, // 4MB
.sflash Bl size = 0x400000, // 4MB
.sclk freq = kQspiSerialClockFreq High, // High frequency
.sflash type = kQspiFlashPad Quad, // SPI Flash devices work under quad-pad mode
.sflash port = kQspiPort EnableBothPorts, // Both QSPIOA and QSPIOB are enabled.
.busy bit offset = 0, // Busy offset is 0
.ddr _mode enable = 0, // disable DDR mode

.dgs_enable = 0, // Disable DQS feature

.parallel _mode enable = 1, // QuadSPI module work under parallel mode
.pagesize = 512, // Page Size : 256 *2 = 512 bytes
.sectorsize = 0x2000, // Sector Size: 4KB * 2 = 8KB
.device _mode config en = 1, // configure quad mode for spi flash
.device cmd = 0x40, // Enable quad mode

.write cmd ipcr = 0x05000000U, // IPCR indicating enable segid (5<<24)
.ips_command_second divider = 3,// Set second divider for QSPI serial clock to 3
.look_up table =

// Seg0: Quad Read (maximum supported freq: 104MHz)

/ *

CMD: 0xXEB - Quad Read, Single pad
ADDR: 0x18 - 24bit address, Quad pads
DUMMY : 0x06 - 6 clock cycles, Quad pads
READ: 0x80 - Read 128 bytes, Quad pads
JUMP_ON_CS: 0

=

[0] = 0x0A1804EB,

[1] = 0x1E800EO06,

[2] = 0x2400,

// Seql: Write Enable (maximum supported freqg: 104MHz)

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
56 NXP Semiconductors

¥

b

/*

CMD: 0x06 - Write Enable, Single pad
=

[4] = 0x406,

// Seg2: Erase All (maximum supported freq: 104MHz)
/*

CMD: 0x60 - Erase All chip, Single pad
=
[8] = 0x460,

// Seg3: Read Status (maximum supported freq: 104MHz)

/*

CMD: 0x05 - Read Status, single pad
READ: 0x01 - Read 1 byte

=)

[12] = 0x1c010405,

// Seg4: Page Program (maximum supported freq: 104MHz)

/*
CMD: 0x02 - Page Program, Single pad
ADDR: 0x18 - 24bit address, Single pad

WRITE: 0x40 - Write 64 bytes at one pass, Single pad

Appendix C - Explore more features in QCB
Parallel mode

(0x40 i1s ignored, because it will be overwritten by page size)

*/
[16] = 0x08180402,
[17] = 0x2040,

// Seg5: Write status register to enable quad mode

/*

CMD: 0x01 - Write Status Register, single pad
WRITE: 0x01 - Write 1 byte of data, single pad
=

[20] = 0x20010401,

// Seq7: Erase Sector

/*

CMD: 0x20 - Sector Erase, single pad
ADDR: 0x18 - 24 bit address, single pad
=)

[28] = 0x08180420,

// Seg8: Dummy

/*

CMD: 0 - Dummy command, used to force SPI flash to exit continuous read mode.
unecessary here because the continous read mode isn't enabled.

*/

[32] = o0,

NOTE

The previous example must be placed in the <sdk_package>/middleware/mcu-boot/apps/

QCBGenerator/src folder.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

NXP Semiconductors

57

Appendix C - Explore more features in QCB
Continuous read mode

11.2 Continuous read mode

The MX25U3235F supports the continuous read mode (performance enhance mode) to provide high performance reads.
The important item to be configure ford this use case is:

e The Dummy LUT entry must be configured according to the condition of the exiting continuous read mode. Otherwise, the
device fails to perform an erase or a program operation as it cannot exit this mode correctly.

The following is an example:

NOTE
Only the flash device connected on the QuadSPI0 A1 supports this module.

// This is the QCB for when two MX25U3235F are connected to QuadSPIOA and QuadSPIOB ports.
// Work under parallel mode
const gspi_config t gspi config block =

{

.tag = kQspiConfigTag,

.version = { .version = kQspiVersionTag },

.lengthInBytes = 512,

.sflash Al size = 0x400000, // 4MB

.sclk freq = kQspiSerialClockFreq High, // High frequency

.sflash type = kQspiFlashPad Quad, // SPI Flash devices work under quad-pad mode

.sflash port = kQspiPort_ EnableBothPorts, // Both QSPIOA and QSPIOB are enabled.
.busy bit offset = 0, // Busy offset is 0
.ddr mode enable = 0, // disable DDR mode

.dgs_enable = 0, // Disable DQS feature

.parallel mode enable = 1, // QuadSPI module work under parallel mode
.pagesize = 512, // Page Size : 256 *2 = 512 bytes
.sectorsize = 0x2000, // Sector Size: 4KB * 2 = 8KB
.device _mode config en = 1, // configure quad mode for spi flash
.device cmd = 0x40, // Enable quad mode

.write cmd ipcr = 0x05000000U, // IPCR indicating enable segid (5<<24)
.ips command second divider = 3,// Set second divider for QSPI serial clock to 3
.look_up table =

// Seq0: Quad Read (maximum supported freq: 104MHz)

/*

CMD : 0XEB - Quad Read, Single pad
ADDR: 0x18 - 24bit address, Quad pads
MODE : 0xA5 - Continuous read mode, Quad Pads
DUMMY : 0x04 - 4 clock cycles, Quad pads
READ: 0x80 - Read 128 bytes, Quad pads
JUMP_ON CS: 1

2/

[0] = 0x0A1804EB,

[1] = 0x0E04012A5,

[2] = 0x24011ES80,

// Seql: Write Enable (maximum supported freq: 104MHz)

/*

CMD: 0x06 - Write Enable, Single pad
=

[4] = 0x406,

// Seq2: Erase All (maximum supported freq: 104MHz)
/*

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
58 NXP Semiconductors

IF:

b

Appendix C - Explore more features in QCB

CMD: 0x60 - Erase All chip, Single pad
=
[8] = 0x460,

// Seq3: Read Status (maximum supported freqg: 104MHz)
/*

CMD: 0x05 - Read Status, single pad
READ: 0x01 - Read 1 byte

=

[12] = 0x1c010405,

// Seg4: Page Program (maximum supported freqg: 104MHz)
/*

CMD: 0x02 - Page Program, Single pad

ADDR: 0x18 - 24bit address, Single pad

WRITE: 0x40 - Write 64 bytes at one pass, Single pad

(0x40 is ignored, because it will be overwritten by page size)

*/
[16] = 0x08180402,
[17] = 0x2040,

// Seg5: Write status register to enable quad mode

/*

CMD: 0x01 - Write Status Register, single pad
WRITE: 0x01 - Write 1 byte of data, single pad
=

[20] = 0x20010401,

// Seq7: Erase Sector

/*

CMD: 0x20 - Sector Erase, single pad
ADDR: 0x18 - 24 bit address, single pad
=

[28] = 0x08180420,

// Seg8: Dummy

Continuous read mode

/*

CMD: 0xFF - Dummy command, used to force SPI flash to exit continuous read mode.
Unnecessary here because the continuous read mode isn't enabled.

=)

[32] = OXFF,

NOTE

See the example from the <sdk_package>/middleware/mcu-boot/apps/QCBGenerator/src folder.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

NXP Semiconductors

59

Appendix D - DDR mode issue workaround
Example QCB for QuadSPI device N25Q256A with DDR mode support

Chapter 12
Appendix D - DDR mode issue workaround

The MCU bootloader in the ROM of MK80F256 devices supports programming and booting from QuadSPI devices with
double data rate (DDR) mode. However, due to an issue in the ROM code, a workaround is needed to use the DDR feature.
This workaround should be implemented in the application image. This appendix provides the details on implementing the
workaround. The package contains example application code with the workaround implemented.

ROM provides DDR mode support using the values provided in the QCB data structure. Specifically, these two fields of QCB
are used to support DDR mode:

e ddr_mode_enable - must be set to 1.

» data_hold_time - can be either 1 or 2 depending on the type of SPI Flash device.

NOTE
1. This workaround is only applicable to ROM bootloader for K80, K81, K82, KL81, and KL82.

2. All QCB examples are applicable to both ROM bootloader and MCU bootloader 2.5.0.

12.1 Example QCB for QuadSPI device N25Q256A with DDR
mode support
The following is an example QCB for the N25Q256A with the DDR mode support:
const gspi config t gspi config block =

{

.tag = kQspiConfigTag,

.version = { .version = kQspiVersionTag },
.lengthInBytes = 512,
.sflash Al size = 0x2000000, // 32MB

.sclk freq = kQspiSerialClockFreq High, // High frequency, 96MHz/4 = 24MHz
.sflash type = kQspiFlashPad Quad, // SPI Flash devices work under quad-pad mode
.sflash port = kQspiPort EnablePortA, // Only QSPIOA is enabled.
.busy bit offset = 0x00010007, // Busy offset is 7, polarity: 0 means busy

.ddr mode enable = 1, // Enable DDR mode

.data hold time = 1, // Data aligned with 2x serial flash half clock

.ddrsmp = O,

.dgs_enable = 0, // Disable DQS feature

.dgs_loopback = 0,

.pagesize = 256, // Page Size : 256 bytes

.sectorsize = 0x1000, // Sector Size: 4KB
.ips_command second divider = 0,

.device mode config en = 1, // Configure the device to 4-byte address mode
.device cmd = 0, // Not needed.

.write cmd_ipcr = 5UL<<24, // Seqg5 for setting address type to 4 bytes

.look up table =

/* Seg0 : Quad Read (maximum supported freqg: 108MHz)

CMD_DDR: 0XED - Quad Read, Single pad

ADDR_DDR: 0x20 - 32bit address, Quad pads
DUMMY : 0x08 - 8 dummy cycles, Quad pads
READ DDR: 0x80 - Read 128 bytes, Quad pads

JUMP_ON CS: 0

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
60 NXP Semiconductors

Appendix D - DDR mode issue workaround
Example QCB for QuadSPI device S26KS128S with Octal DDR mode support

=/

[0] = 0x2A2004ED,
[1] = 0x3A800E0S,
[2] = 0x2400,

/* Seql: Write Enable (maximum supported freqg: 108MHz)

CMD: 0x06 - Write Enable, Single pad
=
[4] = 0x406,

/* Seq2: Erase All (maximum supported freqg: 108MHz)

CMD: 0xC7 - Erase All chip, Single pad
=/
[8] = 0x04C7,

/* Seg3: Read Status (maximum supported freqg: 108MHz)

CMD: 0x05 - Read Flag Status, single pad
READ: 0x04 - Read 4 bytes

=/

[12] = 0x1c040470,

/* Seg4: Page Program (maximum supported freq: 108MHz)

CMD: 0x02 - Page Program, Single pad

ADDR: 0x20 - 32bit address, Single pad

WRITE: O0x40 - Write 64 bytes at one pass, Single Pad
=

[16] = 0x08200402,

[17] = 0x2040,

/* Seg5: Enter 4-byte address mode

CMD: 0xB7 - Enter 4-byte address mode
&/
[20] = 0x04B7,

/* Seq7: Erase Sector

CMD: 0x20 - Sector Erase, single pad
ADDR: 0x20 - 32 bit address, single pad
=

[28] = 0x08200420,

b

ba

See Section 3.3.3 to generate the binary qspi_config_block.bin file with the above example QCB data structures.

12.2 Example QCB for QuadSPI device S26KS128S with

Octal DDR mode support

Here is another example QCB for the S26KS128S device with the Octal DDR mode support:

const gspi_config t gspi config block =

{

.tag = kQspiConfigTag,

.version = {.version = kQspiVersionTag},
.lengthInBytes = 512,

.word_addressable = 1,

.data_hold time = 1,

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

NXP Semiconductors 61

Appendix D - DDR mode issue workaround
Example QCB for QuadSPI device S26KS128S with Octal DDR mode support

.sflash Al size = 0x1000000, // 16MB

.sclk_freg = kQspiSerialClockFreqg High, // High frequency, in DDR mode, it means 96MHz/4 =
24MHz

.busy bit offset = 0x0001000F, // bit 15 represent busy bit, polarity of this bit is 0

.sflash type = kQspiFlashPad Octal, // Serial Nor Flash works under octal-pad mode

.sflash port = kQspiPort EnablePortA, // Only PortA are enabled

.ddr _mode_enable = 1,

.dgs_enable = 1, // DQS function is enabled.

.look_up_table =

Seqg0 : Read

0x2B1847A0, // Read command with continuous burst type
0x0F104F10, // 16bit column address, 16 dummy cycles
] = 0x03003B80, // Read 128bytes and STOP.

— . e N
N P O
o

// Seql: Write Enable
[4] = 0x2B184700,

[5] = 0x47004F10,

[6] = 0x4755,

Seg2: Erase All
] = 0x2B184700,
] = 0x47004F10,
0] = 0x4710,

// Seg3: Read Status

[12] 0x2B1847A0, // Read command with continuous burst type
[13] = 0x0F104F10, // 1l6bit column address, 16 dummy cycles
[14] = 0x3B02, // Read 2bytes and stop.

// Seg4: 8 I1/0 Page Program
[16] = 0x2B184700,
[17] = 0x3F804F10,

// Seg6: Pre Erase
[24] = 0x2B184700,
[25] = 0x47004F10,
[26] = 0x4780,

// Seq7: Erase Sector
[28] = 0x2B184700,
[29] 0x47004F10,
[30] = 0x24004730,

// Seq9: PreWriteEnable
[36] = 0x2B184700,

[37] = 0x47004F10,

[38] = 0x47AA,

// Seql0: PrePageProgram
[40] = 0x2B184700,

[41] 0x47004F10,

[42] = 0x47A0,

// Seqll: PreReadStatus
[44] 0x2B184700,

[45] = 0x47004F10,

[46] = 0x4770,

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
62 NXP Semiconductors

Appendix D - DDR mode issue workaround
Changes to user application for implementing DDR mode path

.column_address_space = 3,

.differential clock pin enable = 1, // Differential clock is enabled.
.dgs_latency enable = 1, // External DQS input signal is used.
.dgs_fa delay chain sel = 0x10,

.pagesize = 512, // Page Size: 512 bytes

.sectorsize = 0x40000), // Sector Size: 256KB

.ips command second divider = 4,// Set second divider for QSPI serial clock to 16
.need multi phases = 1, // multiple phases are needed for Erase, Program, etc.
.is_spansion hyperflash = 1, // this device belongs to HyperFlash family.
.pre_read_status_cmd_address_offset = 0x555<<1,

.pre_unlock cmd address offset = 0x555<<1,

.unlock cmd address offset = 0x2AA<<1,

.pre_program cmd address_offset = 0x555<<1,

.pre_erase_cmd_address_offset = 0x555<<1,

.erase_all cmd_address_offset = 0x555<<1,

12.3 Changes to user application for implementing DDR
mode path

The following subsections describe the steps required to map the led-demo to run from the external QuadSPI flash memory
in the DDR mode. See the led_demo_QSPI_patch project in the <sdk_package>/boards/<board>/bootloader_examples/
demo_apps folder for more details.

12.3.1 Workaround solution

A workaround solution is required for the SPI flash devices with the DDR mode. The ROM missed a step in its implementation
steps to set the QuadSPI_FLSHCR [TDH], QuadSPI_SOCCR[DLYTAPSELA], and QuadSPI_SOCCR[DLYTAPSELB]
register bit fields. Therefore, the workaround patch consists of a very small piece of code to set the missed bit fields before
jumping to the application image residing in the external QuadSPI flash memory. The patch function may reside in the internal
flash memory.

The workaround patch function is defined with the following prototype in the package:
int rom patch(uint32_t gcbBaseAddress) ;

The following code shows how the workaround patch function is implemented in the example project provided with the
package:

int rom patch(gspi config t *base)
volatile uint32 t *gspi flshcr reg = (volatile uint32 t*)QuadSPIO FLSHCR BASE;
volatile uint32_t *gspi_soccr reg = (volatile uint32_ t*)QuadSPIO0_ SOCCR_BASE;

*gspi_flshcr reg &= (uint32_t)~QuadSPI_FLSHCR TDH_MASK;
*gspi flshcr reg |= (base->data hold time)<<QuadSPIO FLSHCR TDH SHIFT;

*gspi_soccr reg &= (uint32 t)~QuadSPIO_SOCCR_DLYTAPSELA MASK;
*gspl soccr reg |= (base->dgs fa delay chain sel << QuadSPI0O SOCCR DLYTAPSELA SHIFT) &
QuadSPI0_SOCCR_DLYTAPSELA MASK;

*gspi soccr reg &= (uint32 t)~QuadSPIO_ SOCCR_DLYTAPSELB MASK;
*gspli soccr reg |= (base->dgs fb delay chain sel << QuadSPI0O SOCCR DLYTAPSELB SHIFT) &
QuadSPI0_ SOCCR_DLYTAPSELB_MASK;

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 63

Appendix D - DDR mode issue workaround
Changes to user application for implementing DDR mode path

return kStatus_Success;

The binary position-independent code generated using the IAR compiler for the ROM patch function (available with the
package) is shown here:

const uint8 t s_rom patch[128] =
{
0x10, O0xB5, 0x01, 0x00, 0x18, O0x4A, 0x10, 0x00,

0x18, 0x30, 0x18, 0x4B,0x1B, 0x68, O0xFO0, 0x24,
0x24, 0x04, 0x1C, 0x40, 0x02, 0xD0O, 0x1l6, 0x4A,
0x10, 0x00, 0x18, 0x30, 0x13, 0x68, 0x15, 0x4C,
0x1C, 0x40, O0x14, 0x60,0x13, 0x68, 0x0C, 0x69,
0x24, 0x04, O0x1C, 0x43, 0x14, 0x60, 0x02, 0x68,
0x11, Ox4B, 0x13, 0x40, 0x03, 0x60, OxDA, 0x22,
0x52, 0x00, 0x89, 0x18,0x02, 0x68, 0x0B, 0x68,
0x1B, 0x04, OxFC, 0x24, 0xA4, 0x03, 0x1C, 0x40,
0x14, 0x43, 0x04, 0x60, 0x02, 0x68, 0x0B, 0x4B,
0x13, 0x40, 0x03, 0x60,0x02, 0x68, 0x49, 0x68,
0x09, 0x06, OxFC, 0x23, 0x9B, 0x05, 0x0B, 0x40,
0x13, 0x43, 0x03, 0x60, 0x00, 0x20, 0x10, OxBD,
0x0C, O0xA0, 0x0D, 0x40,0x24, 0x80, 0x04, 0x40,
0x0C, O0xA0, 0x05, 0x40, OxFF, OxFF, OxFC, OxFF,
0xFF, OxFF, 0xC0, OxFF, OxFF, OxFF, OxFF, 0xCO

}i
These are the limitations for this workaround solution:
1. The DDR commands are only allowed in a second QCB after invoking this rom_patch workaround.

2. The CRC check feature is not allowed to validate the integrity of the image on the QuadSPI memory.

3. The QCB must be placed at a specific location in the internal flash pointed to by the gspiConfigBlockPointer in the BCA.

12.3.2 Changes to linker file

Using the led_demo_QSPI as a starting point and using the IAR project as an example, the first step is to update the linker
file. Two separate sections are needed in the memory for this change. See the led_demo_QSPI_patch project in the led_demo
projects for more details.

define symbol m rom patch code start = 0x00000410;
define symbol m rom patch code end = 0x0000050F;

define symbol m_rom patch handler start= 0x00000510;
define symbol m _rom patch handler_end = 0x00000FFF;

define region m rom pach code region = mem: [from m rom patch code start to m _rom patch code end];
define region m rom patch handler region = mem: [from m _rom patch handler start to
m_rom_patch handler end];

place in m _rom patch handler region { readonly section BootloaderPatchHandler };
place in m _rom pach code region {readonly section rom patch code };

The “m_rom_patch_handler_region” defined above is used for holding the section that contains the functions to invoke the
ROM patch function.

The “m_rom_patch_code_region” defined above is used for placing the section that contains the ROM patch code mentioned
in the previous section.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
64 NXP Semiconductors

Appendix D - DDR mode issue workaround

Changes to user application for implementing DDR mode path

12.3.3 Changes to startup file

The Reset_Handler must be placed in the internal flash (for example, placing it in m_rom_patch_handler_region) and the

ROM patch function must be called before the other functions when the QuadSPI application is executed. See the changes

in the following figures.
N
e
:r Default interrupt handlers.
e

THUMB

PUBWEAK EReset Handler
SECTION BootloaderPatchHandler:CODE:RECEDER:NOROOT (2)
Reset_Handler

CESID I : Mssk interrupts
LOE R0, =ROM_PatchHandler

BLX RO

LOR R0, =SyatemInit

BLX R

LOR R0, =init_data_bsa

BLX RO

CESIE I : Unmask interrupts
LOR R0, =__iar program s3tart

BX RO

Figure 44. Changes to startup file for DDR support

NOTE
The ROM_Patchhandler is the function placed in the m_rom_patch_handler_region.

12.3.4 Changes to system_MK82F25615.c file

The ROM patch code must be placed in the internal flash. For example, place it into the rom_patch_code section. See the

following figure for these changes.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

NXP Semiconductors

65

Appendix D - DDR mode issue workaround
Changes to user application for implementing DDR mode path

#pragma language=extended
#pragma section = "rom patch_code”
const uinté_t s_rom patch[122]@ "rom_patch_code” =

0xB5, 0x01, 0x00, O0x18, Ox4A, 0x10, 0x00,
0x30, 0x18, Ox4B,0x1B, Ox68, OxF0, 0x24,
0x04, O0x1C, 0x40, 0x02, O0xDO, 0xlé, Ox4A,
0x00, Ox18, Ox30, Ox13, Ox68, 0x15, 0x4C,
0x40, Ox14, 0x60,0x13, 0x68, 0x0C, 0x69,
0x24, 0x04, Ox1C, Ox43, Ox14, Oxe60, 0x02, Ox6E,
Ox11, Ox4B, 0x13, 0x40, 0x03, Oxe0, O0xDA, 0x22,
0x52, Ox00, Ox89, Ox1g,0x02, Ox&8, 0Ox0B, Oxe8,
Ox1B, 0x04, OxFC, Ox24, OxA4, O0x03, 0x1C, 0x40,
Ox14, 0x43, 0x04, Ox60, O0x02, Ox68, O0x0B, 0x4B,
O0x13, 0x40, 0x03, 0x60,0x02, O0x68, 0x49, 0x68,
0x09, Ox06, OxFC, 0x23, 0x9B, 0x05, 0x0B, 0x40,
0x13, O0x43, 0x03, Oxé0, 0x00, O0x20, 0x10, O0xBD,
0x0C, OxAO, 0x0D, 0Ox40,0x24, 0x80, 0x04, 0x40,
0x0C, OxAO, Ox05, 0x40, OxFF, OxFF, OxFC, OxFF,
OxFF, OxFF, 0xCO0, OxFF, OxFF, OxFF, OxFF, 0xCO

-
oM
=

[=
]
= = R

-
M D & o oD

o
Moo
- -

-
-

Figure 45. Definitions of ROM patch code in IAR project

The ROM_PatchHandler must be placed in the internal flash as well. For example, it can be placed in the
BootloaderPatchHandler section. See the following figure for these changes.

/* Pragma to place the ROM PatchHandler on correct location defined in linker file. */
#pragma language=extended

#pragma section = "BootloaderPatchHandler™

wvoid ROM PatchHandler(void) @ "BootloaderPatchHandler”

{
typedef int (*patch handler_t) (uint32_t);

uint32_t s3_rom patch start = (uint32 t)_ section begin("rom patch code™);
uint32_t patch start = s_rom patch start+l;

patch_handler t patch run = (patch_handler t)patch start;
patch run(BootloaderConfig.gspiConfigBlockPtr);

Figure 46. Define ROM patch handler in IAR project

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
66 NXP Semiconductors

Appendix D - DDR mode issue workaround
Workaround block diagram

12.4 Workaround block diagram

The following figure shows the flow of MCU bootloader using QuadSPI DDR patch workaround mechanism described earlier
in provisioning the application image on the QuadSPI with DDR mode enabled.

0x2002_FFFF

QcB
T
&
% ROM_PATCH
e 5
QQ.S rj‘\
Sl
)
R
3
0x1C00_7FFF é\f:?? & 0x1FFF_0000
SN Internal RAM Memory

e
/ OxBFFF_FFFF

Bootloader

Patch enables QSPI in DDR mode and Application
—_—

0x1C00_0000 ROM provisions the application image image

ROM

0x6800_0000
External QSPI Memaory

Figure 47. Workaround provisioning image on QuadSPI memory in DDR mode

The following figure shows the flow of MCU bootloader using QuadSPI DDR patch workaround mechanism described earlier
in booting the application image from the QuadSPI with DDR mode enabled.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 67

Appendix D - DDR mode issue workaround
BD file for downloading QuadSPI image under DDR mode

0x0003_FFFF

Vector Table
o3 Qce
oo &
(vs) I OxBFFF_FFFF
L] -
L&
& ROM patch
& @m Handler
0x1C00_TFFF Lo
&&
“E’a .
Patch enables DDR mode —
/ ROM_PATCH andjumps tothe —» /PPICATON
application image 9
Bootloader
0x1C00_0000 0x0000_0000 0xB800_0000
ROM Internal Flash Memory External QSPI Memary

Figure 48. Workaround booting image from QuadSPI memory in DDR mode

12.5 BD file for downloading QuadSPI image under DDR
mode

The application image with the implemented workaround needs to be provisioned using the receive-sb-file Kinets bootloader
command to let the MCU bootloader support program and read with DDR mode. The following figure provides example BD

file changes to call the patch function.

The “K80_ROM_QSPI_patch.bin” in the below BD file is a binary file with the ROM patch code, mentioned above. It is needed
to be loaded to SRAM out of the reserved RAM region. For example, 0x2000_0200, which then needs to be executed via the

call command.

NOTE
1. Because the MK82F256 only supports thumb instructions, the address should be an odd value,

namely 0x2000_0201 in this example.

2. The second parameter for call command is the base address for QCB, namely 0x2000_0000
in this example.

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

68 NXP Semiconductors

Appendix D - DDR mode issue workaround
BD file for downloading QuadSPI image under DDR mode

The zsources hlock assigns file names to identifiers.
sources |
ZREC File path

my3recFile = "led dewmo Q5PI patch.srec™:

OCE file path

gepiConfigBlock = "gspi config block.bin®;
ROM patch

rom patch = "ROMN Q3PI patch.bin®;

The zsection block specifies the sequence of hoot commands to he written to
the ZIB file.
section (0)

#1. Erase Inetnal flash
erase 0O..0x3000;

#2z. Load the QCE to RAN
load gspicConfigBlock > O0x20000000;

#3. Configure CuadSPI with the QCB above
enable gspi 0x20000000;

#4. Load patch to BEAM
load rom patch > 0xZ0000200;

#5. Call patch to invoke EREOM workaround
call Oxz20000201 [(OxZ0000000) »

#c. Erase the QuadSPI memory region before programming.
erase 0x65000000. .0x65020000;

#7. Load the QCB ashove
load gspiConfigBlock > Ox2000;

#3. Load all the RO data from srec file, including wector tahle,
flash config area and codes.

load my3recFile:

#9. REeset target
reset;

Figure 49. BD file for invoking ROM patch for DDR mode

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018
NXP Semiconductors 69

Revision history

Chapter 13

Revision history

The following table contains a history of changes made to this user's guide.

Table 5. Revision history

Revision number Date Substantive changes
0 09/2015 Initial release
1 04/2016 Kinetis Bootloader v2.0 release
2 05/2018 MCU Bootloader v2.5.0 release

MCU Bootloader QuadSPI User's Guide, Revision 2, May 2018

70

NXP Semiconductors

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be provided in
NXP data sheets and/or specifications can and do vary in different applications, and actual
performance may vary over time. All operating parameters, including “typicals,” must be
validated for each customer application by customer's technical experts. NXP does not convey
any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, All other
product or service names are the property of their respective owners. ARM, AMBA, ARM
Powered, are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. All rights reserved.

© 2018 NXP B.V.

h
P R

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Overview
	2.1 Terminology
	2.2 Requirements
	2.2.1 Hardware requirements
	2.2.2 Host tools
	2.2.3 Demo application
	2.2.4 Required toolchains
	2.2.4.1 Firmware project
	2.2.4.2 Host project

	2.3 QuadSPI image boot procedure
	2.3.1 Plaintext QuadSPI image boot flow
	2.3.2 Encrypted QuadSPI image boot flow

	3 Creating application for QuadSPI memory
	3.1 Starting point: Basics of internal flash memory mapped led-demo example project
	3.2 Changes to the led-demo project
	3.2.1 Changes to the linker file
	3.2.2 Changes to flash config area
	3.2.3 Configure BCA

	3.3 Generate QCB
	3.3.1 The QCB structure
	3.3.2 Example QCB for MX25U3235F device on TWR-K80F150M Tower System module
	3.3.3 Generate the QCB with a simple example project

	4 Configure QuadSPI with MCU bootloader
	4.1 Configure QuadSPI at runtime
	4.2 Configure QuadSPI at start-up

	5 Flash QuadSPI image via SB file
	5.1 Brief introduction of SB file
	5.2 Generate SB file for QuadSPI image
	5.3 Flash QuadSPI image via MCU bootloader

	6 Advanced Usage: Encrypted QuadSPI image
	6.1 Generate an SB file with KEK and SB KEY
	6.2 Generate an SB file with encrypted QuadSPI image
	6.2.1 The KeyBlob Block
	6.2.2 Encrypt QuadSPI image
	6.2.3 Encrypting SB file with the SB key

	7 Change QuadSPI clock in QuadSPI image
	7.1 Create a RAM function via IAR EWARM
	7.2 Create a RAM function via Keil MDK
	7.3 Create a RAM function with MCUXpresso IDE
	7.4 Ensure no timing issue after clock change

	8 Application running on QuadSPI alias area
	8.1 Create an application to run on QuadSPI Alias Area
	8.2 Create a simple boot application
	8.3 Downloading application running on QuadSPI alias memory with SB file
	8.4 Creating encrypted QuadSPI application running on QuadSPI Alias memory with SB file

	9 Appendix A - QuadSPI configuration procedure
	10 Appendix B - Re-enter MCU bootloader under direct boot mode
	11 Appendix C - Explore more features in QCB
	11.1 Parallel mode
	11.2 Continuous read mode

	12 Appendix D - DDR mode issue workaround
	12.1 Example QCB for QuadSPI device N25Q256A with DDR mode support
	12.2 Example QCB for QuadSPI device S26KS128S with Octal DDR mode support
	12.3 Changes to user application for implementing DDR mode path
	12.3.1 Workaround solution
	12.3.2 Changes to linker file
	12.3.3 Changes to startup file
	12.3.4 Changes to system_MK82F25615.c file

	12.4 Workaround block diagram
	12.5 BD file for downloading QuadSPI image under DDR mode

	13 Revision history

