REALTIMEEDGEUG

Real-time Edge Software User Guide
Rev. 2.8 — 29 March 2024 User guide

Document information

Information Content

Keywords REALTIMEEDGEUG, Real-time Edge Software, Real-time Networking, Real-time System,
Protocols, i.MX boards, QorlQ (Layerscape) boards, i.MX 6ULL EVK, i.MX 8DXL EVK, i.MX 8M
Mini LPDDR4 EVK, i.MX 8M Plus LPDDR4 EVK, i.MX 93 EVK, . MXRT1180 EVK, i.MX 93 9x9
QSB, LX2160ARDB Rev2, NXP hardware platforms

Abstract This document describes the features and implementation of Real-time Edge Software on NXP
hardware platforms. The key technology components include Real-time System, Real-time
Networking, Heterogeneous Multicore Framework, Heterogeneous Multi-SoC Framework, and
Protocols.

https://www.nxp.com

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

1 Introduction

1.1 Real-time Edge software

Real-time Edge software is an evolved version of Open Industrial Linux (OpenlL) for real-time and deterministic
systems in different fields. The key technology components include Real-time System, Heterogeneous Multicore
Framework, Heterogeneous Multi-SoC Framework, Real-time Networking and Protocols.

* Real-time System includes PREEMPT_RT Linux, Native RTOS on Cortex-A, Jailhouse, U-Boot based
Baremetal framework, RTOS and Baremetal on Cortex-M, and different combinations of these systems.

* Heterogeneous Multicore Framework provides a general software framework to support Heterogeneous
AMP. It enables AMP to be inter-connected and provides a unified resource management and life-cycle
management.

» Heterogeneous Multi-SoC Framework enables the usage of a combination of MPU and MCU. It extends
MCU's hardware as the MPU's hardware component.

* Real-time Networking includes TSN technology, TSN standards, management, configuration, and
applications. Networking and redundancy features are also supported.

* Protocols component includes support for industry standard protocols such as EtherCAT, CoE, FlexCan,
OPC-UA, and others.

This document describes the features and implementation of Real-time Edge Software on NXP hardware
platforms.

1.2 Real-time Edge Software Yocto Project

For using Yocto build environment, refer to the Real-time Edge Yocto Project User Guide. This document
describes the steps to build Real-time Edge images using a Yocto Project build environment for both i.MX and
QorlQ (Layerscape) boards.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

2/404

NXP Semic

onductors

REALTIMEEDGEUG

1.3 Feature support matrix

Table 1 "Key features" shows the features that are supported in this release.

Table 1. Key features

Real-time Edge Software User Guide

Feature

i.MX
6ULL
14x14

EVK

i.MX
8DXL
LPDDR4
EVK

i.MX 8M
Mini
LPDDR4
EVK

i.MX 8M
Plus
LPDDR4
EVK

i.MX 93
EVK

i.MX
93 9x9
LPDDR4
QsB

i.MX 93
14x14
LPDDR4x
EVK

i.MX
RT1180
EVK

LS1028
ARDB

LS1043
ARDB

LS1046
ARDB

LX2160
ARDB

Boot Sb

Y

mode eMMC

Real-

Preempt-RT Linux

time
System

ICC

<|=<|=<]|=

<|=<|=<]|=<

<|=<|=<]|=

<|=<|=<]|=

PCle

Ethernet

<|=<|=<|=<|=<]|=<

<|<|=<|=<

GPIO

IPI

<

<

UART

<|=<|=<]|=

<|=<|=<]|=<

usB

<|<|=<|=<|=<|=<|=<|=<|=<|=<

SAl

CAN

12C

BareMetal

QSPI

IFC

Flextimer

Linux ICC

<|<|=<|=<|=<

(communi-
cation with
Baremetal)

IPI

Single HW Interrupt
to multiple cores

Newlib Math library

All Cortex-A cores
running under
Baremetal

Native

FreeRTOS

RTOS on
Cortex-A

Zephyr

Jailhouse

Harpoon
RTOS

FreeRTOS

Zephyr

<|=<|=<| <|=<

<|=<|=<| <|=<

Heterogent
eous
Multicore
Framework
Flexible
Real-time
System

Free
RTOS

Flexible
Realtime

<

<

System Zephyr

Free

RAM RTOS

Console

Zephyr

Networking
stack on A-
Core RTOS

Free
RTOS

Unified
Life Cycle
Manageme|

U-Boot
booting

Free
RTOS

Native
RTOS
A-Core
Image

Zephyr

n-Boot
booting
Native
RTOS
M-Core
Image

Free
RTOS

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024

31404

NXP Semiconductors

REALTIMEEDGEUG

Table 1. Key features...continued

Real-time Edge Software User Guide

Feature

i.MX
6ULL
14x14

EVK

i.MX
8DXL
LPDDR4
EVK

i.MX 8M
Mini
LPDDR4
EVK

i.MX 8M
Plus
LPDDR4
EVK

i.MX 93
EVK

i.MX
93 9x9
LPDDR4
QsB

i.MX 93
14x14
LPDDR4x
EVK

i.MX
RT1180
EVK

LS1028
ARDB

LS1043
ARDB

LS1046
ARDB

LX2160
ARDB

Linux
booting
Native Free
RTOS RTOS
M-Core
Image

RPMSG
between A-
Core Free
Linuxand |RTOS
M-Core
RTOS

RPMSG
between A-
Core Free
Linuxand |RTOS
A-Core
RTOS

RPMSG

RPMSG
between 2 | Free

A-Core RTOS
RTOS

RPMSG
between A-
core Linux
and M-core | Free
RTOS RTOS
with
enhanced
8MB buffer

RPMSG
Performancel
Evaluation

Free
RTOS

UART
Sharing Free

based on RTOS
RPMSG

Heterogeng
-ous

Heterogeneaus
Multicore Free
Virtlo

Performancel RTOS
Evaluation

Multicore
Virtlo

Heterogeneaus
Multicore
VirtlO
Network
Sharing

Free
RTOS

Heterogent
eous

DSA single port
mode

<

<

<

Multi-
SoC

DSA bridge mode

 NETC
TSN

Framework

MTU configuration

Switch

VLAN configuration

FDB configuration

Port statistics

Virtual Switch

<|=<|=<|=<|=<|=<

Qbv

Qbu

<|=<|=<|=<|=<]<|=<|=x<

<|=<|=<|=<|=<|=<|=<|=x<

Qi

Real-

) TSN
time

Qav

<

<

Networkin Standards

802.1AS

802.1CB

VCAP chain mode

802.1 Q-in-Q

<|=<|=<|=<|=<|<|=<|=x<

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024

4/404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 1. Key features...continued

Feature i.MX i.MX i.MX 8M | i.MX 8M i.MX 93 i.MX i.MX 93 i.MX LS1028 LS1043 LS1046 LX2160
6ULL | 8DXL Mini Plus EVK 93 9x9 14x14 RT1180| ARDB ARDB ARDB ARDB
14x14 [LPDDR4 || pppRra4 | LPDDR4 LPDDR4 | LPDDR4x | EVK
EVK EVK EVK QsB EVK

EVK
Linux tc command Y Y Y Y Y Y
TSN tool Y
Qbv Y
Qbu Y
Qci Y
NETCONF/
YANG 1P Y
MAC Y
TSN VLAN
Configurati config M Y M M Y M
ons Qbv Y
Web-based
configuration| Qbu
Qai
Qynamic topology v v v v v
discovery
Qai
Dynamic
TSN CQF
configuratior
Qbv Y Y Y Y
AVTP Talker/Listener Y Y Y Y Y Y
AVDECC Y Y Y Y Y Y
AVB MAAP Y Y Y Y Y Y
standards
Milan Y Y Y Y Y Y
Media clock recovery | Y Y = Y y y
AVB Bridge on SJA1105Q-EVB Y Y
AVB Hybrid on SJA1105Q-EVB Y
|EEE 1588/802.1AS Y Y Y Y Y Y Y Y Y Y
Industrial IGH EtherCAT v v v v v v Y Y v
Protocol master stack
IGH native Ethernet
EtherCAT | device driver Y M Y M M v v
master
SOEM Y Y
CodeSYS EtherCAT v v v v
master stack
FlexCAN Y
CANopen
open62541 Y Y Y Y Y Y Y Y Y Y Y
OPCUA 1 opC UA PubSub
over TSN Y Y Y Y Y Y
BEE (Mikroe Click board)
BLE (Mikroe Click board)
NFC (Mikroe Click board)
Modbus-RTU
Modbus
Modbus-TCP Y Y Y Y Y Y Y Y Y Y Y

[11 Media clock recovery is implemented through a software-based sampling

1.4 Supported NXP platforms

The Table 2 "Supported NXP platforms" lists the NXP hardware SoCs and boards that support the Real-time
Edge software.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

5/404

NXP Semiconductors

REALTIMEEDGEUG

Table 2. Supported NXP platforms

Real-time Edge Software User Guide

Platform Architecture Boot

i.MX 6ULL EVK Arm v7 SD

i.MX 8DXL LPDDR4 EVK Arm v8 SD, eMMC
i.MX 8M Mini LPDDR4 EVK Arm v8 SD, eMMC
i.MX 8M Plus LPDDR4 EVK Arm v8 SD, eMMC
i.MX 93 EVK Arm v8 SD, eMMC
i.MX 93 9x9 QSB Arm v8 SD, eMMC
i.MX 93 14x14 EVK Arm v8 SD, eMMC
LS1028ARDB Arm v8 SD, eMMC
LS1043ARDB Arm v8 SD
LS1046ARDB Arm v8 SD, eMMC
LX2160ARDB Rev 2 Arm v8 SD

1.4.1 Switch settings

The Table 3 "Switch setting for various NXP platforms" lists and describes the switch configuration for the

platforms supported by Real-time Edge software.

Table 3. Switch setting for various NXP platforms

Platform Boot source Switch setting
i.MX 6ULL EVK Internal Boot / MicroSD SW602 = 0b'10 (internal boot) and SW601[1:4] = 0b'0010
(MicroSD)
i.MX 8DXL LPDDR4 EVK SD, eMMC * SD: SW1[1:4] = 0b'1100
e eMMC: SW1[1:4] = 0b'0100
i.MX 8M Mini LPDDR4 EVK MicroSD / uSDHC2 e SW1101[1:10] = 0b’ 0110110010
e SW1102[1:10] = 0b’ 0001101000
i.MX 8M Plus LPDDR4 EVK MicroSD / SDHC2 SW4[1:4] = 0b’0011
i.MX 93 EVK MicroSD / uSDHC2 SW1301[1:4] = 0b'0100
i.MX 93 9x9 QSB MicroSD / uSDHC2 SW601[1:4] = 0b'0011
i.MX 93 14x14 EVK SD, eMMC » SD: SW5[1:4] = 0b'0100
* eMMC: SW5[1:4] = 0b'0000
LS1028ARDB SD, eMMC e SD: SW2[1:8] = 0b’10001000
* eMMC: SW2[1:8] = 0b’10011000
LS1043ARDB SD SW4[1:8] + SW5[1] = 0b'00100000_0
UART1 output select
* SW3[3] = 0b’0: RJ45
e SW3[3] = 0b’1: CMSIS-DAP (MiniUSB)
LS1046ARDB SD, eMMC SW5[1:8] + SW4[1] = 0b'00100000_0
UART1 output select
* SW4[4] = 0b’0: RJ45
e SW4[4] = 0b’1: CMSIS-DAP (MicroUSB)
LX2160ARDB Rev2 SD SW1[1:8] = 0b'10001000

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024

6/404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

1.4.2 Flashing pre-built images

Pre-built images for platforms supported by Real-time Edge software can be downloaded from NXP website
from the below URL:

https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-
SOFTWARE.

Download the image required and extract it by using the commands below: (The code below shows the
commands used for LS1028ARDB-PA as an example)

$ unzip Real-time Edge v2.8 LS1028ARDB.zip
$ cd Real-time Edge v2.8 LS1028ARDB/real-time-edge

S 1s

atf fsl-1s1028a-rdb-jailhouse-without-enetc.dtb
dp Image-1s1028ardb.bin
fsl-1s1028a-rdb-dpdk.dtb nxp-image-real-time-edge-1sl1028ardb.manifest

fsl-1s1028a-rdb-dsa-swpb5-eno3.dtb nxp-image-real-time-edge-
1s1028ardb.rootfs.tar.bz2

fsl1l-1s1028a-rdb.dtb nxp-image-real-time-edge-1s1028ardb.wic.zst
fsl-1s1028a-rdb-jailhouse.dtb rcw

$ zstd -d nxp-image-real-time-edge-1s1028ardb.wic.zst

Insert SD card, device node “sdx” (for example: sdc) is created in directory “/dev/” with USB reader, flash file
‘nxp-image-real-time-edge-1s1028ardb.wic” to SD card:

$ sudo dd if=./nxp-image-real-time-edge-1s1028ardb.wic of=/dev/sdc bs=1M
conv=fsync

After flashing this image to SD card, insert this SD card into LS1028ARDB board, connect UART1 port and
open it. Then, powering on the LS1028ARDB board displays the message as shown in Figure 1.

Fixed DDR on board

DDR4, 32-bit, CL=11, ECC on
v2.4(rele >.5-1.0.0-0-g05f788b9%b -dirty
Built : :49:10, Me 2 2022
Booting BL3
:1f-5.15.5-1. -0-g05f788b9b-dirty
16, Mar
db BL31 Phase

U-Boot 2021.04+fs1+g5e08bboffa (Apr - 99:19:32 +0000)

SoC: LS1028AFE Revl.0 (0x870b0016)
Clock Configuration:
CPUB(ATZ2):1 MHz CPUl(A72):1500 MHz
Bus: 400 MHz i: 1686 MT/s
Reset Configuration Word (R
QOOOE0EE JcB04016 0

Figure 1. LS1028ARDB boot log

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

71404

https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE
https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

1.5 Related documentation

All documentation related to Real Time Edge software is available on the link: REALTIME EDGE
Documentation. The following documents are available:

* Real-time Edge Release Notes (RN00161) (provides release information)
* Real-time Edge User Guide (REALTIMEEDGEUG) (provides detailed user guide)

* Real-time Edge Yocto Project User Guide (RTEDGEYOCTOUG)(provides information for using Yocto build
environment)

* GenAVB/TSN Stack Evaluation User Guide (GENAVBTSNUG)(provides information on how to set up
Audio Video Bridging evaluation experiments of the GenAVB/TSN Stack on NXP platforms)

* Harpoon User's Guide(HRPNUG) (provides information to build Harpoon Yocto images)

* i.MX6ULL EVK GenAVB/TSN Rework Application Note (AN13678)

* For details about the graphics feature available in i.MX 8M Plus and i.MX 8M Mini boards, refer to the i.MX
Graphics User's Guide

To boot up and set up the boards mentioned in this document, refer to the instructions available in the following
user guides:

* i.MX 6ULL EVK Quick Start Guide

e .MX 8M Mini LPDDR4 EVK Quick Start Guide
i.MX 8M Plus LPDDR4 EVK Quick Start Guide
i.MX 8XLite EVK Quick Start Guide
LS1028ARDB Quick Start Guide

LS1043ARDB Getting Started Guide
LS1046ARDB Getting Started Guide
LX2160A/LX2160A-Rev2 RDB Quick Start Guide
IMX93EVK Quick Start Guide

1.6 Acronyms and abbreviations

The Table 4 "Acronyms and abbreviations" lists the acronyms used in this document.

Table 4. Acronyms and abbreviations

Term Description

AVB Audio video bridging

AMP Asymmetric multiprocessing

BC Boundary clock

BLE Bluetooth low energy

BMC Best master clock

CA Client application

CAN Controller area network

CBS Credit-based shaper

Cbw Concurrent Dual Wi-Fi

CMLDS Common Mean Link Delay Service

DoS Daniel-of-Service

DEI Drop eligibility indication

REALTIMEEDGEUG Allinformation provided in this document is subject to legal disclaimers. ©2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

8/404

https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE#documentation
https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE#documentation
https://www.nxp.com/docs/en/user-guide/IMX_GRAPHICS_USERS_GUIDE.pdf
https://www.nxp.com/docs/en/user-guide/IMX_GRAPHICS_USERS_GUIDE.pdf
https://www.nxp.com/webapp/Download?colCode=IMX6ULLQSG
https://www.nxp.com/docs/en/quick-reference-guide/8MMINILPD4EVKBQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/8MPLUSEVKQSG.pdf
https://www.nxp.com/webapp/Download?colCode=IMX8DXLQSG
https://www.nxp.com/webapp/Download?colCode=LS1028ARDBGSG&location=null
https://www.nxp.com/webapp/Download?colCode=LS1043ARDBGSG&location=null&fsrch=1&sr=10&pageNum=1&Parent_nodeId=&Parent_pageType=
https://www.nxp.com/webapp/Download?colCode=LS1046ARDBGSG&location=null&fsrch=1&sr=3&pageNum=2&Parent_nodeId=&Parent_pageType=
https://www.nxp.com/webapp/Download?colCode=LX2160ARDBGSG&location=null
https://www.nxp.com/webapp/Download?colCode=IMX93EVKQSG

NXP Semiconductors

REALTIMEEDGEUG

Table 4. Acronyms and abbreviations...continued

Real-time Edge Software User Guide

Term Description

DP Display port

EtherCAT Ethernet for control automation technology
ECU Electronic control units

FDB Forwarding database

FQTSS Forwarding and queuing enhancements for time-sensitive streams
FMan Frame manager

GPU General processor unit

ICMP Internet control message protocol

IEEE Institute of electrical and electronics engineers
IETF Internet engineering task force

IPC Inter-processor communication

KM Key management

LBT Latency and bandwidth tester

MAC Medium access control

MU Message Unit

NFC Near field communication

NCI NFC controller interface

NMT Network management

oC Ordinary clock

OpenlL Open industry Linux

OPC Open platform communications

OP-TEE Open portable trusted execution environment
(O] Operating system

OTA Over-the-air

OTPMK One-time programmable master key

PCP Priority code point

PDO Process data object

PHC PTP hardware clock

PIT Packet inter-arrival times

PLC programmable logic controller

PTP Precision time protocol

QSPI Queued serial peripheral interface

RCW Reset configuration word

REE Rich execution environment

RPC Remote procedure call

RPMSG Remote processor messaging

REALTIMEEDGEUG Allinformation provided in this document is subject to legal disclaimers. ©2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

9/404

NXP Semiconductors

REALTIMEEDGEUG

Table 4. Acronyms and abbreviations...continued

Real-time Edge Software User Guide

Term Description

RTEdge Real-time edge

RTC Real-time clock

RTT Round-trip times

RX Receiver

SABRE Smart application blueprint for rapid engineering
SDO Service data object

SOEM Simple Open EtherCAT master

SPI Serial periphery interface

SRP Stream reservation protocol

SRTM Simplified Real-time Messaging

SRK Single root key

TA Trusted application

TAS Time-aware scheduler

TC Traffic classification

TCP Transmission control protocol

TEE Trusted execution environment

TFTP Trivial file transfer protocol

TSN Time sensitive networking

X Transmitter

TZASC Trust zone address space controller

UDP User datagram protocol

VLAN Virtual local area network

REALTIMEEDGEUG Allinformation provided in this document is subject to legal disclaimers. ©2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

10/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2 Real-time system

2.1 Overview

Real-time System addresses different real-time requirements on multicore platforms, including different
schedule latency requirements, inter-core communication, hardware resource sharing, unified life-cycle
management, and unified building and deployment mechanism.

For different schedule latency requirements, Real-time System provides Preempt-RT Linux, native RTOS on
Cortex-A core and Cortex-M core, RTOS on Cortex-A core with Jailhouse, BareMetal framework, and a flexible
combination of different cores running Preempt-RT Linux and RTOS/BareMetal to meet different real-time
requirements for different use cases.

The heterogeneous multicore framework feature of Real-Rime Edge software provides different intercore
communication mechanisms and hardware-resource sharing mechanisms between different CPU cores and
different OSes to cover high-performance communication and real-time requirements. Unified CPU Core life
cycle management provides a unified mechanism to bootstrap the Cortex-A core and Cortex-M core on the
heterogeneous MPU system. Refer to chapter Section 3 "Heterogeneous Multicore Framework" for details.

The unified software building and deploying mechanism provides easy building and deployment for the
software components running on the Cortex-A core and Cortex-M core. These components and features of this
mechanism are depicted in Figure 2.

Low Latency OS

Preempt-RT RTOS BareMetal With Determinism

Real-time

Heterogeneous VirtlO Communication

Real-time

RPMSG Heterogeneous Multicore Framework Bean e iy

remoteproc
Unified Life-Cycle
Management

Unified Building,
Deployment, Release

Yocto and West

il

Real-time System in Real-time Edge

Figure 2. Real-time system

Real-time Edge software provides a general software architecture to run Real-time Systems on MPU platforms
with the following features:

« Different frameworks and flexible combinations for different schedule latency requirements
The Figure 3 shows all the OS/Baremetal supported in Real-time Edge on MPU platforms with different-scale
schedule latency:
— Preempt-RT Linux on Cortex-A Core
Real-time Linux kernel provides deterministic low latency compared to Linux.
— Baremetal on Cortex-A Core

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

11/404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Single or multiple Baremetal instance run Cortex-A Core(s) with zero schedule latency.
— Native RTOS SMP/AMP on Cortex-A Core
Native RTOS (FreeRTOS or Zephyr) is kicked to one or more Cortex-A Core from U-Boot, no Jailhouse is
used and targets lower latency and higher performance as compared to RTOS with Jailhouse.
— RTOS SMP/AMP on Corex-A Core with Jailhouse
RTOS (FreeRTOS or Zephyr) runs in Jailhouse inmate with hardware resource isolations on Cortex-A Core.
— RTOS and Baremetal on Cortex-M Core
Generally used for Real-time Control system, but has less CPU computing ability than Cortex-A Core.

~N FmTTmmTmmmmmmsmmmsemoen :

' Inmate Cell |

RootCell |! [N] [RTOS |

Preempt- Native Native Linux ' (SMP/AMP) |

Zeely AR RT Linux EaahEa) Zephyr FreeRTOS T i Dy ,T, S S ‘:
{ Jailhouse

i/

C | B | | | | B | I | I |
|DC||DC||DC||DC|DC||DC||DC|DC|DC|
TCM L2 Cache L2 Cache ‘

5 5 % 3 ¥ 5 ¥ ¥ ¥
A4 A4 v v \ 4 \ 4 A A4 v

1

v

DDR

Memory

Figure 3. Flexible AMP in Real-time system

All these Real-time OS or BareMetal can be combined to be a flexible AMP system on multicore system. For
example, i.MX8M Plus platform has four Cortex-A53 Core and one Cortex-M7 Core. The Real-time Edge
software supports flexible AMP system to run these OS/BareMetal combinations:

— Four Cortex-A53 cores run SMP Preempt-RT Linux, Cortex-M7 core run RTOS.
— Four Cortex-A53 cores run four Baremetal/RTOS instances, Cortex-M7 core run RTOS.

— One or more Cortex-A53 cores run Preempt-RT Linux, the other Cortex-A53 cores run one or more.
Baremetal/RTOS instances, Cortex-M7 core run RTOS.

— One or more Cortex-A53 cores run Preempt-RT Linux as Jailhouse Root Cell, the other Cortex-A53 cores
run as one or more inmate cell(s) with RTOS.
 Unified Software Building, Deploy, and Release
— All different OS/application running on different cores are built via Yocto.
— A bitbake command is used to create all images on different cores.
— Single Flash Image includes all OS/applications running on all CPU cores.
* Heterogeneous Multicore Framework
A common framework with the following key features and functions:
— Inter-Core Data Communication and Resource Sharing

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

12/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Common Heterogeneous Multicore Framework provides data communication and resource sharing
between M-Core and A-Core(s) or between different A-Cores simulteneously: RPMSG provides standard
message communication for low bandwidth use cases, and Heterogeneous Multicore Virtio provides high
performance data path and resource sharing to meet high bandwidth requirement.

— Unified Life-Cycle management for flexible AMP
Real-time Edge software supports Preempt-RT Linux, FreeRTOS, Zephyr, and Baremetal running on different

processors with Heterogeneous Multicore Framework. The Table 5 "Real-time-system support matrix" shows
the support matrix on NXP platforms:

Table 5. Real-time-system support matrix

Real-time System i.MX 8M Mini i.MX 8M Plus i.MX i.MX 93 EVK i.MX LS1028 |LS1043 [LS1046 |LX2160
4 LPDDR4 EVK LPDDR4 EVK 8DXL RT1180- |ARDB ARDB ARDB ARDB
EVK
Cores 4 X A53 1XM4 |4XA53 [1XM7 2XA55 |(1XM33 2XA72 | 4XA53 | 4XA72 |16 X AT2

Preempt-RT Linux Y Y Y Y Y Y Y
Baremetal Y Y Y Y Y Y Y Y Y Y
Native |FreeRTOS Y Y Y
RTOS | zephyr Y Y % Y Y

Baremetal Y Y Y Y Y Y Y

FreeRTOS Y Y Y
Jailhous

Zephyr Y Y Y

Harpoon Y Y Y

2.2 Building, deploying, and releasing unified software

The Yocto project is an open source collaboration project that helps developers create custom Linux-based
systems regardless of the hardware architecture. The project provides a flexible set of tools and a space where
embedded developers worldwide can share technologies, software stacks, configurations, and best practices.
These can further be used to create tailored Linux images for embedded and loT devices, or anywhere a
customized Linux OS is needed. Moreover, Linux factory selects Yocto as the building tool. Real-time Edge
also selects Yocto as the unified SW release tool. Figure 4 shows the unified Yocto structure for Heterogeneous
AMP.

yocto-real-time-edge

Preempt-RT Linux on Pure RTOS on Cortex-A core RTOS on Cortex-A with Jailhouse RTOS on Cortex-M core

Cortex-A core
Cortex-A Core Support in Github mcux-sdk

github.com/nxp-real-time-edge- p github.com/nxp-real-time- github.com/nxp-
sw/real-time-edge-linux github.com, ! edge-sw/soem MCUXPresso/xxx
nxp-real-time-edge-sw/ '\;;?;Ib'_;com/
- arpoon-apps
l heterogeneous-multicore l
v v
meta-real-time-edge meta-rtos-industrial meta-nxp-harpoon meta-rtos-industrial
meta-real-time-edge
Linux Factory MCUXpresso SDK github Real-time Edge Software

Figure 4. Unified Yocto structure for Heterogeneous AMP

* Yocto Layer meta-real-time-edge focuses on Linux and BareMetal application build on Cortex-A core.
* Yocto Layer meta-nxp-harpoon focuses on RTOS build on Cortex-A core.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

13/404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

* Yocto Layer meta-rtos-industrial focuses on RTOS build running on Cortex-M core.

Only one build command is required to generate the complete image, including all binaries running on core A
and core M.

For example:

setup yocto environment for imx8mp-lpddrd-evk board

$ DISTRO=nxp-real-time-edge MACHINE=imx8mp-lpddrd4-evk source real-time-edge-
setup-env.sh

build all images for imx8mp-lpddr4-evk board

S bitbake nxp-image-real-time-edge

2.2.1 Yocto layer for Cortex-A core

The Cortex-A core allows users to run Linux, Jailhouse, Baremetal, and RTOS. The corresponding Yocto layer
description is as follows:

1. Linux and Rootfs
The Yocto layer meta-real-time-edge focuses on Linux building on Cortex-A cores. This layer is based
on Linux factory and describes the process for building all applications for Linux and rootfs on Cortex-A
core.

2. Jailhouse
The scripts under meta-real-time-edge/recipes-extended/real-time-edge-jailhouse
describe how to build Jailhouse running on Cortex-A core.

3. Baremetal application
The scripts under meta-real-time-edge/recipes—-extended/real-time-edge-baremetal
describe how to build baremetal application on Cortex-A core. Refer to Section 2.4 "Baremetal on Cortex-A
core" for details.

4. Harpoon (RTOS on A core)
Harpoon provides an environment for developing real-time demanding applications on an RTOS running on
one (or several) Cortex-A core(s) in parallel of a Linux distribution, leveraging the 64-bit Arm (R) architecture
for higher performance. The system starts on Linux and the Jailhouse partitions the hardware to run both
Linux and the guest RTOS in parallel. The hardware partitioning is configurable and depends on the use
case. The Yocto layer meta-nxp-harpoon describes how to build these applications on Cortex-A core. For
more information, refer to Harpoon User's Guide. See Section 1.5 "Related documentation”.

2.2.2 Yocto layer for Cortex-M core

When the application runs on the Cortex-M core, it uses different toolchain and source code. For a unified
compilation interface, Yocto meta layer meta-rtos-industrial is introduced into Real-time Edge project.
The meta-rtos-industrial layer provides the build environment to create MCUX SDK application for
Cortex-M cores.

2.2.2.1 Introduction to meta-rtos-industrial

The Figure 5 shows the meta-rtos-industrial file structure.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

14/ 404

NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

sources/

|— base

|— meta-browser

|— meta-clang

|— meta-cloud-services
|— meta-cpan

|— meta-freescale

|— meta-freescale-3rdparty
|— meta-freescale-distro
— meta-imx

|— meta-nxp-demo-experience
|— meta-nxp-harpoen
|— meta-openembedded
|— meta-python2

|— meta-qorig

|— meta-qt5

|— meta-real-time-edge
|— meta-rtos-industrial
|— meta-security

|— meta-selinux

|— meta-timesys

|— meta-virtualization

¥ meta-rtos-industrial

—conf
— distro

| L—rtos-i ial.conf

Layer configuration and distro settings

}— rayer.conf

|— evkbimxrt1050.conf

(current distro options: rtos-industrial)

Define MCU and MPU’s M core setting

|
|
|
| L— machine
|
I }_ i conf
| L— include
|— recipes-devtools
| L— external-arm-toolchain
| }— arm-binary-toolchain.inc
| L— gec-arm-none-eabi_10.3-2021.10.bb
L— recipes-kernel
L— mcux-kernel

|— demo-hello-world.bb

|— driver-gpio-led-output.bb

|— freertos-hello.bb

|— freertos-soem-gpio-pulse

|— freertos-soem-gpio-pulse.bb

|— mecux-example.inc

— mcux-sdk-src.bb

— dk-src.inc <

<«— Download and install arm-none-eabi toolchain

Define example binary compiling, installation and

deployment

mcux-sdk

L— soem-gpio-pulse.bb

L— poky

Figure 5. RTOS Industrial Layer structure

2.2.2.1.1 Source code definition

All source code related definition is under recipes-kernel/mcux-kernel folder.

The file mcux-sdk-src. inc defines all the repos of (NXPmicro/mcux-sdk: MCUXpresso SDK (github.com))
and the new repos.

If a new repo needs to be downloaded, append a new line to “SRC_URI” with the URL and location of the
required repo.

For example, use the below code to download 'SOEM' stack to git/core/components/SOEM folder:

git://${NXPMICRO BASE}/soem.git;protocol=https;nobranch=1;destsuffix=git/core/
components/SOEM; name=SOEM \

mcux-sdk-src-XxXX.inc defines the MCUX SDK repo commit ID for the release XXX. For example, mcux-
sdk-src-2.11.0.inc contains all the commit IDs for the release 2.11.0 repository.

The parameter PREFERRED VERSION MCUX-SDK defines the default version in mcux-sdk-src. inc. If you
want to compile a different version, overwrite this parameter in the 1ocal.conf.

For example:

Add the below line into local.conf
PREFERRED_VERSION_MCUX—SDK = "2.10.0"

2.2.2.1.2 Example definition

The file mcux-examples. inc describes the common method to compile install and deploy examples. Each
example bb file should include this file and then specify the folder of the example.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

User guide Rev. 2.8 — 29 March 2024

© 2024 NXP B.V. All rights reserved.

15/404

https://github.com/NXPmicro/mcux-sdk

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Use the command below to add a new example:

include mcux-example.inc
MCUX EXAMPLE DIR = "examples/${RTOS-INDUSTRIAL-BOARD}/demo apps/hello world"

2.2.2.1.3 Toolchain definition

The file recipes-devtools/external-arm-toolchain/gcc-arm-none-eabi VERSION.Dbb describes
how to download, install, and deploy gcc-arm-none-eabi toolchain of the specific VERSION.

This layer also supports external toolchain. Parameter “ARMGCC DIR” can be overwritten to point the external
toolchain.

For example:

ARMGCC DIR = “/MYPATH/arm-none-eabi”

2.2.2.2 Integration of meta-rtos-industrial

To integrate meta-rtos-industrial into the Real-time Edge project, you need to specify the board and
examples.

The board name is different between i.MX SDK and MCUX SDK. For example, in order to compile Cortex-

M application for i.MX 8M Mini EVK with LPDDR4, use the board name evkmimx8mm instead of imx8mm-
lpddrd-evk. The file rtos-industrial-examples. inc is created under meta-real-time-edge/
distro/include to map the board names. The board name used by MCUX SDK should be set to parameter
RTOS-INDUSTRIAL-BOARD.

In the path meta-real-time-edge/recipes—-nxp/packagegroups, packagegroup-real-time-edge-
rtos.bb is used for examples that are compiled. These examples should be installed into rootfs.

2.2.2.3 Building meta-rtos-industrial

As the meta-rtos-industrial is already integrated into Real-time Edge, we do not need any special commands
or settings to enable building the rtos application. When building nxp-image-real-time-edge image, all
examples defined in packagegroup-real-time-edge-rtos.bb are built and installed into “/examples”
folder in rooffs.

Use the below commands to create nxp-image-real-time-edge image for imx8mm-lpddr4-evk board.

S mkdir yocto-real-time-edge

$ cd yocto-real-time-edge

$ repo init -u https://github.com/nxp-real-time-edge-sw/yocto-real-time-edge.git
-b real-time-edge-mickledore -m real-time-edge-2.8.0.xml

$ repo sync

$ DISTRO=nxp-real-time-edge MACHINE=imx8mm-lpddrd-evk source real-time-edge-

setup-env.sh -b build-imx8mpevk-real-time-edge

S bitbake nxp-image-real-time-edge

The example binary are located under tmp/deploy/images/imx8mm-1pddrd-evk/examples and /
examples of rooffs.

examples/

| -— heterogeneous-multicore
| |-— hello-world-ca

| | '--— ddr release

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

16 /404

NXP Semiconductors

REALTIMEEDGEUG

|-— hello world cab53.bin
"—-— hello world cab3.elf
virtio-net-backend-ca
‘-— ddr release
|-- virtio net backend cab53.bin
'-— virtio net backend cab53.elf
virtio-net-backend-cm
‘-- release
|-- virtio net backend cmé4.bin
"-— virtio net backend cm4.elf
virtio-perf-ca
'-- ddr release
|-- virtio perf cab3.bin
'-— virtio perf cab3.elf
virtio-perf-cm
‘-- release
|-- virtio perf cm4.bin
‘-- virtio perf cm4d.elf

-- mcux-sdk
| -— 9bit-iuvart-interrupt-transfer

REALTIMEEDGEUG

| -— ddr release
| |-- 9bit iuart interrupt transfer

"—— release

|-- 9bit iuart interrupt transfer.
.elf

‘—— 9bit iuart interrupt transfer
9bit-iuart-polling
| -— ddr release
| |-- 9bit iuart polling.bin
| "-— 9bit iuart polling.elf
—— release
|-- 9bit iuart polling.bin
"-— 9bit ijuart polling.elf
demo-hello-world
| -— ddr release
| |-- hello world.bin
| "-- hello world.elf
‘—— release
|-- hello world.bin
"--— hello world.elf
driver-gpio-led-output
| -- ddr release
| |-- igpio led output.bin
| "—- igpio led output.elf
‘—— release
|-- igpio led output.bin
"-- igpio_led output.elf
freertos-hello
| -- ddr release
| | -- freertos hello.bin
| '-- freertos hello.elf
‘—— release
| -- freertos hello.bin
'-- freertos hello.elf
freertos-soem-gpio-pulse
| -- ddr release
| | -- soem gpio pulse freertos.bin
| '--— soem gpio pulse freertos.elf
"—— release
| -- soem gpio pulse freertos.bin

- .bin
| "--— 9bit iuart interrupt transfer.

elf

bin

Real-time Edge Software User Guide

All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024

171404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

| ‘-- soem gpio pulse freertos.elf
| -— rpmsg-lite-str-echo-rtos-8m-cm
| | -— ddr release
| | |-- rpmsg lite str echo rtos.bin
| | "-- rpmsg lite str echo rtos imxcmé.elf
| "—-— release
| | -- rpmsg lite str echo rtos.bin
| "-— rpmsg lite str echo rtos imxcmé4.elf
| -— rpmsg-lite-str-echo-rtos-ca
| '—— ddr release
| |-- rpmsg lite str echo rtos.bin
| "-- rpmsg lite str echo rtos imxcab3.elf
| -— rpmsg-lite-uart-sharing-rtos
| ‘—— release
| |-- rpmsg lite uart sharing rtos.bin
| ‘-— rpmsg lite uart sharing rtos.elf
-- soem-gpio-pulse

| -- ddr release

| | -— soem gpio pulse.bin

| '-— soem gpio pulse.elf

‘—— release

| -- soem gpio pulse.bin
'-- soem gpio pulse.elf

If you just want to compile a special example, you can use the following command:

For example:

$ DISTRO=nxp-real-time-edge MACHINE=imx8mm-lpddr4d-evk bitbake demo-hello-world

2.3 Preempt-RT Linux

The Preempt-RT Linux option turns the kernel into a real-time kernel. It does so by replacing various locking
primitives (for example, spinlocks and rwlocks) with preemptible priority-inheritance aware variants. The
Preempt-RT Linux option also enforces interrupt threading and introduces mechanisms to break up long
non-preemptible sections. This makes the kernel fully preemptible and brings most execution contexts under
scheduler control. However, very low level and critical code paths (entry code, scheduler, low level interrupt
handling) remain non-preemptible.

2.3.1 System Real-time Latency tests

The basic measurement tool for Real-time Linux is cyclictest.

2.3.1.1 Running Cyclictest

Cyclictest provides statistics about the latencies of the system. It accurately and repeatedly measures the
difference between the intended wake-up time of a thread and the time at which it actually wakes up. It can
measure latencies in real-time systems caused by the hardware, the firmware, and the operating system.

Thomas Gleixner (tglx) wrote the original test, but several people had later contributed modifications. Cyclictest
is part of the test suite, rt-tests. Clark Williams and John Kacur currently maintain Cyclictest.

cyclictest:

* Use the below command to perform Latency Test:

$ cyclictest -p90 -h50 -D30m

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

18 /404

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/rt-tests

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Note: For detailed parameters of Cyclictest, refer to Cyclictest Web Page.

2.3.2 Real-time application development

This section describes the steps for developing the Real-time application.
Real-time Application: API, Basic Structure, Background:

 Basic Linux application rules are the same; Use the POSIX API.

* There is still a division of Kernel Space and User Space.

* Linux applications run in User Space.

* For details, refer to: https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/
application_base

Real-time Application: Users can build it using the steps below:

* Using the cross-compiler example:

$ arm-linux-gnueabihf-gcc <filename>.c -o <filename>.out -lrt -Wall

* Using the native compiler on a target example:

S gcc <filename>.c -o <filename>.out -lrt -Wall

Scheduling policies have two classes:
1. Completely Fair Scheduling (CFS)

*» SCHED_NORMAL (traditionally called SCHED_OTHER): The scheduling policy that is used for regular tasks.
Every task gets a so called 'nice value'. It is a value between -20 for the highest nice value and 19 for the
lowest nice value. The average value of execution time of the task depends on the associated nice value.

» SCHED_BATCH: Does not preempt nearly as often as regular tasks. Hence, it allows tasks to run longer and
make better use of caches, but at the cost of interactivity. This is well suited for batch jobs and optimized for
throughput.

 SCHED_IDLE: This policy is even weaker than nice 19. However, it is not a true idle timer scheduler in order
to avoid getting into priority inversion problems, which would deadlock the machine.

2. Real-time policies

* SCHED_FIFO: Tasks have a priority between 1 (low) and 99 (high). A task running under this policy is
scheduled until it finishes or a higher prioritized task preempts it.

* SCHED_RR: This policy is derived from SCHED_FIFO. The difference with respect to SCHED_FIFO policy
is that a task runs during a defined time slice (if it is not preempted by a higher prioritized task). It can be
interrupted by a task with the same priority once the time slice is used up. The time slice definition is exported
in procfs (/proc/sys/kernel/sched rr timeslice ms).

» SCHED_DEADLINE: This policy implements the Global Earliest Deadline First (GEDF) algorithm. Tasks
scheduled under this policy can preempt any task scheduled with SCHED_FIFO or SCHED_RR.

2.4 Baremetal on Cortex-A core

The following sections provide an overview of the Real-time Edge Baremetal framework on A core including:

* Features supported

* Getting started with Baremetal framework using the supported platforms:
— NXP Layerscape platforms
- i.MX 8M /i.MX 93 platforms.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

19/404

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start?s%5b%5d=cyclictest)
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/application_base
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/application_base

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

It also describes how to run a sample Baremetal framework on the host environment and develop customer-
specific applications based on Baremetal framework.

2.4.1 Baremetal framework

The Baremetal framework supports the scenarios that need low latency, real-time response, and high-
performance. There is no OS running on the cores and customer-specific application runs on the core directly.
The Figure 6 depicts the baremetal framework architecture.

Linux/ I I I
Other Os | | APP-10ad i App | | App
U-boot I I I

| | |
Shared Memory

e ey—

Figure 6. Baremetal framework architecture

The main features of the Baremetal framework are as follows:

* Core0 runs as master and runs the Baremetal or the operating system such as Linux, Vxworks.
» Slave cores run the Baremetal application.

» Easy assignment of different IP blocks to different cores.

* Interrupts between different cores and high-performance mechanism for data transfer.

« Different UART for core0 and slave cores for easy debug.

* Communication via shared memory.

The master core0 runs the Baremetal under master mode. It then loads the Baremetal application to the slave
cores and starts the Baremetal application. The Figure 7 depicts the boot flow diagram:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

20/404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Power on
Initialization ——— - Initialization
Initialization
Load BareMetal Load BareMetal
= library library
Load BareMetal
library \ |
Y
Slave
Reset work

Figure 7. Baremetal framework boot flow diagram

The Table 6 "BareMetal features supported by NXP processors" lists the industrial 10T features supported by
various NXP processors and boards.

Table 6. BareMetal features supported by NXP processors

Processor Board Main features supported
i.MX 8M Mini i.MX 8M Mini LPDDR4 |UART, IPI, data transfer, Ethernet, GPIO
EVK
i.MX 8M Plus i.MX 8M Plus UART, IPI, data transfer, Ethernet, GPIO
LPDDR4 EVK
i.MX 93 i.MX 93 EVK UART, IPI, data transfer, Ethernet
i.MX 93 9x9 LPDDR4 |UART, IPI, data transfer
QSB
LS1028A LS1028ARDB I12C, UART, ENETC, IPI, data transfer, SAI
LS1043A LS1043ARDB IRQ, IPI, data transfer, Ethernet, IFC, I12C, UART, FMan, USB, PCle
LS1046A LS1046ARDB IRQ, IPI, data transfer, Ethernet, IFC, I12C, UART, FMan, QSPI, USB,
PCle, GPIO
LX2160A/Rev2 LX2160ARDB UART, IPI, data transfer

Typical use cases are as follows:

1. Core0 as a master core runs Linux to manage slave cores and communicate with server. Slave cores run
Baremetal application for real-time processing. Refer Figure 8.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

21/404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Linux

I
=
R=n
==

BareMetal

BareMetal BareMetal

Core 1

T
=
©
[7)]
@,
(]
>
3
o)
~

10 devices: Ethernet, USB, GPIO, UART, 12C, SPI ...

Figure 8. BareMetal Use Case 1
2. All cores run BareMetal application for real-time processing. Refer Figure 9.

BareMetal BareMetal BareMetal

IO devices: Ethernet, USB, GPIO, UART, I12C, SPI ...

uswubisse p\H

Figure 9. BareMetal Use Case 2

2.4.2 Getting started

This section describes how to set up the environment and run the Baremetal examples on slave cores
(assuming that the core0 is the master core and the other cores are the slave cores).

2.4.2.1 Hardware and software requirements

In order to run baremetal framework scenarios, the following are required:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. Al rights reserved.

User guide Rev. 2.8 — 29 March 2024

22/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

* Hardware: i.MX 8M Mini LPDDR4 EVK, i.MX 8M Plus LPDDR4 EVK, i.MX 93 EVK, i.MX 93 9x9 LPDDR4
QSB, LS1028ARDB, LS1043ARDB, LS1046ARDB, LX2160ARDB, and serial cables.

» Software: Real-time Edge Software v2.7 release or later.
2.4.2.2 Hardware setup

This section describes the hardware setup required for the NXP boards for running the Baremetal framework
examples.

2.4.2.2.1 i.MX 8M Mini LPDDR4 EVK and i.MX 8M Plus LPDDR4 EVK board

Follow the steps below.

1. i.MX 8M Plus LPDDR4 EVK: There is one USB MicroB Debug port on board. Four UART ports can be
found when the MicroB cable connects to PC.

/dev/ttyUSBO
/dev/ttyUSB1
/dev/ttyUSB2
/dev/ttyUSB3

Use /dev/ttyUSB2 for core0 (master core) and /dev/ttyUSB3 for core1, core2, and core3 (slave cores).
2. i.MX 8M Mini LPDDR4 EVK: There is one USB MicroB Debug port on board. Two UART ports can be found
when the MicroB cable connects to PC.

/dev/ttyUSBO
/dev/ttyUSB1

Use /dev/ttyUsSB1 for core0 (master core) and /dev/ttyUSBO for core1, core2, and core3 (slave cores).

3. GPIO setup
For GPIO test on i.MX 8M Plus LPDDR4 EVK, connect pin 7 and pin 8 of J21 by a jumper, as shown in

Figure 10.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

23 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

=)
cRp Sy TiEscIsT A
med

R10@EXT_3V
TP68@ VDD_5V

TP

UART-RTSej

S
mm.o[s

UART_CTS e,

|
3
>

f'

K o2

TPB2R293 amnen GPIO e
TPBIR294 DNT
TP84AR29S ox0 GPIO N
wasnzu (T |
PDM_0Q & « : GPIQ %
PDM_1 @&« :
PDM_2 ‘@ '+ ariQ I
L
POM_3 o us? cuon:

GND Orvn'.l 12 lnm v

POM_CLK® - 1
TTPA6 w

™s

" SSCLLTPS
T

SCLHTPS
]X

SDAH
08 ®PCANZ_RX
07 @CAN2_
CAN1_ |

08 o

Figure 10. Connections for GPIO test on i.MX 8M Plus LPDDR4 EVK board
4. For GPIO test on i.MX 8M Mini LPDDR4 EVK, connect pin7 and pin8 of J1003 by a jumper as shown in
Figure 11.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

24404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

R920 n§ l;
yso| 4 ONVN

PO PDOJumo
Z2JHQ@S/QS042!

ST MIPLNY e

_ 8MMINI-BB

1

MS L0000, “110

[MS

= —
GNC@ o
STATUS°°

@ &P
AU R R
‘XXX0101

e e

o
8
S

MS (0T, 1000

0001
MS 0100110110

TMS 0010101000
IMS 1000110110

; 0o10| 10
INIWWNS

2R2072R206
2
1101 1MS
ONVYNWS8

2
v-111011IMS

R208
]
TE]
144335
e YT I L LY,

v.-
(v

=
s

\»Iv]
1
!

', ®ova
el ©z020 NxF B.V.

"]_q‘ﬂh
19

FRERABRAGNT

N]
TEFREREE
[FEERERRR R
144

|

@ Ritbe'q pR21S
. GND gMMINILPD4-CPU2
6.

REEE RN NN
IR R R RN

~
-
g

|9/141IM

Figure 11. Connections for GPIO test on i.MX 8M Mini LPDDR4 EVK board

2.4.2.2.2 LS1028ARDB, LX2160ARDB, LS1043ARDB, or LS1046ARDB

If the Real-time Edge Baremetal framework is developed using one of the boards- LS1028ARDB,
LX2160ARDB, LS1043ARDB, or LS1046ARDB, two serial cables are needed for connection. One serial cable

is used for core0, to connect to UART1 port. The other cable is used for slave cores and connects to the UART2
port.

To support SAIl feature on LS1028ARDB, set switch SW5_8 to "ON".

2.4.2.2.3 i.MX 93 EVK

On i.MX 93 EVK board, the USB Type-C connector (J1401) provides four UART ports when connected to PC
using USB cable. The third port (LPUART1) is used for core0 (master core) and the fourth port (LPUART?2) is
used for core1 (slave core).

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

25/404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2.4.2.2.4 i.MX93 9x9 LPDDR4 QSB

On i.MX 93 9x9 LPDDR4 QSB board, the USB Type-C connector (J1708) provides four UART ports when
connected to PC using USB cable. The third port (LPUART2) is used for core0 (master core) and the fourth port
(LPUART3) is used for core1 (slave core).

2.4.2.3 Software building

There are two methods to build the Baremetal images:

* The first method is to compile the images in a standalone way, and is described in the following section.

* The second method is to build the Baremetal images using Real-time Edge framework. This method is
described in the document, Real-time Edge Yocto Project User Guide in section "Building the image through
Yocto".

2.4.2.3.1 Building Baremetal binary for slave cores

Perform the steps mentioned below:

1. Download the project source from the following path:
https://github.com/nxp-real-time-edge-sw/real-time-edge-uboot.qgit
2. Check it out to the tag:
* Real-Time-Edge-v2.8-baremetal-202403
3. Configure cross-toolchain on your host environment.
4. Then, run the following commands:

/* build Baremetal image for i.MX 8M Mini LPDDR4 EVK Rev.C board */
S make imx8mm evk baremetal slave defconfig

S make

/* build Baremetal image for i.MX 8M Plus LPDDR4 EVK board */
$ make imx8mp evk baremetal slave defconfig

S make

/* build Baremetal image for i.MX 93 EVK board */

S make imx93 11x11 evk baremetal slave defconfig

S make

/* build Baremetal image for i.MX 93 9x9 LPDDR4 QSB board */
$ make imx93 9x9 gsb baremetal slave defconfig

S make

/* build Baremetal image for LS1028ARDB board */

S make 1sl028ardb baremetal slave defconfig

S make

/* build Baremetal image with SAI for LS1028ARDB board */

$ make 1sl028ardb baremetal slave sai defconfig

S make

/* build Baremetal image for LS1043ARDB board */

S make 1sl043ardb baremetal slave defconfig

S make

/* build Baremetal image for LS1046ARDB board */

$ make lslO46ardb baremetal slave defconfig

S make

/* build Baremetal image for LX2160ARDB board */

S make 1x2160ardb baremetal slave defconfig

S make

5. Finally, the file u-boot-dtb.bin used for Baremetal is generated.

Follow Real-time Edge Software Yocto Project to get the code and build images for these platforms.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

26 /404

https://github.com/nxp-real-time-edge-sw/real-time-edge-uboot.git

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2.4.2.3.2 Building the image through Yocto

There are two methods to build the Baremetal images. The first method, which is used to compile the images
in a standalone way, is described in Section 2.4.2.3 "Software building". The other method is to build the
Baremetal images using Real-time Edge software framework, and is described in this section.

The Real-time Edge software is designed for embedded industrial usage. It is an integrated Linux distribution for
industry. With the current version, the Baremetal can be built and implemented conveniently.

2.4.2.3.21 Getting Real-time Edge software

The latest release is available at the following URL:

https://github.com/nxp-real-time-edge-sw/yocto-real-time-edge.git

Follow Yocto documentation "Real-time Edge Yocto Project User Guide" to get the code and build the image.
Refer to Section 1.5 "Related documentation”.

2.4.2.3.2.2 Building the Baremetal images

This section describes the steps for building the Baremetal images for various boards. The steps described are
applicable to the boards such as LS1043ARDB, LS1046ARDB, LX2160ARDB, i.MX 8M Plus LPDDR4 EVK,
and i.MX 8M Mini LPDDR4 EVK board.

Building the Baremetal images for various boards

Run the following commands to build the final Baremetal image for Layerscape and i.MX platforms.

$ cd yocto-real-time-edge

For |.MX 93 EVK Baremetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=imx93evk source real-time-edge-
setup-env.sh -b build-imx93evk-bm

For i.MX 93 9x9 LPDDR4 QSB Baremetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=imx93-9x9-1pddrd-gsb source real-
time-edge-setup-env.sh -b build-imx93gsb-bm

For LS1028ARDB Baremetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=1s1028ardb source real-time-edge-
setup-env.sh -b build-1s1028ardb-bm

For LS1043ARDB Baremetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=1s1043ardb source real-time-edge-
setup-env.sh -b build-1s1043ardb-bm

For LS1046ARDB Baremetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=1sl046ardb source real-time-edge-
setup-env.sh -b build-1s1046ardb-bm

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

271404

https://github.com/nxp-real-time-edge-sw/yocto-real-time-edge.git

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

For LX2160ARDB Baremetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=1x2160ardb-rev2 source real-time-
edge-setup-env.sh -b build-1x2160ardb-bm

For i.MX 8M Plus LPDDR4 EVK Baremetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=imx8mp-lpddr4-evk source real-
time-edge-setup-env.sh -b build-imx8mpevk-bm

For i.MX 8M Mini LPDDR4 EVK Baremetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=imx8mm-lpddr4-evk source real-
time-edge-setup-env.sh -b build-ix8mmevk-bm

Then, use:

$ bitbake nxp-image-real-time-edge

2.4.2.4 Booting up the Linux with Baremetal

Use the following steps to boot up the system with the images built from Real-time Edge software.

For platforms that can be booted up from the SD card, there are just two steps required to program the image
into SD card.

1. Insert an SD card (at least 4 GB size) into any Linux host machine.
2. Find the image file in building directory (for example: Is1028ardb):

tmp/deploy/images/1s1028ardb/nxp-image-real-time-edge-1s1028ardb.wic.zst

3. Then, run the following commands:

S zstd -d nxp-image-real-time-edge-1s1028ardb.wic.zst

$ sudo dd if=./nxp-image-real-time-edge-1s1028ardb.wic of=/dev/sdx bs=1M
conv=fsync

or in some other host machine:

$ sudo dd if=./nxp-image-real-time-edge-1s1028ardb.wic of=/dev/mmcblkx bs=1M
conv=fsync

find the right SD Card device name in your host machine and replace the
“sdx” or “mmcblkx”.

4. Then, insert the SD card into the target board (for example Is1028ardb) and power on.

After completion of the above mentioned steps, the Linux system boots up on the master core (core 0), and the
Baremetal system boots up on slave core (core 1) automatically.

2.4.3 Running examples

The following sections describe how to run the Baremetal examples on the host environment for LS1028ARDB
board. Similar steps can be followed for LS1043ARDB, LS1046ARDB, i.MX 8M Mini LPDDR4 EVK, i.MX 8M
Plus LPDDR4 EVK, i.MX 93 EVK and i.MX 93 9x9 LPDDR4 QSB board.

2.4.3.1 Preparing the console

In current Baremetal framework design, two UART ports are used as console. One UART is used for master
core and the other UART is used for slave cores. Refer to Section 3.2.2.2 for preparing the console.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

28 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2.4.3.2 Running the Baremetal binary

As described earlier, there are two methods to compile the Baremetal framework. One is a standalone method
and the other method uses the Real-time Edge software. These methods are described in Section 2.4.2.3
"Software building" and Section 2.4.2.3.2 "Building the image through Yocto" respectively.

* If the Real-time Edge software is used to compile the Baremetal image, the Baremetal image is included in
the nxp-image-real-time-edge-xxxx.wic.zst. In this case, the master core starts the Baremetal
image on slave cores automatically.

* |If standalone compilation method is used, perform the steps below to run the Baremetal binary from U-Boot
prompt of master core. See the below example run on Layerscape platform:
1. After starting U-Boot on the master, download the bare metal image: u-boot-dtb.bin on 0x84000000
using the command below:

=> tftp 0x84000000 xxxx/u-boot-dtb.bin

Where
— xxxx IS your tftp server directory.
— 0x84000000 is the address of CONFIG TEXT BASE on bare metal for Layerscape platforms.
Note:
a. The address is 0x50200000 for i.MX 8M Plus LPDDR4 EVK and i.MX 8M Mini LPDDR4 EVK boards.
b. The address is 0x90200000 for i.MX 93 EVK board.
2. Then, start the Baremetal cores using the command below:

=> dcache flush; cpu 1 release 0x84000000

Note: In the command cpu <num> release 0x84000000, the 'num'can be 1, 2, 3, ... to the
maximum CPU number.
For i.MX 8M Plus LPDDR4 EVK and i.MX 8M Mini LPDDR4 EVK boards, us the below command:

=> dcache flush;cpu 1 release 50200000;sleep 6;cpu 2 release 50200000;sleep
2;cpu 3 release 502000007

3. Last, the UART2 port displays the logs, and the bare metal application runs on slave cores successfully.

2.4.4 Development based on Baremetal framework

This chapter describes how to develop customer-specific application based on Baremetal framework.

2.4.41 Developing the Baremetal application

The “app” directory in the U-boot repository includes the test cases for testing the 12C, GPIO, and IRQ init
features. Users can write their custom applications and store them in this directory.

2.4.4.2 Main file app.c

The file <U-boot path>/app/app.c, is the main file to add all applications. Users can modify the app. c file
to add their applications.

* When the standalone method is used to build the Baremetal image as described in Section 2.4.2.3 "Software
building", change the directory to U-boot path to read or edit the app. c file.

* When the Real-time Edge software is used to compile the Baremetal binary, change to the building directory
to view or edit the app. c file.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

29/404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

The following is a sample code of the file app . c that shows how to add the example test cases of I12C, IRQ, and
GPIO.

void corel main (void)
{
test 12c();
test irqg init();
test gpio();
return;

2.4.4.3 Common header files

There are some common APIs provided by Baremetal. The table below describes the header files that include
the APIs.

Table 7. Common header file description
Header file Description

asm/io.h Read/Write 10 APlIs.
For example, raw readb, raw writeb, out be32,and in be32.

linux/string.h APIs for manipulating strings.
For example, strlen, strcpy, and strcmp.

linux/delay.h APIs used for small pauses.
For example, udelay and mdelay.

linux/types.h APlIs specifying common types.
For example, u32 and u64.

common . h Common APlIs
For example, printf and puts.

2.4.4.4 GPIO example

The file uboot/app/test gpio.c is an example to test the GPIO feature, and shows how to write a GPIO
application.

Here is an example for the i.MX 8M Mini board:

1. First, you need the GPIO header file, asm-generic/gpio.h and dm.h, which include all interfaces for the
GPIO.

2. Then, find the corresponding GPIO description according to the name of the GPIO (such as GPIO5_7),
configure GPIO5_7 to OUT direction, configure GPIO5_8 to IN direction and request it.

3. Now, by writing the value 1 or 0 to GPIO5_7, you can receive the same value from GPIO5_8.

The Table 8 "GPIO APlIs and their description" shows the APIs used in the file test gpio.c application
example.

Table 8. GPIO APIs and their description

Function declaration Description
int dm gpio lookup name (const char Look up a named GPIO and return its description
*name, struct gpio_desc *desc) name- Name to look up, such as GPIO5_7

desc - GPIO description
Returns: 0 if OK, -ve on error

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

30/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 8. GPIO APIs and their description...continued
Function declaration Description

int dm _gpio request (struct gpio_desc |Manually requesta GPIO

*desc, const char *label) desc - GPIO description of GPIO to request

label- Label to attach to the GPIO while claimed, such as "output1"”
Returns: 0 if OK, -ve on error

int dm gpio_set value (const struct Configures the direction of GPIO to OUT and writes the value to it.
gpio_desc *desc, int value) desc - GPIO description

value- the value written to this GPIO

Returns: 0 if OK, —-ve on error

int dm gpio set dir flags(struct Set direction using description and added flags
gpio_desc *desc, ulong flags) desc - GPIO description

flags - New flags to use

Returns: 0 if OK, -ve on error

int dm gpio free(struct udevice *dev, |Free a single GPIO

struct gpio_desc *desc) dev: Device that requested the GPIO
desc - GPIO description

Returns: 0 if OK, -ve on error

2.4.4.5 12C example

The file uboot/app/test i2c.c can be used as an example to test the 12C feature and shows how to write
an 12C application.

On LS1043ARDB board, read a fixed data from offset 0 of INA220 device(0x40). If the data is 0x39, a message,
[ok]I2C test ok is displayed on the console.

The table below shows the APIs used in the sample file, test_i2c.c.

Table 9. 12C APIs and their description

Function declaration Description
int i2c_set bus num (unsigned Sets the 12C bus.
int bus) bus- bus index, zero based

Returns 0 if OK, -1 on error.

int i2c_read (uint8_t chip, Read data from 12C device chip.
unsigned int addr, int alen, chip - 12C chip address, range 0..127
uint8_t *buffer, int len) * addr - Memory (register) address within the chip

* alen - Number of bytes to use for address (typically 1, 2 for larger
memories, 0 for register type devices with only one register)

* buffer - Where to read/write the data

* len - How many bytes to read/write

Returns 0 if OK, not 0 on error.

int i2c_write (uint8 t chip, Writes data to 12C device chip.
unsigned int addr, int alen, chip - 12C chip address, range 0..127
uint8_t *buffer, int len) * addr - Memory (register) address within the chip

* alen - Number of bytes to use for address (typically 1, 2 for larger
memories, 0 for register type devices with only one register)

* buffer - Where to read/write the data

* len - How many bytes to read/write

Returns 0 if OK, not 0 on error.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

3117404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2.4.4.6 IRQ example

The file, uboot/app/test _irg init.c is an example to test the IRQ and IPI (Inter-Processor Interrupts)
feature, and shows how to write an IRQ application. The process is described in brief below.

The file asm/interrupt-gic.h, is the header file of IRQ, and includes all its interfaces. Then, register an IRQ
function for SGI 0. After setting an SGI signal, the CPU gets this IRQ and runs the IRQ function. Then, register
a hardware interrupt function to show how to use the external hardware interrupt.

SGI IRQ is used for inter-processor interrupts, and it can only be used between bare metal cores. In case you
want to communicate between Baremetal core and Linux core, refer to Section 2.4.4.16 "ICC module". SGI IRQ
id is 0-15. The SGI IRQ id '8' is reserved for ICC.

Note: Fori.MX 8M Mini LPDDR4 EVK, i.MX 8M Plus LPDDR4 EVK, i.MX 93 EVK and i.MX 93 9x9 LPDDR4
QSB boards, SGI IRQ id is 9.

The Table 10 "IRQ APIs and their description" shows the APIs used in the sample file, test irqg init.c.

Table 10. IRQ APIs and their description

Return type APl name (parameter list) Description

int irqg desc register (struct irg Registers an IRQ function.

*irqg_ data, void (*irq_handle) (int, |e irg data- Include IRQ id(0-15 for SGI, 16-31 for PPI, 32-1019 for
int, void *), wvoid *data) SPI), and IRQ dev

* irg handle —IRQ function
* data—IRQ data

void gic_send sgi(u32 id, int core_ |Sets a SGIIRQ signal.

mask) * core_mask — target core mask
e id-IRQid

int irqg set affinity(struct irg Sends the target core for hw IRQ.

*irg, int core_mask) * core mask — target core mask

* irg—IRQ data, include IRQ id

int irg set polarity(struct udevice |Sets the type for hardware IRQ to identify whether the corresponding
*dev, uint id, bool active low) interrupt is edge-triggered or level-sensitive.

¢ dev - IRQ dev

* id-IRQid

* active low —true if active low, false for active high

2.4.4.7 QSPI example

The file uboot/app/test gspi.c provides an example that can be used to test the QSPI feature. The below
steps show how to write a QSPI application:

1. First, locate the QSPI header files spi flash.h and spi.h, which include all interfaces for QSPI.

2. Then, initialize the QSPI flash. Subsequently, erase the corresponding flash area and confirm that the erase
operation is successful.

3. Now, read or write to the flash with an offset of 0x3f00000 and size of 0x40000.

The Table 11 " QSPI APIs" shows the APIs used in the file test gsip.c example.

Table 11. QSPI APIs

API name (type) Description
spi_find bus_and cs (bus,cs, The API finds if a SPI device already exists.
&bus_dev, é&new) * “pus” - bus index, zero based.

e “cs” — the value to chip select mode.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

32/404

NXP Semiconductors

REALTIMEEDGEUG

Table 11. QSPI APIs...continued

Real-time Edge Software User Guide

API name (type)

Description

* “bus_dev” - If the bus is found.
e “new” — If the device is found.
Returns 0 if OK, ~-ENODEV on error.

spi flash probe bus cs(bus, cs,
speed, mode, &new)

Initializes the SPI flash device.
e “bus” - bus index, zero based.
e “cs” —the value to Chip Select mode.

e “speed” — SPI flash speed, can use 0 or CONFIG_SF_DEFAULT _
SPEED.

* “mode” —SPI flash mode, can use 0 or CONFIG_SF_DEFAULT_MODE.
¢ “new” — If the device is initialized.
Returns 0 if OK, ~-ENODEV on error.

dev_get uclass priv(new)

Gets the SPI flash.
* “new” - The device being initialized.
Returns flash if OK, NULL on error.

spi flash erase(flash, offset,
size)

Erases the specified location and length of the flash content, erases the
content of all.

* “flash” - Flash is being initialized.

e “offset” — Flash offset address.

* “size” - Erase the length of the data.
Returns 0 if OK, !0 on error.

spi flash read(flash, offset,
len, vbuf)

Reads flash data to memory.

e “flash” - The flash being initialized.

* “offset” — Flash offset address.

* “len” - Read the length of the data.

e "vbug" - the buffer to store the data read
Returns 0 if OK, ! 0 on error.

spi_flash write(flash, offset,
len, buf)

Writes memory data to flash.

e “flash” - The flash being initialized.

e “offset” — Flash offset address.

* “len” - Write the length of the data.

* "puf" - the buffer to store the data write
Returns 0 if OK, !0 on error.

2.4.4.8 IFC example

Both LS1043ARDB and LS1046ARDB have IFC controller. However, LS1043ARDB supports both NOR flash
and NAND flash, whereas LS1046ARDB supports only NAND flash.

NOR and NAND flash messages are displayed while booting Baremetal cores, as shown below:

1:NAND:
1:Flash:

512 MiB
128 MiB

or (LS1046ARDB)

1:NAND: 512 MiB

There is no example code to test it, but we can use a few commands to verify these features.

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024
3317404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

For LS1043ARDB NOR Flash (the map memory address is 0x60000000), the below command can be used to

verify it:

=> md 0x60000000

1:60000000: 55aabb5aa 000lee01 10001008 0000000a L U
1:60000010: 00000000 0O0OOOOOOO 02005514 12400080 U....@Q.
1:60000020: 005002e0 002000cl 00000000 00000000 P i
1:60000030: 00000000 00880300 00000000 01110000 ... iiiininnnnn..
1:60000040: 96000000 01000000 78015709 10e00000 W.x....
1:60000050: 00001809 08000000 18045709 9e000000 Wooaoooa
1:60000060: 1c045709 9000000 20045709 9e000000 W ool W.
1:60000070: 00065709 00000000 04065709 00001060 B W.. ...
1:60000080: c000ee09 00440000 58015709 00220000 D..W.X..".
1:60000090: 40800089 01000000 40006108 f56b710a 200@ooo00 a.Q.gk.
1:600000a0: ffffffff ffffffff ffffffff fEEEEEEF oo i

For NAND flash on LS1043ARDB and LS1046ARDB, "nand" command can be used to verify it (nand erase,

nand read, nand write, and so on.):

=> nand info
l:Device 0: nand0O, sector size 128 KiB

1: Page size 2048 b

1: OOB size 64 b

l: Erase size 131072 b

1: subpagesize 2048 b

1: options 0x00004200

1: Dbbt options 0x00028000

=> nand

l:nand - NAND sub-system

1:Usage:

nand info - show available NAND devices
nand device [dev] - show or set current device
nand read - addr off|partition size
nand write - addr off|partition size

read/write 'size' bytes starting at offset 'off'
to/from memory address 'addr', skipping bad blocks.
nand read.raw - addr off|partition [count]
nand write.raw[.noverify] - addr off|partition [count]
Use read.raw/write.raw to avoid ECC and access the flash as-is.
nand erase[.spread] [clean] off size - erase 'size' bytes from offset
With '.spread', erase enough for given file size, otherwise,
'size' includes skipped bad blocks.
nand erase.part [clean] partition - erase entire mtd partition'
nand erase.chip [clean] - erase entire chip'
nand bad - show bad blocks
nand dump|[.oob] off - dump page

nand scrub [-y] off size | scrub.part partition | scrub.chip
really clean NAND erasing bad blocks (UNSAFE)
nand markbad off [...] - mark bad block(s) at offset (UNSAFE)

nand biterr off - make a bit error at offset

'off'

2.4.4.9 Ethernet example

The file uboot/app/test net.c provides an example to test the Ethernet feature and shows how to write a

net application for using this feature.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

3417404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Here is an example for the LS1043ARDB (or LS1046ARDB) board.

Note: For LS1046ARDB board, network could be assgined by setting
CONFIG_FMAN_FMAN1_COREID=<core num> (core num could be 0 - 3). If you want to verify it on core 1,
please set CONFIG_FMAN_FMAN1_COREID=1 and compile baremetal image in standalone way to enable the
network for the target core.

1. Connect one Ethernet port of LS1043ARDB board to one host machine using Ethernet cable.

* For LS1046ARDB, the default ethact is FM1@DTSECS5. Network cable should be connected to SGMII1
port.

e For LS1043ARDB, the default ethact is FM1@DTSEC3. Network cable should be connected to RGMII1
port.

2. Configure the IP address of the host machine as 192.168.1.2.

3. Power up the LS1043ARDB board. If the network is connected, the message host 192.168.1.2 is
alive is displayed on the console.

4. The IP addresses of the board and host machine are defined in the file test net.c. In this file, modify the
IP address of LS1043ARDB board using variable ipaddr and change the IP address of host machine using
variable ping ip.

The table below lists the Net APIs and their description.

Table 12. Net APIs and their description

API name (type) Description

void net init (void) Initializes the network

int net loop (enum proto_ t Main network processing loop.
protocol) < enum proto_t protocol - protocol type

int eth receive (void *packet, Reads data from NIC device chip.
int length) * void *packet
¢ length - Network packet length
Returns length

int eth _send (void *packet, int Writes datato NIC device chip.

length) packet - pointer to the packet is sent
* length - Network packet length
Returns length.

2.4.410 USB example

The file uboot/app/test usb.c provides an example that can be used to test the USB features. The steps
below show how to write a USB application:

1. Connect a USB disk to the USB port.

Include the header file, usb . h, which includes all APIs for USB.

Initialize the USB device using the usb_init APL

Scan the USB storage device on the USB bus using the usb_stor scanAPI.
Get the device number using the b1k get devnum by type APl

Read data from the USB disk using the b1k dread API.

Write data to the USB disk using the b1k dwrite API.

NoOok~ON

The table below shows the APIs used in the file test usb.c example:

Table 13. USB APIs and their description

API name (type) Description
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

35/404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 13. USB APIs and their description...continued

int usb_init(void) Initializes the USB controller.

int usb_stop (void) Stops the USB controller.

int usb_stor scan(int mode) Scans the USB and reports device information to the user if
mode = 1
* Mode —if mode =1, the information is returned to user.
Returns

¢ the current device, or
e -1 (if device not found).

struct blk desc *blk get devnum by type (enum |Get a block device by type and number.

if_type if_type, int devnum) e If type — Block device type
¢ devnum - device number
Returns

* Points to block device descriptor, or
e NULL (if not found).

unsigned long blk dread(struct blk_desc Reads data from USB device.

*block_dev, lbaint_t start, lbaint_t blkecnt, |e block dev — block device descripter

void *buffer); start —start block

* blkent — block number

e buffer — buffer to store the data

Returns the block number from which, data is read.

unsigned long blk dwrite (struct blk desc Writes data to USB device.

*block dev, lbaint t start, lbaint t blkcnt, |e pblock dev — block device descripter
const void *buffer); . start_— start block
* blkent — block number

* buffer - bufferto store the data

Returns the block number to which data is written.

2.4.4.11 PCle example

The file app/test pcie.c provides a sample code to test PCle and network card (such as e1000) features.
The steps below show how to write a PCle and net application:

Insert a PCle network card (such as e1000) into PCle2, or PCle3 slot (if it exists).
Configure the IP address of the host machine to 192.168.1.2.

Include the files include/pci.h and include/ netdev.h.

Initialize the PCle controller using the pci_init API.

Get uclass device by its name using the uclass get device by seqAPL
Initialize the PCle network device using the pci eth init API.

Begin pinging the host machine using the net loop APL.

Noogk~oN =

The table below shows the APIs used in the file test_pcie.c example.

Table 14. PCle APIs and their description

API name (type) Description
void pci_init (void) Initializes the PCle controller. Does not return a value.
int uclass_get device by Gets the uclass device based on an ID and sequence:

seq(enum uclass_id id, int seq, |e id—uclassID

struct udevice **devp) * seq- sequence

* devp - Pointer to device

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

36/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 14. PCle APIs and their description...continued
Returns:
* 0if Ok.
* Negative value on error.

static inline int pci eth Initializes network card on the PCle bus.
init(bd_t *bis) e Bis - struct containing variables accessed by shared code
Returns the number of network cards.

int net loop (enum proto_t Main network processing loop.

protocol) * enum proto_t protocol - protocol type
Returns:

e 0if Ok.

* Negative value on error.

2.4.412 ENETC example

The file app/test net.c provides an example to test ENETC Ethernet feature and shows how to write a net
application for using this feature. This example is a special case of using Net APls.

The file test net for ENETC is only an example for the LS1028ARDB board with
(CONFIG _ENETC COREID SET enabled).

1. Connect ENETC port of LS1028ARDB board to one host machine using Ethernet cable.

2. Configure the IP address of the host machine as 192.168.1.2.

3. Power up the LS1028ARDB board. If the network is connected, the message host 192.168.1.2 is
alive is displayed on the console.

4. The IP addresses of the board and host machines are defined in the file test net.c. In this file, modify
the IP address of LS1028ARDB board using variable ipaddr and change the IP address of host machine
using variable ping ip.

The table below lists the Net APls for ENETC and their description, refer to Section 2.4.4 "Development based

on Baremetal framework" for other Net APls.

Table 15. ENETC APIs and their description

API name (type) Description
void pci init(void) Initializes the PCle controller. Does not return a value.
void eth initialize(void) Initializes the Ethernet.

24413 SAl example

The audio feature needs SAI module and codec drivers. The following sections provide an introduction to SAI
module and the audio codec (SGTL5000). These sections also describe the steps for integrating audio with
Baremetal and running an audio application on Baremetal.

2.4.4.13.1 Synchronous Audio Interface (SAl)

The LS1028A integrates six SAl modules, but only SAI4 is used by LS1028ARDB board. The synchronous
audio interface (SAIl) supports full duplex serial interfaces with frame synchronization. The bit clock and frame
sync of SAl are both generated externally (SGTL5000).

* Transmitter with independent bit clock and frame sync supporting 1 data line
*» Receiver with independent bit clock and frame sync supporting 1 data line

* Maximum Frame Size of 32 words

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

371404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

» Word size of between 8-bits and 32-bits
» Word size configured separately for first word and remaining words in frame
» Asynchronous 32 x 32-bit FIFO for each transmit and receive channel

* Supports graceful restart after FIFO error

Wit Read Shift 5
= FIFO FIFO FIFO o Register ———lll SAI_TX_DATA
Control " Control :
GEll.usk ; 1* T " »@ SAI_TX_BCLK
oc : :
- S Fsr:mm . -n—-—m-.E SAI_TX_SYNC
- Gontrol L& - _Tx_
Registers . Generation ;
: Transmitter A y :
’g'l"fpi SSNR—— Synchronous Mode
L _'""" """"""""""""""""" e il i """""'_
: Receiver ¥ - :
Control Bit Clock [uls :
Registers G p Sync te————>fll SAI_RX_SYNC
: . Control :
Bus : 1‘ :
Clock : ! : B SAI_RX_BCLK
: Read Write - :
-— FIFO [* FIFO FIFO % Shi W SALRX_DATA
: Control Control Register [~

Figure 12. SAl block diagram

2.4.4.13.2 Audio codec (SGTL5000)

The SGTL5000 is a low-power stereo codec with headphone amplifier from NXP. It is designed to provide a
complete audio solution for products requiring LINEIN, MIC_IN, LINEOUT, headphone-out, and digital 1/Os.

It allows an 8.0 MHz to 27 MHz system clock as input. The codec supports 8.0 kHz, 11.025 kHz, 12 kHz, 16
kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48 kHz, and 96 kHz sampling frequencies. The LS1028ARDB board
provides a 25 MHz crystal oscillator to the SGTL5000.

The SGTL5000 provides two interfaces (I12C and SPI) to setup registers. The LS1028ARDB board uses 12C
interface.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

38 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

v

Headphone Volume Control
-52dB to +12dB P_OUTw|

LLINE_IN
-~ DAC Volume (CHIP_ANA_HP_CTRL)
L Al -gnggn:nmtlma
LMIC_Inm| (0aB, 2048,
3008, 40d8) Audio
Switch
-12S5_DIN >
Lime Out Volume Control
-125_DOUT- (CHIP_LINE_OUT VOL) }”“EOUT‘

o Mix AVC Bass Enhancament Tone Control /GEQ/PEQ
+6dB +12dB +6dB +12dB

Only Gain is shown for the Digital Audio Processing blocks. For complete description
please see Digital Audio Processing section

Figure 13. System block diagram, signal flow, and gain

2.4.4.13.3 Digital interface formats

The SGTL5000 provides five common digital interface formats. The SAl and SGTL5000 digital interface formats
must be the same.

* 12S Format (n = bit length)

CHIP_I2S0_CTRL field values:
(SCLKFREQ= 0; SCLK_INV = 0; DLEN = 1; 12S_MODE = 0; LRALIGN = 0; LRPOL = 0)
|

I25_LRCLK_Il : },’, H E | b b1

128 scmrmﬁm;}m ;;mw Spipliniint/ Halinlin
125, DN Dauo-bm:;; X EXEX O OEENH DX # X

Figure 14. 12S Format (n = bit length)
* Left Justified Format (n = bit length)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

39 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

CHIP_I2S0_CTRL field values:
(SCLKFREQ=0; SCLK_'NV = 0; DLEN = 1; 12S_MODE =0; LRALIGN = 1; LRPOL =0)

I2S LRCLK_l : b 7]I ! b /7 A

12 scmrm_'rm_[wm %}LI—LI_U—I_I—LJ_#J_I_I—U_LI_ WL
12S_DIN, Dom:.-n:ﬁ OCOE X XN COEEEN X XX EX W

Figure 15. Left Justified Format (n = bit length)
* Right Justified Format (n = bit length)

CHIP_I2S0_CTRL field values:
SCLKFREQ= 0; SCLK_INV = 0; DLEN = 1; 12S_MODE = 1; LRALIGN = 1; LRPOL = Q)

IZS_LRCLK_E : b b | : b A

s s,cmri_ﬂ_h_lwﬁm ;;ULH_IW%M ligligliy
125_DIN muTDDCbCEﬁ M§§4 EXEX M X

Figure 16. Right Justified Format (n = bit length)
* PCM Format A

CHIP_I2S0_CTRL = 0x01F4
(SCLKFREQ=1; MS = 1; SCLK_INV = 1; DLEN = 3; 12S_MODE = 2; LRALIGN = 0)

|25_LRCLKJI—1 i 4 i i—l l 4 T
128, scmm_rLﬂ_ruﬁum #}I‘U—LI_LI_IJ_IJ}T_I_LI_I_I_L gupigh
25_DIN, DDUT:).*W:H DEEN P EEEEN Y TXEEX)

Figure 17. PCM Format A
* PCM Format B

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

40/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

CHIP_I2S0_CTRL = Ox01F6
(SCLKFREQ=1; MS =1; SCLK_INV = 1; DLEN = 3; I12S_MODE = 2; LRALIGN = 1)

12S_LRCLK_| b —T 1 b 11
rreripipiplipl//aipipigly/ nigligipiis/aipiigig ininin

125 _DIN, DOUT (T XXX h X FrXmoX X e @)X bk /D D

Figure 18. PCM Format B

2.4.4.13.4 Running the SAl application

In order to run SAI application, Baremetal images should be rebuilt with SAl support.

1. Enable SAIl support in Real-time Edge software

$ cd yocto-real-time-edge/sources/meta-real-time-edge
Open file "conf/distro/include/real-time-edge-base.inc", add "sai" to
"DISTRO FEATURES:append:1sl028ardb" like this:
DISTRO FEATURES:append:1sl028ardb = " jailhouse real-time-edge-libbee real-time-
edge-libblep libnfc-nci \
wayland-protocols weston imx-gpu-viv libdrm kmscube \
real-time-edge-sysrepo tsn-scripts wayland alsa sai"

2. Build the image

S cd yocto-real-time-edge

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=1s1028ardb source real-time-edge-
setup-env.sh -b build-1s1028ardb-bm

S bitbake nxp-image-real-time-edge

3. Play a demo audio file in slave core after booting the board:

=> wavplayer
kA Ak kA hhhkhr kA hhkhkhrhkhkhAhhhkrhkhkhhhkkhkhrhkhkhkhhkkhkrhkhkhkhhkkhkrhkkhkhhkhkkhkrkhkkxxk%
audioformat: PCM nchannels: 1 samplerate: 16000 bitrate: 256000 blockalign: 2
bps: 16 datasize: 67968 datastart: 44
R R IR I b db b db b b db b b S db b b S I b I db b IR Ib b d db b b S Sb b J IR b b db Ib b S db b b db Ib b b db b dh b b4
sgtl5000 revision 0x11l fsl sai ofdata to platdata Probed
sound 'sound' with codec 'codec@a' and i2s 'sai@£f130000'

i2s transfer tx data The music waits for the end! The music is finished!
Ak Ak hkkhkhkkhkhkhhkhhkhhkhkhkhkkhkhkkhkhhhkhhkhhkhhkhkkhkhkkhkhrhkhkhkhkhkhkhkkhkhkkhkhkhkhhkhkhkhkhkhkx*k

2.4.414 FlexTimer example

The FlexTimer module (FTM) works on Baremetal core as the wakeup source for LS1046ARDB. It can support
nanosecond (ns) level alarm setting.

There is no example code to test it, but we can use a few commands to verify these features.

Use the below commands to verify FTM feature:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

41/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

* Use “ftm” command to get help information:

=> ftm
l:ftm - ftm alarm test

1:Usage:

ftm test ftm alarm

show - show FTM test result

start [count] us - start FTM test
stop - stop FTM test

e Use “ftm start [count]”command to start ftim test:

=> ftm start
1:Use default alarm time - 5 us
1:FTM test start.

=> ftm start 100
1:FTM test start.

* Using “ftm stop” command to stop ftm test and show the test result:

=> ftm stop

1:FTM test stop.

l:irg count | total (us) | average (us) | max (us) | min (us) |
1:3087560 | 309579251 | 100 | 102 | 100 |

e Use “ftm show” command to show the test result:

=> ftm show
l:irg count | total (us) | average (us) | max (us) | min (us) |
1:317803 | 31854521 | 100 | 102 | 100 |

The table below lists the attributes for “ftm show” and “ftm stop” result:

Table 16. FlexTimer module attributes and their description

Attribute Name Description

irq count Generated interrupt single count since “ftm start” command
total (us) The time since “ftm start” command

average (us) The average time between two interrupt signals

max (us) The maximum time between two interrupt signals

min (us) The minimum time between two interrupts signals

The table below lists the FTM APIs and their description.

Table 17. FlexTimer module APIs

APl Name Description

int ftm rtc_set alarm by us (struct Setting alarm by us count

udevice *dev, unsigned long us, void (* |e struct udevice *dev — device struct of ftm

func) (void *)) « unsigned long us — the time for ftm alarm

* void (* func)(void *) — the handle function when timeup

void ftm rtc_set alarm (struct udevice |Setting alarm by ftm timer count

dev, ul6 ticks, void (func) (void « struct udevice *dev — device struct of ftm

)i * u16 ticks — the timer counter for ftm alarm

* void (* func)(void *) — the handle function when timeup

void ftm rtc_alarm stop(struct udevice |Stop and resetftm alarm

*dev) * struct udevice *dev — device struct of ftm
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

42/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 17. FlexTimer module APIs...continued

unsigned long ftm rtc_get max _alarm us |Getthe max alarm time value for ftm alarm
(struct udevice *dev) « struct udevice *dev — device struct of ftm

2.4.4.15 Newlib’s math library

In order to control 10 devices such as changing the speed or angle, mathematical calculations are required.
Newlib’s math library is added to support such calculations. Newlib is a C library intended for use on embedded
systems.

All math related files are under math folder. The file directory structure is as follows:

math

COPYING
include
L math.h
1lib

L 1libm.a
README

To use math library, the below code should be in the header of the file, and then we can directly call all kinds of
math APIs.

#include <math.h>
#undef always inline
#undef section
#include <stdlib.h>
#include <common.h>
#include <command.h>
#undef log

For the detailed usage, refer to the example file which is math. c under cmd folder, The example shows how to
call the API of math library including acos/asin/atan/cos/sin/tan and log/pow/sqrt. We can use the
math command to verify these APls under U-Boot command.

For example:

=> math

math - Test Math Functions
Usage:

math - Only test some simple math functions:

math acos x (double)
math asin x (double)
math atan x(double)
math atan2 y x(double)
math cos x(double)
math cosh x(double)
math sin x (double)
math sinh x (double)
math tanh x (double)
math exp x(double)
math ldexp x (double) exp (int)
math log x(double)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

43/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

math logl0O x (double)
math pow x (double) y(double)
math sqrt x(double)
math ceil x (double)
math fabs x(double)
math floor x (double)
math fmod x(double) y(double)

\%

math asin 0.8
0.927
:=> math sin 1.0
0.841
:=> math cos 1.0
0.540
> math log 10
2.302
:=> math logl0O 10
1.000

===

2.4.4.16 ICC module

Inter-core communication (ICC) module works on Linux core (master) and Baremetal core (slave). It provides
the data transfer between cores via SGI inter-core interrupt and shared memory blocks. It can support multicore
silicon platform and transfer the data concurrently and efficiently.

ICC module structure is based on two basics:

* SGI: Software-generated Interrupts in Arm GIC, used to generate inter-core interrupts. The ICC module uses
the number 8 SGI interrupt for all Linux and Baremetal cores.

» Shared memory: A memory space shared by all platform cores. The base address and size of the share
memory should be defined in header files before compilation.

ICC modules can work concurrently, lock-free among multicore platform, and support broadcast case with Buffer
Descriptor Ring mechanism.

The figure below shows the basic operating principle for data transfer from Core 0 to Core 1. After the data
writing and head point moving to next, Core 0 triggers a SGI (8) to Core 1. After this step, the Core 1 gets the
BD ring updated status and reads the new data, then moves the tail point to next.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

441 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide
lhead

L

Block

Figure 19. BD rings for inter-core communication

For a multicore platform (that is, four cores), the total BD rings are arranged as shown in the following figure.
(See the BD rings on Core 0 and Core 1.)

Core0 to Core1 0 1 2 3 4 5 6 7 8 9
Core0 to Core2 0 1 2 3 4 5 6 7 8 9
Core0 to Core3 0 1 2 3 4 5 6 7 8 9
Core1 to Core0 0 1 2 3 4 5 6 7 8 9
Core1 to Core2 0 1 2 3 4 5 6 7 8 9
Core1 to Core3 0 1 2 3 4 5 6 7 8 9
Figure 20. BD rings for multicore platform

All the ICC ring structures, BD structures, and blocks for data are in the shared memory. A four-core platform
ICC module would map the shared memory as shown in the figure below.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

45/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Base Address

Ring and BD structures

Core0 .
Blocks with 4K for each

Ring and BD structures
Core1
Blocks with 4K for each

Share memory
Ring and BD structures size for all cores

Core2
Blocks with 4K for each

Ring and BD structures

Core3
Blocks with 4K for each

Reserved for custom usage

Base Address + Siz_gr

Figure 21. ICC shared memory map for the four-core platform

Generally, Core 0 runs Linux as master core while other cores run Baremetal as slaves. They obtain the same
size of share memory to structure the rings and BDs, and split the blocks space with 4k unit for each block. The
reserved space at the top of the share memory is out of the ICC module and for the custom usage.

For LS1028ARDB platform with two cores, the shared memory map is defined as:

* The total shared memory size is 256 MB.

* The reserved space for custom usage is 16 MB at the top of the share memory space.

* Core 0 runs Linux as master core, the share memory size for ICC is 120 MB, in which the ring and BD
structure space is 2 M, and the block space for data is 118 MB with 4K for each block.

* Core 1 runs Baremetal as slave core, the share memory size for ICC is 120 MB, in which the ring and BD
structure space is 2M, and the block space for data is 118 MB with 4K for each block.

The ICC module includes two parts of the code:

* |CC code for Linux user space, works for data transfer between master core and slave cores. The code is
integrated into the Real-time Edge software and named real-time-edge-icc. After the compilation, the
icc binary is put into the Linux file system.

* |CC code for Baremetal runs on every slave core, works for data transfer between Baremetal cores and
master core.

The ICC code for Linux user space in the repository: https://github.com/nxp-real-time-edge-sw/real-time-edge-
icc.qit.
F— icc-main.c ---the example case commands

I— inter-core-comm.c

— inter-core-comm.h - include the header file to use ICC module

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

46/ 404

https://github.com/nxp-real-time-edge-sw/real-time-edge-icc.git
https://github.com/nxp-real-time-edge-sw/real-time-edge-icc.git

NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

L— Makefile

The ICC code for Baremetal in baremetal directory:

baremetal/

— arch/arm/1lib/inter-core-comm.c

F— arch/arm/include/asm/inter-core-comm.h ---includes the header file to use ICC module
L— cmd/icc.c ---the example case commands

The ICC modules of the APIs are exported out for usage in both Linux user space and Baremetal code.

Table 18. ICC APIs
APls

Description

Checks the ring and block state.

Returns:

* 0 - if empty.

* 10 - the working block address currently.

Requests a block, which is ICC_BLOCK_UNIT_SIZE size.
Returns:

e 0 - failed.

e 10 - block address can be used.

unsigned long icc ring
state (int coreid)

Unsigned long icc block
request (void)

Frees a block requested.
Be careful if the destination cores are working on this block.

void icc _block free (unsigned
long block)

int icc irq register(int src_ |Registers ICC callback handler for received data.

coreid, void (*irg handle) Returns:
(int, unsigned long, unsigned |, 0 - on success
int)) e -1 -if failed.

Sends the data in the block to a core or multicore.
This triggers the SGI interrupt.

Returns:

* 0 -o0nsuccess

e -1 -if failed.

int icc_set block(int core
mask, unsigned int byte
count, unsigned long block)

void icc show(void) Shows the ICC basic information.

Initializes the ICC module.

int icc_init(void)

2.4.4.16.1 ICC examples

This section provides example commands for use cases in both Linux user space and Baremetal code. They
can be used to check and verify the ICC module conveniently.

1. In Linux user space, use the command icc to display the supported cases.

[root@LS1046ARDB ~] # icc

icc show - Shows all icc rings status at this core

icc perf <core mask> <counts> - ICC performance to cores <core mask> with
<counts> bytes

icc send <core mask> <data> <counts> - Sends <counts> <data> to cores
<core mask>

icc irg <core mask> <irg> - Sends SGI <irg> ID[0 - 15] to <core mask>

icc read <addr> <counts> - Reads <counts> 32bit register from <addr>

icc write <addr> <data> - Writes <data> to a register <addr>

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024

471 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Likewise, in Baremetal system, use the command icc to view the supported cases.

=> icc

l:icc - Inter-core communication via SGI interrupt

1:Usage:

icc show - Show all icc rings status at this
core

icc perf <core mask> <counts>
<core mask> with <counts> bytes

ICC performance to cores

icc send <core mask> <data> <counts> - Send <counts> <data> to cores

<core mask>

icc irqg <core mask> <irg> - Send SGI <irg> ID[0 - 15] to

<core mask>

2. The ICC module command examples on LS1046ARDB with Linux (Core 0) + Baremetal (Core 1, 2, 3)

system:
Run icc send 0x2 0x55 128 to send 128 bytes data 0x55 to core 1.

[root@LS1046ARDB ~] # icc send 0x2 0x55 128

gic _base: 0xffffa033f000, share base: 0xffff9133f000, share phy: 0xd0000000,

block phy: 0xd0200000

ICC send testing

Target cores: 0x2, bytes: 128

ICC send: 128 bytes to 0x2 cores success

all cores: reserved share memory base: 0xdf000000; size: 16777216

mycoreid: 0; ICC _SGI: 8; share memory size: 62914560
block unit size: 4096; block number: 14848; block idx: O
#ring 0 base: 0xffff9133f000; dest core: 0; SGI: 8
desc num: 128; desc _base: 0xd00000cO; head: 0; tail: 0
busy counts: 0; interrupt counts: 0

#ring 1 base: Oxffff9133f030; dest core: 1; SGI: 8
desc num: 128; desc _base: 0xd00008cO; head: 1; tail: 1
busy counts: 0; interrupt counts: 1

#ring 2 base: O0xffff9133f060; dest core: 2; SGI: 8
desc _num: 128; desc base: 0xd00010cO; head: 0; tail: 0
busy counts: 0; interrupt counts: 0

#ring 3 base: Oxffff9133f090; dest core: 3; SGI: 8
desc num: 128; desc _base: 0xd00018c0; head: 0; tail: 0
busy counts: 0; interrupt counts: 0

At the same time, Core 1 displays the received information.

=> 1:Get the ICC from core 0; block: 0xd0200000, bytes: 128,

value: 0x55

3. ICC command run on Baremetal side

=> icc send 0x1 Oxaa 128

1:ICC send testing
1:Target cores: 0xl, bytes: 128
1:ICC send: 128 bytes to 0xl cores success
l:all cores: reserved share memory base: 0xdf000000; size: 16777216
l:mycoreid: 1; ICC_SGI: 8; share memory size: 62914560
l:block unit size: 4096; block number: 14848; block idx: 0
l:#ring 0 base: 00000000d3c00000; dest core: 0; SGI: 8
l:desc num: 128; desc base: 00000000d3c000c0; head: 1; tail: 1
l:busy counts: 0; interrupt counts: 1
l:#ring 1 base: 00000000d3c00030; dest core: 1; SGI: 8
l:desc_num: 128; desc base: 00000000d3c008c0; head: 0; tail: 0
l:busy counts: 0; interrupt counts: O
l:#ring 2 base: 00000000d3c00060; dest core: 2; SGI: 8
l:desc num: 128; desc base: 00000000d3c010c0; head: 0; tail: O
l:busy counts: 0; interrupt counts: 0
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

48/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

l:#ring 3 base: 00000000d3c00090; dest core: 3; SGI: 8
l:desc num: 128; desc base: 00000000d3c018c0; head: 0; tail: O
l:busy counts: 0; interrupt counts: 0

Then, Core 0 side (Linux) receives this data:

[root@LS1046ARDB ~] # [4247.733753] 000: Get the ICC from core 1; block:
0xd3e00000, bytes: 128, value: 0Oxaa

2.4.4.17 Single hardware interrupt routed to multiple cores

This section describes how to use GPIO to simulate external interrupt to notify all slave cores. With this feature,
all the slave cores can be triggered to perform operations almost at the same time via a single hardware
interrupt.

Two GPIO pins are selected. One pin is used to output 0 and 1 to simulate an external hardware. The other one
is used as an interrupt pin to trigger an interrupt to a core under pull-down mode. When the core receives the
interrupt, it triggers other slave cores via ICC SGI interrupt.

This feature is supported on LS1046ARDB and i.MX 8M Mini. The GPIO interrupt number and two GPIO pins
required for the interrupt test can be obtained from the corresponding dt s file.

In £fs1-1s1046a-rdb.dts

gpio int {
compatible = "fsl,gpio-int";
gpios = <&gpiol 1 0>,
<&gpiol 2 0>;
interrupts = <0 99 0>;
}7

In imx8mm-evk.dts

gpio int {
compatible = "fsl,gpio—-int";
gpios = <&gpiob5 7 0>,
<&gpio5 8 0>;
interrupts = <0 104 0>;
}7

On LS1046ARDB, GPIO2_01 and GPIO2_02 are selected. GPIO2_01 is used to simulate an external hardware
whereas GP102_02 triggers an interrupt. Connect the GPIO2_01 and GPIO2_02 pins on the board. TP14 and
TP13 are connected to GPIO2_01 and GPIO2_02 separately. The figure below shows how to connect TP14
and TP13.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

49/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

yzree
o 480 1

uze

R
cliga
TP524Q)

o

. n

ﬂ::=
=0

LID

134R13
D4:5FP RX_VA|

J2R133R

RT
2

Basacn
SusoS ¥

Ll]-‘

it
-

_ R195 Ri96
S YT TY

w
-
o

Figure 22. LS1046ARDB hardware interrupt routing to multiple cores

On i.MX 8M Mini, connect the pins GPIO5_07 and GPIO5_08 on the board. GPIO5_07 is used to simulate an
external hardware whereas GPIO5_08 triggers an interrupt. The figure below shows how to connect GPIO5_07

and GPI0O5_08.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024
50 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

R920 n§ | B!
yso| 4 GONVYN

2POW ‘PDOIumo
2OHQS/QS042!

REST MIPT Y w2
- 8MMINT-BB

o
= A . GNC@o
> °

PO
1000

AU R R

“10001

L]
‘XXX0101
101 IMS GOOOO,. “I1I0O

T
0001

o

10T IMS

v

e wn

zé \© 12
sauizrsseeaT)

:Jr

.

20TIMS
101IMS 0100110110

20TTMS 0010101000
101ImS 1000110110

20TIMS (0T,

2011

o oW
v W

0010

.
.
.
.
.
.
l
.
.
.
.
.
4
.
.
;0
[4
.

2
11101 1IMS

Ry
2211 2221032209
£ =
20208 8220720206
(v
ONVYNWS8

» SR214Z 221330212
s

36

22
4

= INKO

M2
e ©32020 NxP B.Y.

= p— STEY
[} L19 @ Ritbe'q pR21S

Ve o 6ND gMMINILPD4-CPU2
®ucsgyg 6HD

®

T T T T
FRERABRAGNT

TR

VDO_5V
> o

o ‘& D312
Frof 202

Figure 23. i.MX 8M Mini hardware interrupt routing to multiple cores

On LS1046ARDB, GPIO2_01 and GPIO2_02 are multiplexed with SPT_CS B[0] and SDHC_DAT [4] signals.
User must configure RCW[382 ~ 383] to 0b'10 to enable GPTI02[0] signal.

Since GPIO2 is assigned to Baremetal core, Linux should not use it again. We can disable GPIO2 under Linux

via dts file. The below code should be added in Linux kernel file fs1-1s1046a-rdb-sdk-bm.dts to disable
GPIO2.

&gpiol {
status = "disabled";
'

Table 19. GPIO_INT driver APIs and their description
Function declaration Description

int gpio_request by name (struct Locate and request a GPIO by name
udevice *dev, const char *list name, dev- Device requesting the GPIO
int index, struct gpio_desc *desc, index - Index number of the GPIO in that list use request (0 = first)

int flags) desc - Returns GPIO description information
flags - Indicates the GPIO input/output settings
Returns: 0 if OK, -ve on error
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

5117404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 19. GPIO_INT driver APls and their description...continued

Function declaration Description
int dm gpio set value (const struct Configures the direction of GPIO to OUT and writes the value to it.
gpio_desc *desc, int value) desc - GPIO description

value- the value written to this GPIO
Returns: 0 if OK, -ve on error

int dm gpio set interrupt (const Enable GPIO interrupt
struct gpio_desc *desc) desc - GPIO description
Returns: 0 if OK, -ve on error

int dm gpio clr interrupt (const Disable GPIO interrupt
struct gpio_desc *desc) desc - GPIO description
Returns: 0 if OK, -ve on error

Under Baremetal, gpio interrupt command provides “enable”, “start” and “stop” commands to control
these two pins.

» gpio_interrupt enable - Initializes the gpio int driver and enables the interrupt.
* gpio_interrupt start - Sets GP102_01 to high.
* gpio_interrupt stop - Sets GPIO2_01 to low.

gpio_interrupt can run under BareMetal console.

The gpio interrupt enable command should be run first to initialize two pins. Then, use the command
pair gpio interrupt start and gpio interrupt stop to pull high and pull down GPI02_01/GPIO5_07.
After the command pair, GPIO2_02/GPIO5_08 triggers an interrupt when getting pull-down signal. The core1
sends the SGlI interrupt to other slave cores. The time of GPIO interrupt and SGl interrupt is dumped by each
slave core. The latency is the time difference between GPIO interrupt and SGI interrupt. The below example
shows the latency is about 1 ps. It means all slave cores could be triggered within 1 us.

=> gpio interrupt enable

=> gpio interrupt start

=> gpio interrupt stop

1:Time (us): 0x33cch82

3:Time (us): 0x33cch585, Get the SGI from CoreID: 1
2:Time (us): 0x33cch584, Get the SGI from CoreID: 1
=>

2.4.4.18 Hardware resource allocation

This section describes how to modify the hardware resource allocation depending on the application and used
reference design board.

2.4.418.1 LS1028ARDB board
This section describes the ENETC configuration setting for LS1028A reference design boards.

2.4.418.1.1 ENETC

LS1028ARDB has only one ENETC controller in use, which is assigned to core1 as the default setting. The
controller can be reconfigured by using the command, make menuconfig.

See the following:

ARM architecture --->
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

5217404

NXP Semiconductors

REALTIMEEDGEUG

[*] Enable baremetal
[*] Enable ENETC for baremetal

(1)
(1)

Enetcl is assigned to corel

ENETC Controller numbers

Real-time Edge Software User Guide

2.4.4.18.1

This section describes how to configure the 12C bus on LS1028A reference design boards.

2 12C

LS1028ARDB has eight 12C controllers, but only controller 0 is used for I2C devices. For example, RTC,
Thermal Monitor, and Linux (core 0) use this controller for some features (for example, RTC). Therefore, the
code below just shows how to enable 12C on Baremetal side.

Note:

Operate the 12C devices in Baremetal side CAREFULLY.

#define
#define
#define
#define
#define
#define

CONFIG SYS I2C MXC I2Cl /*
CONFIG_SYS I2C MXC_I2C2 /*
CONFIG SYS I2C MXC I2C3 /*
CONFIG SYS I2C MXC I2C4 /*
CONFIG I2C BUS CORE ID SET

enable
enable
enable
enable

CONFIG SYS I2C MXC I2C0 COREID 1

I2C bus
I2C bus
I2C bus
I2C bus

W N P O

The CONFIG_SYS I2C MXC I2CO_COREID defines the slave core that runs the 12C bus.

Since 12C is enabled in DM mode on Baremetal side, there is no automatic code to test it. Follow the below
steps to read RTC (0x51 address, is on bus 2) on Baremetal side:

=> i2c
Bus O0:
77
57:
Bus 1:
Bus 2:
51:
Bus
Bus
Bus
Bus
Bus
Bus
Bus 9:
=> i2c
Error r
=> i2c
Setting

QO J oy U1 W

bus
12c@2000000 (active 0)

i2c-mux@77, offset len 1, flags

(@)

generic 57, offset len 1, flags 0
12c@2000000->i2c-mux@77->1i2c@1
12c@2000000->i2c-mux@77->12c@3

rtc@51, offset len 1, flags
12c@2010000
12c@2020000
12c@2030000
12c@2040000
12¢c@2050000
12¢c@2060000
12c@2070000

md 0x51 0

eading the chip: -121

dev 2

bus to 2

=> i2c md 0x51 0
0000: 04 00 36 03 12 15 02 12 20 80 80 80 80 80 00 c2

0

2.4.4.18.1

.3 SAl

LS1028ARDB has only one SAI module in use, which is assigned to core1 in the default setting. The SAI
module can be reconfigured by using the command, make menuconfig.

See the fol

lowing:

Command

REALTIMEEDGEUG

line interface —--->

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024

53 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Misc commands —--->
[*] wavplayer
Device Drivers —--->

Sound support --->

*] Enable sound support

Enable I2S support
Freescale sound
Freescale sgtl5000 audio codec
Freescale SAI module

* ok X %

2.4.4.18.2 LS1043ARDB or LS1046ARDB board

The following sections describe the hardware resource allocation for the LS1043ARDB or LS1046ARDB boards
for implementing the supported features.

2.4.4.18.2.1 Linux DTS

Remove cpu1, cpu2, cpu3 nodes on DTS, and remove all the devices that bare metal has used.

2.4.4.18.2.2 Memory configuration

This section describes the memory configuration for LS1043ARDB or LS1046ARDB boards.

The LS1043ARDB or LS1046ARDB boards have a DDR of size 2 GB. To use the bare metal framework,
configure DDR into three partitions:

* 512M for core0 (Linux)

» 256M for core1 (bare metal)

» 256M for core2 (bare metal)

» 256M for core3 (bare metal), and 256M for shared memory.

The configuration can be defined in the file include/configs/1s1043a_baremetal.h.

#define CFG_BAREMETAL SYS SDRAM MASTER SIZE (512 * 1024 * 1024UL)
#define CFG_BAREMETAL SYS SDRAM SLAVE SIZE (256 * 1024 * 1024UL)
#define CFG_BAREMETAL SYS SDRAM RESERVE SIZE (16 * 1024 * 1024UL)
#define CFG_BAREMETAL SYS SDRAM SHARE SIZE \

((256 * 1024 * 1024UL) - CFG_BAREMETAL SYS SDRAM RESERVE SIZE)

Note: The memory configuration must be consistent with the U-Boot configuration of core0.

The memory configuration for bare metal is shown in the figure below.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

541404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Share Memory(256M).

BSS-

U-boot image-

Malloc(128M). :
\>- Core1l (bare metal core).

GBL data-

IRQ & FIQ stack(8K)-

Stack: g

Core 0 Memory(512M)+ |’

Figure 24. Memory configuration for LS1043ARDB or LS1046ARDB

The functions included in malloc.h in the table below can be used to allocate or free memory in program.
Modify CONFIG SYS MALLOC LEN in defconfig of the board to change the maximum size of malloc.

Table 20. Memory APIs description

API name (type) Description

void_t* malloc (size_t n) Allocates memory

* “n” — length of allocated chunk
* Returns a pointer to the newly allocated chunk

void free (void *ptr) Releases the chunk of memory pointed to by ptr (where “ptr” is a pointer to the
chunk of memory)

The GPIO for LS1043ARDB (or LS1046ARDB) has four GPIO controllers. You need to add a GPIO node in the
file 1s1043/6a-rdb.dts to assign a GPIO resource to different cores. The configuration can be done in the
file arch/arm/dts/£fsl1-1s1043/6a-rdb.dts.

2.4.4.18.2.3 GPIO

LS1043 and LS1046A have four GPIO controllers. You can add a GPIO node in the file 1s1043-rdb.dts or
1s1046a-rdb.dts to assign a GPIO resource to different cores. The configuration is in arch/arm/dts/
fsl-1s1043a-rdb.dts/arch/arm/dts/fsl-1s1046a-rdb.dts. Use the command below to add a
GPIO node:

&gpio2 {
status = "okay";

k7

2.4.4.18.2.4 12C

This section describes how to configure the 12C bus on LS1028A, LS1043A, or LS1046A reference design
boards.

The LS1043ARDB (or LS1028ARDB / LS1046ARDB) has four I2C controllers. You can configure the 12C bus
using the 1s1043ardb bm defconfig file using the commands below:

CONFIG_SYS I2C MXC_I2Cl=y

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

5517404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

CONFIG_SYS I2C_MXC_ I2C2=y
CONFIG_SYS I2C_MXC_I2C3=y
CONFIG_SYS I2C_MXC_I2Cd=y
CONFIG_I2C_COREID SET=y
CONFIG_SYS I2C MXC I2C0O_COREID=1
CONFIG_SYS I2C MXC I2C1 COREID=2
CONFIG_SYS I2C MXC I2C2 COREID=3
CONFIG_SYS I2C MXC_ I2C3 COREID=1

The CONFIG _SYS I2C MXC_I2CO_COREID defines the slave core that runs the 12C bus.

2.4.418.2.5 Hardware interrupts

LS1043A has twelve IRQs as external 10 signals connected to interrupt the controller. These twelve IRQs
can be used on baremetal cores. The ids for these signals, IRQ0-IRQ11 are: 163, 164, 165, 167, 168, 169,
177,178, 179, 181, 182, and 183. GIC interrupt APIs are defined in asm/interrupt-gic.h. The following
example shows how to register a hardware interrupt:

//register HW interrupt

int irg desc register(struct irg *irqg data, void (*irqg handle) (int, int, void
*), void *data);

int irg set polarity(struct udevice *dev, uint irqg, bool active low);

int irg set affinity(struct irg *irg, int core mask);

2.4.4.18.2.6 QSPI

LS1046ARDB has a QSPI flash device. To configure the QSPI on Is1046ardb_config.h, use the command
below:

#define CONFIG_FSL QSPI COREID 1

Here, the CONFIG FSL QSPI COREID defines the slave core that runs this QSPI.

2.4.4.18.2.7 IFC

LS1043A and LS1046A have IFC controller. LS1043RDB supports both NOR flash and NAND flash, whereas
LS1046RDB supports only NAND flash.

1. IFC is disabled in Linux kernel via disabling "ifc" node:

&ifc {
status = "disabled";

1

2. Enter the Baremetal-Framework directory path and then execute the commands below: (IFC is enabled
by default)

make menuconfig ARM architecture ---> [*] Enable baremetal [*] Enable IFC for
baremetal (1) IFC is assigned to that core

2.4.4.18.2.8 Ethernet

This section describes the Ethernet configuration settings for LS1043A or LS1046A reference design boards.
LS1043A or LS1046A has only one FMan, so you should remove the DPAA driver in Linux.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

56 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

1. Disable the DPAA driver in Linux kernel:

Device Drivers --->
Staging drivers—--->
< > Freescale Datapath Queue and Buffer management

2. Enter the Baremetal-Framework directory and then execute the commands below:

make menuconfig ARM architecture ---> [*] Enable baremetal [*] Enable fman
for baremetal (1) FMANl is assigned to that core

Configure FMan to the specified core by modifying the FMan1 is assigned to that core value,
which is the default configuration, to corel.

2.4.4.18.2.9 USB

This section describes the USB configuration setting for LS1043A and LS1046A reference design boards.

Both LS1043A and LS1046A have three DW3 USB controllers. By default, these are assigned as core1, core2,
and core3d. Users can reconfigure the controllers by using the ‘make menuconfig’ command as shown below.

ARM architecture --->

*] Enable baremetal

*] Enable USB for baremetal

1) USBO is assigned to corel
2) USB1 is assigned to core2
3) USB2 is assigned to core3
3) USB Controller numbers

2.4.4.18.2.10 PCI Express (PCle)

This section describes the PCle configuration setting for LS1043A and LS1046A reference design boards.

Both LS1043A and LS1046A have three PCle controllers. By default, these are assigned as core0, core1, and
core2. To reconfigure them, use the command ‘make menuconfig’, as shown below:

ARM architecture --->
*] Enable baremetal

[

(0) PCIel is assigned to corel
(1) PCIe2 is assigned to corel
(2) PCIe3 is assigned to core?2
(3) PCIe Controller numbers

2.4.4.18.3 LX2160ARDB board

The following sections describe the hardware resource allocation for the LX2160ARDB boards for implementing
the supported features.

2.4.4.18.3.1 Memory configuration

This section describes the memory configuration for LX2160ARDB boards.

The LX2160ARDB boards have a 16 GB size DDR. To use the Baremetal framework, configure DDR into three
partitions:

* 15G for core0 (Linux)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

571404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

* 64M per core from core1 to core15 (baremetal), and 64M for shared memory.

The configuration can be defined in the file include/configs/1x2160ardb config.h.

#define CFG_BAREMETAL SYS SDRAM MASTER SIZE (512 * 1024 * 1024UL)
#define CFG_BAREMETAL SYS SDRAM SLAVE SIZE (64 * 1024 * 1024UL)
#define CFG_BAREMETAL SYS SDRAM RESERVE SIZE (16 * 1024 * 1024UL)
#define CFG_BAREMETAL SYS SDRAM SHARE SIZE \

((64 * 1024 * 1024UL) - CFG_BAREMETAL SYS SDRAM RESERVE SIZE)

The functions included in malloc.h in the table below can be used to allocate or free memory in program.
Modify CONFIG SYS MALLOC LENin include/configs/1x2160ardb.h to change the maximum size of
malloc.

Table 21. Memory API description

API name (type) Description

void_t* malloc (size_t n) Allocates memory
* “n” — length of allocated chunk
* Returns a pointer to the newly allocated chunk

void free (void *ptr) Releases the chunk of memory pointed to by ptr (where “ptr” is a pointer to
the chunk of memory)

2.4.418.4 i.MX 8M Mini LPDDR4 EVK and i.MX 8M Plus LPDDR4 EVK board

2.4.4.18.4.1 Linux DTS

When using Baremetal, users should remove all the devices from kernel that Baremetal has used, for example:

&fecl {
status = "disabled";
}i

&gpiob
{

status = "disabled";
i

&uart3 |

status = "disabled";

}i

2.4.4.18.4.2 Memory configuration

This section describes the memory configuration for i.MX 8M Mini LPDDR4 EVK or i.MX 8M Plus LPDDR4 EVK
boards.

1. The boards have a 6 GB DDR memory. To use the Baremetal framework, configure DDR into five partitions:
» 6016M for core0 (Linux)

» 32M for core1 (bare metal)

» 32M for core2 (bare metal)

» 32M for core3 (bare metal)

» 32M for shared memory.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

58/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

The configuration can be defined in the file include/configs/imx8mm baremetal.h. or include/
configs/imx8mp baremetal.h.

#define CFG_BAREMETAL SYS SDRAM SLAVE SIZE (32 * 1024 * 1024UL)
#define CFG_BAREMETAL SYS SDRAM RESERVE SIZE (4 * 1024 * 1024UL)

2. Memory Reserve

For IPI data transfer, Baremetal needs to share memory between master core and slave core. Hence, users
should reserve some memory from the Linux kernel, as shown in the following dt sfile:

reserved-memory { #address-cells = <2>; #size-cells = <2>; ranges; bm reserved:
baremetal@0x60000000 { no-map; reg = <0 0x60000000 0O 0x10000000>; }; };

2.4.4.18.4.3 GPIO

1. Connect pin7 and pin8 of J1003. The test_gpio case in Baremetal uses pin7 and pin8 of J1003, so connect
these two pins.

2. Boot the Baremetal on slave core. If the GPIO is working fine, the message below is displayed:

[ok]GPIO test ok

3. Disable the devices from kernel.

For the test_gpio case, use GPIO5_7 (pin8 of J1003) and GPIO5_8 (pin7 of J1003). These two pins are muxed
as UART3_TXD and UART3_CTS, so should disable GPIO5 and UART3 from kernel.

&gpio5 { status = "disabled"; }; &uart3 { status = "disabled"; };

2.4.418.4.4 Ethernet

This section describes the Ethernet configuration settings for i.MX 8M Mini LPDDR4 EVK or i.MX 8M Plus
LPDDR4 EVK boards.

1. Disable the Ethernet card from dts files:

&fecl |
status = "disabled";

i

Note:

1. i.MX 8M Mini LPDDR4 EVK has only one NIC, default status of ethO(fec1) is disabled. if user does not use
eth0 in Baremetal, can enable fec1 in kernel dts file.
2. i.MX 8M Plus LPDDR4 EVK has two NICs, default setting is ethO for Baremetal, eth1 for Linux.

2. Confirm Baremetal configuration using the command below:

make menuconfig ARM architecture ---> [*] Enable baremetal [*] Enable NIC for
baremetal (1) which core that NIC is assigned to

Configure NIC to the specified core by modifying the NIC to assign that core value, which is the default
configuration, to core1.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

59 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2.5 Native RTOS on Cortex-A core

Native RTOS refer to the RTOS running without Hypervisor and is kicked to specified Cortex-A Core by U-Boot
commands.

2.5.1 Overview

Real-time Edge system supports Native RTOS inlcuding FreeRTOS and Zephyr running on Cortex-A cores.

Currently we have two methods to run RTOS on Cortex-A Core:

* Jailhouse RTOS: leverage Jailhouse Hypervisor to run RTOS in Jailhouse inamte cells
» Native RTOS: running on Cortex-A Core without any Hypervisor, similar with BareMetal mode.

Jailhouse Hypervisor provides a mechanism to isolate hardware resources, such as memory and peripherals.
However, hypervisor implementation causes Cortex-A core's privileged execution level switching between EL1
and EL2 at runtime, so it introduces extra real-time latency.

Native RTOS is running on Cortex-A Core directly just like Linux kernel running, and there is no any Hypervisor
is leveraged, so it has a better Real-time performance compared with RTOS in Jailhouse inmate. It is targeted
for high real-time performance use cases with less real-time latency.

In order to run Native RTOS on Cortex-A Core, it needs to define hardware resource used by each OS to
make sure there is no resource conflict between different operating systems. If Linux is used with RTOS
simultaneously, the device nodes for peripherals used by RTOS should be disabled or removed from Linux
device tree.

2.5.2 Building native RTOS on Cortex-A core

There are two methods to build Native RTOS running on Cortex-A Core, one method is to leverage Yocto,
another method is to build the image by using ARM gcc directly.

Some native RTOS examples are available in the Heterogeneous Multicore repo, refer to Section 3.2 "Building
Heterogeneous Multicore RTOS Application" for how to build Native RTOS.

2.5.3 Booting native RTOS image on Cortex-A core

Native RTOS image for Cortex-A core can be kicked to specific Cortex-A Core by using the U-Boot command.

The below example shows how to run hello_world examples on the i.MX 8M Mini EVK, i.MX 8M Plus EVK, and
i.MX93 EVK boards.

1. Setup UART console for Native RTOS
Connect DEBUG UART slot on the board to your PC through the USB Cable. This step creates on the PC
two USB serial ports (port0 and port1) for i.MX 8M Mini EVK board, and four USB serial ports (port0 ~ port3)
for i.MX 8M Plus EVK and the i.MX93 EVK boards. Open two UART consoles for UART port0 and port1 on
i.MX 8M Mini EVK board or port2 and port3 on i.MX 8M Plus EVK board and iMX93 EVK board UART using
the following setup:
* 115200
* No parity
8 data bits
* 1 stop bit
The first UART console is used for Linux boot up, another one is used for RTOS running on Cortex-A Core.
2. Booting Native FreeRTOS Image

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

60/ 404

https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

After powering up the board and entering U-Boot command line, execute the following U-Boot commands to
run the hello world example.

* Boothello world example on the fourth Cortex-A Core on i.MX 8M Mini EVK board using the
commands below:

=> extd4load mmc 1:2 0x93C00000 /examples/heterogeneous-multicore/hello-world-
ca/ddr release/hello world ca53 RTOSO UART4.bin

=> dcache flush; icache flush

=> cpu 3 release 0x93C00000

After the preceding steps are followed, the second UART console displays the following RTOS log:

Cortex-A53: RTOSO: Hello world! Real-time Edge on MIMX8MM-EVK

RTOS1: RAM console@0x95bff000

RTOS2: RAM console@0x96bff000

RTOS3: RAM console@0x97bff000

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

Use the below commands for booting the hello world example on the fourth Cortex-A Core on i.MX
8M Plus EVK board:

=> extd4load mmc 1:2 0xC0000000 /examples/heterogeneous-multicore/hello-world-
ca/ddr release/hello world cab53 RTOSO UART4.bin

=> dcache flush; icache flush;

=> cpu 3 release 0xC0000000

After the preceding steps are followed, the second UART console displays the following RTOS log:

Cortex—-A53: RTOSO: Hello world! Real-time Edge on MIMX8MP-EVK

RTOS1: RAM console@Oxclfff000

RTOS2: RAM console@0xc2ff£000

RTOS3: RAM console@0xc3f£f£000

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

tic tac tic tac tic tac tic tac tic tac tic tac

Booting hello_world example on the second Cortex-A Core on i.MX93 EVK board:

=> extd4load mmc 1:2 0xD0000000 /examples/heterogeneous-multicore/hello-world-
ca/ddr release/hello world cab55 RTOSO UART2.bin

=> dcache flush; icache flush;

=> cpu 1 release 0xD000000O

After the preceding steps are followed, the second UART console displays the following RTOS log:

Cortex-A55: RTOSO: Hello world! Real-time Edge on MIMX93-EVK

RTOS1: RAM console@Oxdl1f££000

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

The Native RTOS image can also be booted from the first Cortex-A Core, which is called master Core.
Use the same command but use the "go" command to replace "cpu" command. For example, use the
command below to boot hello world example on the first Cortex-A Core on i.MX 8M Mini EVK board:

=> extd4load mmc 1:2 0x93C00000 /examples/heterogeneous-multicore/hello-world-
ca/ddr release/hello world cab53 RTOSO UART4.bin

=> dcache flush; icache flush;

=> go 0x93C00000

After the preceding steps are followed, the second UART console displays the following RTOS log:

Cortex—-A53: RTOSO: Hello world! Real-time Edge on MIMX8MM-EVK

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

61/404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

RTOS1: RAM console@0x95bff000

RTOS2: RAM console@0x96bff000

RTOS3: RAM console@0x97bff000

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

tic tac tic tac tic tac tic tac tic tac tic tac

3. Booting Native Zephyr Image
After powering up the board and entering U-Boot command line, execute the following U-Boot commands to
run the hello world example.
* Boot hello world example on the fourth Cortex-A Core on i.MX 8M Mini EVK board using the
commands below:

=> extd4load mmc 1:2 0x93C00000 /examples/heterogeneous-multicore/hello-world-
ca-zephyr/hello world ca53 RTOSO UART4.bin

=> dcache flush; icache flush

=> cpu 3 release 0x93C00000

After the preceding steps are followed, the second UART console displays the following RTOS log:

*** Booting Zephyr OS build zephyr-v3.5.0-27-g24a3599%9ab7a0 ***

Cortex-A53: RTOSO: Hello World! Real-time Edge on mimx8mm evk a53

RTOS1: RAM console@0x94d00000

RTOS2: RAM console@0x95d00000

RTOS3: RAM console@0x96d00000

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac

Use the below commands for booting the hello world example on the fourth Cortex-A Core on i.MX
8M Plus EVK board:

=> extd4load mmc 1:2 0xC0000000 /examples/heterogeneous-multicore/hello-world-
ca-zephyr/hello world ca53 RTOSO UART4.bin

=> dcache flush; icache flush;

=> cpu 3 release 0xC0000000

After the preceding steps are followed, the second UART console displays the following RTOS log:

*** Booting Zephyr OS build zephyr-v3.5.0-27-g24a3599%ab7a0 **x*

Cortex-A53: RTOSO: Hello World! Real-time Edge on mimx8mp evk a53

RTOS1: RAM console@0xc1100000

RTOS2: RAM console@0xc2100000

RTOS3: RAM console@0xc3100000

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac

Booting hello_world example on the second Cortex-A Core on i.MX93 EVK board:

=> extd4load mmc 1:2 0xD0000000 /examples/heterogeneous-multicore/hello-world-
ca-zephyr/hello world ca55 RTOSO UART2.bin

=> dcache flush; icache flush;

=> cpu 1 release 0xD000000O

After the preceding steps are followed, the second UART console displays the following RTOS log:

*** Booting Zephyr OS build zephyr-v3.5.0-27-g24a3599%ab7a0 **x*

Cortex-A55: RTOSO: Hello World! Real-time Edge on mimx93 evk a55

RTOS1: RAM console@0xd1100000

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

62 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

tic tac tic tac tic tac tic tac tic tac tic tac

The Native RTOS image can also be booted from the first Cortex-A Core, which is called master Core.
Use the same command but use the "go" command to replace "cpu" command. For example, use the
command below to boot hello world example on the first Cortex-A Core on i.MX 8M Mini EVK board:

=> extd4load mmc 1:2 0x93C00000 /examples/heterogeneous-multicore/hello-world-
ca-zephyr/hello world ca53 RTOSO UART4.bin

=> dcache flush; icache flush

=> go 0x93C00000

After the preceding steps are followed, the second UART console displays the following RTOS log:

*** Booting Zephyr OS build zephyr-v3.5.0-27-g24a3599%9ab7a0 ***
Cortex-A53: RTOSO: Hello World! Real-time Edge on mimx8mm evk a53
RTOS1: RAM console@0x94d00000

RTOS2: RAM console@0x95d00000

RTOS3: RAM console@0x96d00000
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic

tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

63 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2.6 RTOS on Cortex-A core with Jailhouse

2.6.1 Jailhouse

2.6.1.1 Overview

Jailhouse is a partitioning Hypervisor based on Linux. It is able to run baremetal applications or (adapted)
operating systems besides Linux. For this purpose, it configures CPU and device virtualization features of the
hardware platform in a way that none of these domains, called "cells" here, can interfere with each other in an
unacceptable way.

Jailhouse is optimized for simplicity rather than feature richness. Jailhouse does not support overcommitment
of resources such as CPUs, RAM, or devices. This feature makes it different from full-featured Linux-based
hypervisors such as KVM or Xen. It performs no scheduling and only virtualizes those resources in software,
which are essential for a platform and cannot be partitioned in hardware.

Once Jailhouse is activated, it runs Baremetal. This implies that it takes full control over the hardware and
needs no external support. However, in contrast to other baremetal hypervisors, it requires a normal Linux
system to be loaded and configured. lts management interface is based on Linux infrastructure. So, you boot
Linux first, then, enable Jailhouse and finally split off parts of the system's resources and assign them to
additional cells.

2.6.1.2 Running PREEMPT_RT Linux in Inmate

2.6.1.2.1 i.MX 8M Plus LPDDR4 EVK
Perform the following steps on i.MX 8M Plus LPDDR4 EVK board:

1. Execute run jh mmcboot at U-Boot prompt on the terminal of UART2.
2. Wait for Linux OS to boot up and login.
3. Execute non-root Linux demo (Assuming rootfs have been deployed in /dev/mmcblk2p2):

cd /usr/share/jailhouse/scripts
./linux-demo-imx8mp.sh

4. Check the output on the terminal of UART4:

.717545] printk: console [ttymxc3] enabled
.721628] printk: bootconsole [ec imx6g0] disabled
.732428] loop: module loaded

.732902] of reserved mem lookup () returned NULL
.732952] megasas: 07.714.04.00-rcl

L B R B B M W B s B e)
oNoloNoNoNoNolNoloNoNe]

]
]
]
]
]
.733632] imx ahci driver is registered.
]
]
]
]
]
]

.735615] tun: Universal TUN/TAP device driver, 1.6
.735835] thunder xcv, ver 1.0
.735863] thunder bgx, ver 1.0
.735889] nicpf, ver 1.0
.736340] hclge is initializing
0.736351] hns3: Hisilicon Ethernet Network Driver for Hip0O8 Family -
version
[0.736354] hns3: Copyright (c) 2017 Huawei Corporation.
[0.736382] €1000: Intel(R) PRO/1000 Network Driver
[0.736384] e1000: Copyright (c) 1999-2006 Intel Corporation.
[0.736416] el1000e: Intel(R) PRO/1000 Network Driver
[0.736418] e€1000e: Copyright(c) 1999 - 2015 Intel Corporation.
[0.736447] igb: Intel (R) Gigabit Ethernet Network Driver
[0.736450] igb: Copyright (c) 2007-2014 Intel Corporation.
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

64 /404

NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

[0.736473] igbvf: Intel (R) Gigabit Virtual Function Network Driver
[0.736475] igbvf: Copyright (c) 2009 - 2012 Intel Corporation.

NXP Real-time Edge Distro 2.2 imx8mp-lpddr4d4-evk ttymxc3

imx8mp-lpddrd4-evk login: root

root@imx8mp-lpddrid-evk:~#

root@imx8mp-lpddrd-evk:~# uname -a

Linux imx8mpevk 5.10.72-rt53-1ts-5.10.y+g5304e5555731 #1 SMP PREEMPT RT Tue

Mar 1 06:03:05 UTC 2022 aarch64 aarch64 aarch64 GNU/Linux
root@imx8mp-lpddrd-evk:~#

Note: If the case fails because of rooftfs error, update rootfs using the following command:

rm -fr /run/media/mmcblk2p2/*

cp —-frd /usr /bin /etc /home /fat /lib /linuxrc /lost+found/ /media/ /mnt /
opt /root /sbin /run/media/mmcblk2p2/

5. Exit Jailhouse.

2.6.1.2.2 LS1028ARDB
Perform the steps listed in the following section to run PREEMPT_RT Linux on LS1028ARDB board.
2.6.1.2.2.1 Linux in non-root cell

Perform the following steps to run PREEMPT_RT Linux in Inmate on LS1028ARDB platform:

1. Execute run jh mmcboot from U-Boot prompt.
2. Wait for Linux OS to boot up and log in it.
3. Execute non-root Linux demo:

cd /usr/share/jailhouse/scripts
./linux-demo-1s1028ardb.sh

4. Exit Jailhouse.

../tools/jailhouse disable

2.6.1.2.2.2 ENETC in non-root cell

Follow the below steps for ENETC that is assigned to non-root cell:

1. Under U-Boot prompt, run the below commands to set the device tree blob, which has ENETC nodes
removed and then boot up Linux:

=> setenv jh mmcboot ‘setenv dtb fsl-1s1028a-rdb-jailhouse-without-
enetc.dtb; run bootcmd’

=> run jh mmcboot

2. Wait for Linux OS to boot up and then log in.
3. Execute non-root Linux demo:

cd /usr/share/jailhouse/scripts
./linux-demo-1s1028ardb-enetc.sh

Then, network can be available in none-root cell Linux.
4. Exit Jailhouse.

../tools/jailhouse disable

REALTIMEEDGEUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 2.8 — 29 March 2024

© 2024 NXP B.V. All rights reserved.

65/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Note:

In this case, the GICv3 ITS node is also removed from the root cell Linux device tree. The node is assigned to
non-root cell to service ENETC MSI-X interrupts, so the root cell Linux does not support the MSI/MSI-X service
anymore.

2.6.1.2.2.3 GPIO in non-root cell

GPIO3 controller is assigned to non-root cell, below steps is for GPIO that is assigned to non-root cell:
1. Hardware setup
Connect J11 Pin5 (1588 _ALARM_OUT1/GPIO3_DAT11) to Pin 8 (1588 _CLK_OUT/GPIO3_DAT10)

2. RCW setting
In dash-rcw/1s1028ardb/R _SQPP 0x85bb/rcw 1500 sdboot.rcw, change as below:

EC1 SAI4 5 PMUX=1
EC1 SAI3 6 PMUX=1

EC1 SAI4 5 PMUXissetto 0b001,EC1 SAI3 6 PMUX is setto 0b001 to select GPIO.

3. Software configuration required:
a. Configure CPLD register BRDCFG3 (offset 053h) bit 2 to 0 (IEEE signals connect to the IEEE header) in
U-Boot prompt:

=> i2c mw 66 53 00

b. Boot up Linux using Jailhouse DTB and bring up non-root Linux:

=> run jh mmcboot

¢. Wait for Linux OS to boot up and login.
d. Execute non-root Linux demo.

cd /usr/share/jailhouse/scripts
./linux-demo-1s1028ardb.sh

4. Test GPIO function in non-root Linux.
a. Export GPIO pin

1s /sys/class/gpio
echo 490 > /sys/class/gpio/export
echo 491 > /sys/class/gpio/export

b. Configure GPIO output and input.

echo out > /sys/class/gpio/gpio490/direction
cat /sys/class/gpio/gpio490/direction
cat /sys/class/gpio/gpio491/direction

c. Verify write 1 to GPIO ouput.

echo 1 > /sys/class/gpio/gpio490/value
cat /sys/class/gpio/gpiod90/value
cat /sys/class/gpio/gpiod91/value

d. Verify write 0 to GPIO ouput.

echo 0 > /sys/class/gpio/gpio490/value
cat /sys/class/gpio/gpio490/value
cat /sys/class/gpio/gpiod91/value

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

66 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

5. Exit Jailhouse

../tools/jailhouse disable

2.6.1.2.3 LS1046ARDB

Perform the following steps:

1. Execute run jh mmcboot in U-Boot stage.
2. Wait for Linux OS to boot up and login in it.
3. Execute non-root Linux demo:

cd /usr/share/jailhouse/scripts
./linux-demo-1s1046ardb.sh

4. Exit Jailhouse:

../tools/jailhouse disable

2.6.1.3 Running Jailhouse examples In Inmate

2.6.1.3.1 i.MX 8M Plus LPDDR4 EVK

1. Execute run jh mmcboot in U-Boot stage
2. Wait for Linux OS to boot up and login in it.
3. Execute GIC demo.

cd /usr/share/jailhouse/scripts
./gic-demo-imx8mp.sh

4. Check the result on serial port:

Initializing the GIC...
Initializing the timer...

Timer fired, jitter: 2039 ns, min: 2039 ns, max: 2039 ns
Timer fired, jitter: 1039 ns, min: 1039 ns, max: 2039 ns
Timer fired, jitter: 879 ns, min: 879 ns, max: 2039 ns
Timer fired, jitter: 959 ns, min: 879 ns, max: 2039 ns
Timer fired, jitter: 1039 ns, min: 879 ns, max: 2039 ns
Timer fired, jitter: 919 ns, min: 879 ns, max: 2039 ns
Timer fired, jitter: 919 ns, min: 879 ns, max: 2039 ns
Timer fired, jitter: 919 ns, min: 879 ns, max: 2039 ns
Timer fired, jitter: 1079 ns, min: 879 ns, max: 2039 ns
Timer fired, jitter: 919 ns, min: 879 ns, max: 2039 ns
Timer fired, jitter: 919 ns, min: 879 ns, max: 2039 ns
Timer fired, jitter: 959 ns, min: 879 ns, max: 2039 ns

5. Execute UART demo:

./uart-demo-imx8mp.sh

6. Check the result on serial port:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

67 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Hello 1 from cell!
Hello 2 from cell!
Hello 3 from cell!
Hello 4 from cell!
Hello 5 from cell!
Hello & from cell!
Hello 7 from cell!
Hello 8 from cell!

Hello 9 from cell!
Hello 10 from cell!
Hello 11 from cell!
Hello 12 from cell!
Hello 13 from cell!
Hello 14 from cell!
Hello 15 from cell!
Hello 1lé from cell!
Hello 17 from cell!
Hello 18 from cell!
Hello 19 from cell!
Hello 20 from cell!

7. Exit Jailhouse.

../tools/jailhouse disable

2.6.1.3.2 LS1028ARDB Jailhouse example in Inmate

Perform the following steps for running LS1028ARDB Jailhouse example In Inmate:

1. Execute run jh mmcboot in U-Boot stage.
2. Wait for Linux OS to boot up and then log in.
3. Execute GIC demo using the command below:

cd /usr/share/jailhouse/scripts
./gic-demo-1s1028ardb.sh

4. Execute UART demo using the command below:

./uart-demo-1s1028ardb.sh

5. Execute ivshmem demo using the command below:

./ivshmem-demo-1s1028ardb.sh

Note: If ivshmem case fails, then, reboot the board and test the case again.
Check the result on the second serial port:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

68 / 404

NXP Semiconductors

REALTIMEEDGEUG

6.

Real-time Edge Software User Guide

IVSHMEM: Fcound device at 00:00.0

IVSHMEM: bar0 is at 0x00000000££000000

IVSHMEM: barl is at 0x00000000££001000

IVSHMEM: ID is 1

IVSHMEM: max. peers is 1

IVSHMEM: state table is at 0x00000000c0500000
IVSHMEM: R/W section is at 0x00000000c0501000
IVSHMEM: input sections start at 0xz00000000c050a000
IVSHMEM: output section is at 0x00000000c050c000
IVSHMEM: initialized device

state[0] =1

state[l] = 2

state[2] = 0

rw[0] = 1

rw[l] = 0

rw[2] = -1001599800
in@0x0000 = 10
in@0x2000 = 0
in@0x4000 = 1758252876

IVSHMEM: got interrupt 0 (#1)
state[0] =1

state[1] 2

state[2] = 0

rw[0] =1

rw[l] =1

rw[2] = -1001599800
in@0x0000 10

in@0x2000 10

in@0x4000 = 1758252876

Exit Jailhouse.

2.6.1.3.3 LS1046ARDB Jailhouse example

Perform the below steps for running Jailhouse examples in Inmate on LS1046ARDB:

1.
2.
3.

Execute run jh mmcboot in U-Boot stage.
Wait for Linux OS to boot up and login it.
Execute GIC demo:

cd /usr/share/jailhouse/scripts
./gic-demo-1sl1046ardb.sh

. Execute UART demo:

./uart-demo-1sl1046ardb.sh

Execute ivshmem demo:

./ivshmem-demo-1s1046ardb.sh

. Exit Jailhouse.

../tools/jailhouse disable

2.6.2 Harpoon (RTOS on Cortex-A)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

69 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2.6.2.1 Overview

Harpoon RTOS provides an environment for developing real-time demanding applications on an RTOS running
on one (or several) Cortex-A core(s) in parallel of a Linux distribution.

Harpoon leverages Jailhouse to partition the hardware and run the RTOS as a Linux guest.

The Harpoon RTOS is based on either FreeRTOS or Zephyr plus MCUXpresso drivers and provides several
example applications:

* Audio application
* Industrial application
* Real-time latency test application

For details about Harpoon OS, refer to its user guide available at the following location:

https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-
SOFTWARE?tab=Documentation_Tab

2.7 RTOS and Baremetal on Cortex-M core

Regarding RTOS and Baremetal building, please refer to Section 2.2 "Building, deploying, and releasing unified
software "

Real-time Edge images has some demo for testing.

For more example, please refer to https://mcuxpresso.nxp.com/en/welcome

2.7.1 Booting Cortex-M Core RTOS Image

There are two ways to boot ARM Cortex-M Core: booting from U-Boot, or using RemoteProc to boot from Linux.

2.7.1.1 Booting Native RTOS Cortex-M Core image from U-Boot

U-boot command "bootaux" is used to boot Cortex-M Core RTOS Image from U-Boot, for example, after the
board is booted into the U-Boot console.

* Use the following command to boot Arm Cortex-M core on i.MX 8M Mini LPDDR4 EVK board:

=> extd4load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/hello-world-cm/
release/hello world cm4 UART4.bin; cp.b 0x48000000 0x7e0000 20000;
=> bootaux 0x7e0000

Use the following command on i.MX 8M Plus LPDDR4 EVK board:

=> extd4load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/hello-world-cm/
release/hello world cm7 UART4.bin; cp.b 0x48000000 0x7e0000 20000;
=> bootaux 0x7e0000

Use the following command on i.MX93 EVK board:

=> extd4load mmc 1:2 0xd0000000 /examples/heterogeneous-multicore/hello-world-cm/
release/hello world cm33 UART2.bin; cp.b 0xd0000000 0x201e0000 20000;
=> bootaux 0x1£f£fe0000

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

70/ 404

https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE?tab=Documentation_Tab
https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE?tab=Documentation_Tab
https://mcuxpresso.nxp.com/en/welcome

NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

2.7.1.2 Using RemoteProc to boot RTOS Cortex-M Core Image

If you choose to use RemoteProc to start the remote core directly, execute run prepare mcore in U-Boot
before starting the Linux OS.

=> run prepare mcore

Then, use the following command to use RPMSG dtb file to boot the kernel:

On imx8mm-lpddr4-evk board

=> setenv fdtfile imx8mm-evk-rpmsg.dtb
=> boot

On imx8mp-lpddrd4-evk board

=> setenv fdtfile imx8mp-evk-rpmsg.dtb
=> boot

Then, after the Linux kernel boots up, run the commands for i.MX 8MP:

root@imx8mp-lpddr4-evk:~# echo -n imx8mp m7 TCM hello world.elf > /sys/class/
remoteproc/remoteprocO/firmware

root@imx8mp-lpddrd-evk:~# echo start > /sys/class/remoteproc/remoteprocO/state
[19.668712] remoteproc remoteprocO: powering up imx-rproc

[19.670341] remoteproc remoteprocO: Booting fw image

imx8mp m7 TCM hello world.elf, size 153316

root@imx8mp-lpddrd-evk:~# [20.191036]

remoteproc remoteprocO: remote processor
imx-rproc is now up

For i.MX 8MM, run the following commands:

root@imx8mm-lpddr4-evk:~# echo -n imx8mm m4 TCM hello world.elf > /sys/class/
remoteproc/remoteprocO/firmware

root@imx8mm-lpddrd-evk:~# echo start > /sys/class/remoteproc/remoteprocO/state
[209.654414] remoteproc remoteproc(O: powering up imx—-rproc

[209.656646] remoteproc remoteprocO: Booting fw image

imx8mm m4 TCM hello world.elf, size 146136

root@imx8mﬁ—lpddr4—evk:~# [210.174456] remoteproc remoteprocO: remote processor
imx-rproc is now up

After these steps are followed, the remote processor imx-rproc is up.

REALTIMEEDGEUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 2.8 — 29 March 2024

© 2024 NXP B.V. All rights reserved.

7117404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3 Heterogeneous Multicore Framework

3.1 Overview

Heterogeneous Multicore Framework provides a general software framework to support Heterogeneous AMP. It
enables AMP to be interconnected and provides a unified resource management and life-cycle management as
shown in Figure 25.

Heterogeneous Multicore Software

Root Cell E Preempt
Linux i RT

Jailhouse]

Preempt Bare-
RT Metal

-

RTOS RTOS RTOS

H

v v

A 4
Resource Allocation
Heterogeneous Multicore Framework % and Management
System-Device-Tree
e

B B o 2 0 0 N
- >/

Peripheral: GPIO, UART, Ethernet, 12C ...

e

Linux BSP MCUX-SDK Examples/Solution/Document

Yocto Release

_

Figure 25. Heterogeneous multicore framework architecture

It provides the below key functions to help users to accelerate solution development based on multicore
platforms:

1. Data communication between different operating systems
The following technical implementation can be used to pass common data between different operating
systems. The data transfer can be between Cortex-M Core and Cortex-A Core, or between different Cortex-
A cores, or between multiple CPU cores simultaneously.
* RPMsg
RPMsg is a standard intercore communication protocol supported on Linux and RTOS.
* Heterogeneous Multicore VirtlO
Heterogeneous Multicore VirtlO applies para-virtualization VirtlO technology to build high-performance
intercore data path. A customized data path is defined according to different use cases.
2. Resource sharing between different operating systems

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

721404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Resource sharing enables sharing physical resources between different OSes. In general, one OS owns

and controls hardware resources while the other OS uses a virtual device. The following mechanism is

followed to build the control path and data path to access physical resource.

* RPMsg
Use RPMsg to build control and data path crossing OS, physical resource is shared with another OS in
terms of virtual device. Simplified Real-Time Messaging (SRTM) protocol provided in Real-time Edge is an
implementation based on RPMsg. It is used to share the physical resources of the Cortex-M core with the
Cortex-A core in terms of virtual devices in Linux.

* Heterogeneous Multicore VirtlO
Heterogeneous Multicore VirtlO have a better performance than RPMSG, and it can also be used for
resource sharing. POSIX compatible API can be used to access virtual device, and some existing VirtlO
device drivers in Linux can be reused. Networking sharing is provided in Real-time Edge to share the
same networking interface between multiple OSes.

. Unified Life-Cycle Management

Heterogeneous Multicore Framework provides unified Life Cycle Management both for Cortex-A Core and
Cortex-M Core.

There are some sample application provided in Heterogeneous Multicore Framework, these application can be
used to demo and evaluate the features in Heterogeneous Multicore Framework:

1.

hello_world

hello_world application is to demonstrate flexible Real-time System on MPU platforms, multiple images
provided can be used to run single or multiple RTOS on Cortex-A Core or Cortex-M with or without runing
Linux simulteneously.

. RPMSG Applications

Heterogeneous Multicore Framework supports RPMSG communication between any Real-time Systems on

MPU Platforms, such as:

* RPMSG between RTOS on Cortex-M Core and Linux on Cortex-A core

* RPMSG between RTOS on Cortex-A Core and Linux on Cortex-A Core

¢ RPMSG between RTOS on Cortex-A Core and RTOS on Cortex-A Core

¢ RPMSG between RTOS on Cortex-M Core and RTOS on Cortex-A Core

The following applications provides filed trail for RPMSG related features

* rpmsg_str_echo
This demo demonstrates building up multiple RPMSG endpoints between RTOS and Linux. For example,
on i.MX 8M Plus EVK board, images provided in Real-time Edge can be used to run three RTOS
romsg_str_echo applications on two Cortex-A Core and one Cortex-M Core. The other two Cortex-A
Cores run SMP Linux, then each RTOS establishes three RPMSG channels with Linux.

* rpmsg_pingpong
This demo demonstrates RPMSG communication between RTOS and RTOS, one is RPMSG master and
the other is RPMSG slave.

* rpmsg_perf
romsg_perf is a tool to evaluate RPMSG bandwidth performance between RTOS and Linux Kernel.

« RPMSG enahanced 8MB buffer
The application demonstrates how to change the default RPMG buffer size and count.

¢ UART Sharing based on RPMSG
This application demonstrates how to use RPSMG to share physical peripherals or other resource
between different CPU Core or OS. This demo share physical UART controlled by Cortex-M Core with
Cortex-A Core on which virtual UART device driver is provided in Linux.

. Heterogeneous Multicore VirtlO Applications

e virtio_perf
virtio_perf is a tool that evaluates Heterogeneous Multicore VirtlO bandwidth performance between RTOS
and Linux.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

731404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

¢ VirtlO Networking Sharing
This application demonstrates how to use Heterogeneous Multicore VirtlO to share physical peripherals or
other resource between different CPU Core or OS. The applicatons provides networking sharing, physical
networking interface is controlled by Cortex-M Core or Cortex-A Core, then it is shared with Cortex-A
Core on which virtual NIC device driver is provided in Linux, Heterogeneous Multicore VirtlO is used to
established high performance data path between two sides.

The following table shows the support matrix on NXP platforms:

Table 22. Heterogeneous Multicore Application Support Matrix

Heterogeneous Multicore Framework i.MX 8M Mini | i.MX 8M Plus | i.MX 93 EVK i.MX 93 9x9
LPDDR4 EVK | LPDDR4 EVK LPDDR4 QSB
L 4X 1X 4X 1X 2X 1X 2X 1X
Feature Sub-feature RTOS Application A53 M4 A53 M7 A55 M33 A55 M33
Flexible Real- FreeRTOS hello_world Y Y Y Y Y Y
time System Zephyr hello_world Y Y Y
Flexible Real-time FreeRTOS hello_world Y Y Y
RAM Console
System Zephyr hello_world Y Y Y
networking stack A
on A-Core RTOS FreeRTOS Iwip_ping Y Y Y
U-Boot booting Native FreeRTOS hello_world Y Y Y
RTOS on A-Core Zephyr hello_world Y Y
Unified Life Cycle U-Boot bootin .
- g Native
Management RTOS on M-Core FreeRTOS hello_world Y Y Y Y
Linux booting Native
RTOS on M-Core FreeRTOS remoteproc Y Y Y Y
RPMSG between
A-Core Linux and FreeRTOS rpmsg_str_echo Y Y Y Y
M-Core RTOS
RPMSG between
A-Core Linux and FreeRTOS rpmsg_str_echo Y Y
A-Core RTOS
RPMSG between .
2 A-Core RTOS FreeRTOS rpmsg_pingpong Y
RPMSG
RPMSG between
A core Linux and
M core RTOS with FreeRTOS rpmsg_lstr_echo Y
enhanced 8MB buffer
RPMsg Performance
Evaluation FreeRTOS rpmsg_perf Y Y
UART Sharing .
based on RPMsg FreeRTOS rpmsg_uart_sharing Y Y Y
Heterogeneous
Multicore VirtlO FreeRTOS virtio_perf Y Y Y Y
Performance
Heterogeneous Evaluation
Multicore VirtlO
Heterogeneous
Multicore VirtlO FreeRTOS virtio_net_backend Y Y Y Y Y Y
Network Sharing

3.2 Building Heterogeneous Multicore RTOS Application

Heterogeneous Multicore Framework provides some RTOS applications in the repo: heterogeneous-multicore.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

741404

https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

There are two methods to build Heterogeneous Multicore RTOS Applications, one method is to leverage Yocto,
another method is to standalone method by using ARM gcc directly.

3.2.1 Build with Yocto

Real-time Edge supports to build all images by using Yocto, so please refer to "Section 2.2 "Building, deploying,
and releasing unified software " Building, deploying, and releasing unified software" for how to leverage Yocto to
build RTOS Applications on Cortex-A Core an Cortex-M Core.

The followings are some Yocto quick commands:

Build all RTOS application running both on Cortex-A Core and Cortex-M Core:

bitbake packagegroup-real-time-edge-rtos

Build single Heterogeneous Multicore RTOS application separately:

bitbake APP-NAME-CORE

The "APP-NAME-CORE" could be the following applications with suffix "-ca" for A-Core application or "-cm" for
M-Core appliction:

* hello-world-ca

* |wip-ping-ca

* rpmsg-str-echo-ca

* rpmsg-str-echo-cm

* rpmsg-pingpong-ca

* rpmsg-lite-uart-sharing-rtos
* virtio-net-backend-ca

* virtio-net-backend-cm

* virtio-perf-ca

* virtio-perf-cm

3.2.2 Build with Standalone Mode

Some RTOS applications are in the repository: heterogeneous-multicore, the repo is managed by "west" tool,
so can use "west" to download all the software components and then use ARM gcc toolchain to build the
application directly.

1. Download and install the toolchain
The toolchain for building RTOS on Cortex-A Core:

mkdir ~/toolchains/;cd ~/toolchains/

wget https://developer.arm.com/-/media/Files/downloads/gnu-a/10.3-2021.07/
binrel/gcc-arm-10.3-2021.07-x86_ 64-aarch64-none-elf.tar.xz

tar xf gcc-arm-10.3-2021.07-x86 64-aarch64-none-elf.tar.xz

The toolchain for building RTOS on Cortex-M Core:

cd ~/toolchains/

wget https://developer.arm.com/-/media/Files/downloads/gnu-rm/10-2020g4/gcc—
arm-none-eabi-10-2020-g4-major-x86 64-linux.tar.bz2

tar xf gcc-arm-none-eabi-10-2020-g4-major-x86 64-linux.tar.bz2

2. Download Source Code
This Heterogeneous Multicore project uses west to manage all related repos, west.yml provides the
description and revision for other projects used by Heterogeneous Multicore.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

751404

https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Use the following command to download all the source code:

west init -m https://github.com/nxp-real-time-edge-sw/heterogeneous-
multicore.git workspace

cd workspace

west update

3. Build the RTOS application.
Each application provides a building script which can be used to build the application separately. In the
meanwhile, a common building helper script "build_apps.sh" in the root directory of "heterogeneous-
multicore" can be used to build single or all application for all boards.
* Build FreeRTOS Application
Take "rpmsg_str_echo" application as example, use the following command to build the application for
Cortex-A Core on i.MX 8M Plus EVK:

export ARMGCC DIR=~/toolchains/gcc-arm-10.3-2021.07-x86 64-aarch64-none-elf
cd ~/workspace/heterogeneous-multicore/apps/rpmsg str echo/freertos/boards/
evkmimx8mp cab53/armgcc aarché64

./build ddr release.sh

Then the RTOS images "rpmsg _str echo ca53 RTOSO RAM CONSOLE.bin
rpmsg_str echo ca53 RTOSO UART4.bin rpmsg str echo ca53 RTOS1 RAM CONSOLE.bin"
can be found in directory "ddr release".

And use the following commands to build the application for Cortex-M Core on i.MX 8M Plus EVK:

export ARMGCC DIR=~/toolchains/gcc-arm-none-eabi-10-2020-g4-major

cd ~/workspace/heterogeneous-multicore/apps/rpmsg str echo/freertos/boards/
evkmimx8mp cm7/armgcc

./build release.sh

Then the RTOS image "rpmsg_str echo _cm7.bin" can be found in directory "release".

* Build Zephyr Application
Building application on Cortex-A Core, for example, building Zephyr hello_world running on Cortex-A
Core:

export ARMGCC DIR=~/toolchains/arm-gnu-toolchain-12.2.rell-x86 64-aarch64-
none-elf

export Zephyr DIR=~/workspace/zephyr

cd ~/workspace/heterogeneous-multicore/apps/hello world/zephyr/boards/
evkmimx8mm ca53/armgcc _aarch64

./build.sh

Then the following binary Zephyr images are built out:

build RTOS2 RAM CONSOLE/zephyr/hello world ca53 RTOS2 RAM CONSOLE.bin
build RTOS3 RAM CONSOLE/zephyr/hello world ca53 RTOS3 RAM CONSOLE.bin
build RTOS3 UART2/zephyr/hello world ca53 RTOS3 UART2.bin
build RTOSO UART4/zephyr/hello world ca53 RTOSO UART4.bin
build RTOS1 RAM CONSOLE/zephyr/hello world ca53 RTOS1 RAM CONSOLE.bin
build RTOSO RAM CONSOLE/zephyr/hello world ca53 RTOSO RAM CONSOLE.bin

* Build with Helper Script
"build_apps.sh" in the root directory of "heterogeneous-multicore" can be used to build single or all
application for all boards.
The following is help information for "build_apps.sh" tool:

./build apps.sh [clean] - build or
clean all applications
./build apps.sh [clean] [os] [board-list] [app-list] [core] - build or

clean specified applications
- 0s: specify freertos or zephyr or both if no specified.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

76 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

- Ccore: a-core or m-core

- board-list: specify one or some or all boards if no specified:
evkmimx8mm cab53 evkmimx8mp cab53 mcimx93evk cab5 evkmimx8mm cm4
evkmlmXSmp cm7 mcimx93evk cm33

- app-list: specify one or some or all applications if no
specified: hello world lwip ping rpmsg perf rpmsg pingpong rpmsg str echo
rpmsg_uart sharlng soem digital io soem servo virtio net backend
virtio perf

Need to set toolchain enviroment variables "ARMGCC_DIR" firstly before using the tool, and set
enviroment variables "Zephyr_ DIR" for Zephyr building.
For example, use the tool to build all hello_world application on Cortex-M Core for all supported boards:

export ARMGCC DIR=~/toolchains/gcc-arm-none-eabi-10-2020-g4-major
cd ~/workspace/heterogeneous-multicore/
./build apps.sh m-core hello world

Use the tool to build all Zephyr application on Cortex-A Core for all supported boards:

export ARMGCC DIR=~/toolchains/arm-gnu-toolchain-12.2.rell-x86 64-aarch64-
none-elf

export Zephyr DIR=~/workspace/zephyr

cd ~/workspace/heterogeneous-multicore/

./build apps.sh a-core zephyr

After executing the tool, binary images built out can be found in the directory: "deploy/images", for
example, the following are all the images both for A-Core and M-Core on both Zephyr and FreeRTOS.

deploy/

images
— evkmimx8mm cab53
— freertos
F—— hello world ca53 RTOSO RAM CONSOLE.bin
I — hello world ca53 RTOSO UART4.bin
— hello_world_ca53_RTOSl_RAM_CONSOLE.bin
— hello world ca53 RTOS2 RAM CONSOLE.bin
—— hello world ca53 RTOS3 RAM CONSOLE.bin
— hello world ca53 RTOS3 UARTZ bin
— lwip ping ca53.bin
— rpmsg_str echo cab53 RTOSO RAM CONSOLE.bin
— rpmsg_str ~echo ca53 RTOS0 UART4 bin
— rpmsg_str “echo ca53 RTOS1 RAM CONSOLE.bin
I — virtio net backend ca53.bin
— virtio perf ca53.bin
— zephyr
F— hello world ca53 RTOSO RAM CONSOLE.bin
— hello world ca53 RTOSO UART4 bin
— hello world ca53 RTOS1 . _RAM CONSOLE.bin
— hello world ca53 RTOS2 RAM CONSOLE .bin
I — hello world ca53 RTOS3 RAM CONSOLE.bin
= hello_world_caS3_RTOSB_UART2 bin
— evkmimx8mm cm4
L freertos
— hello world cm4 UART4.bin
— rpmsg_str echo cm4.bin
— rpmsg_ uart sharlng bin
— virtio net backend cm4.bin
— virtio perf cmé4 .bin
— evkmimx8mp cab53
freertos
— hello world ca53 RTOSO RAM CONSOLE.bin
— hello world ca53 RTOS0 UART4.bin

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

771404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

—— hello world ca53 RTOS1 RAM CONSOLE.bin
I — hello world ca53 RTOS2 RAM CONSOLE.bin
— hello world ca53 RTOS3 RAM CONSOLE.bin
— hello world ca53 RTOS3 UART2 bin
— lwip ping ca53.bin
— rpmsg perf cab3.bin
— rpmsg_str echo cab53 RTOSO RAM CONSOLE.bin
— rpmsg_str ~echo ca53 RTOSO UART4 bin
— rpmsg_ SieE echo ca53 RTOS1 RAM CONSOLE .bin
— soem dlgltal io ca53.bin
—— soem_Sservo ca53.bin
I virtio net backend ca53.bin
— virtio perf ca53.bin
— zephyr
— hello world ca53 RTOSO RAM CONSOLE.bin
— hello world ca53 RTOSO UART4 bin
— hello world ca53 RTOS1 | _RAM CONSOLE.bin
L — hello world cab53 RTOS2 RAM CONSOLE.bin
I — hello world ca53 RTOS3 RAM CONSOLE.bin
L— hello_world_ca53_RTOSB_UART2 bin
— evkmimx8mp cm7
L freertos
— hello world cm7 UART4.bin
— rpmsg _perf cm7.bin
— rpmsg_str echo cm7.bin
I — virtio net backend cm7.bin
— virtio perf cm7.bin
— mcimx93evk cab5
— freertos
— hello world ca55 RTOSO RAM CONSOLE.bin
I — hello world ca55 RTOSO UARTZ bin
I — hello world ca55 RTOS1 RAM CONSOLE.bin
— hello world cab55 RTOS1 UARTl bin
— lwip ping ca55.bin
— soem digital io cab55.bin
— soem servo cabb5. " bin
L— v1rtlo net backend cab5.bin
— zephyr
— hello world cab55 RTOSO RAM CONSOLE.bin
— hello world ca55 RTOSO UARTZ2.bin
— hello world ca55 RTOS1 RAM CONSOLE.bin
L— hello world cab5 RTOSl UARTl bin
L — mcimx93evk cm33

L freertos
— hello world cm33 UARTZ2.bin
— rpmsg_ _wREE sharlng bin
— virtio net backend cm33.bin

3.3 Flexible Real-time System

On NXP MPU platforms, it supports Flexible Real-time System, the system can run single or multiple RTOS on
Cortex-M Core and Cortex-A Core with or without runing Linux on Cortex-A Core simulteneously.

The system provides RAM Console to make it easy to debug multiple OS in case of no enough physcal UART
Console can be used.

And the system also provides some common software stack, such as IwIP networking stack on Cortex-A Core
or Cortex-M Core.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

781404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3.3.1 Heterogeneous Multicore RAM Console

RAM Console is virtual debug console which can be used by RTOS, it provides common console APIs to print
and save console log to a reserve memory region.

If run multiple OSes on MPU platform, some OSes can use physical UART as debug console, then the other
OSes can use RAM Console, then can dump the other OS's RAM Console from the OS which is using phycial
UART Console.

It provides two methods to dump the RAM Console log: use U-Boot command or Linux Userspace tool.

3.3.1.1 Use RAM Console in FreeRTOS

This chapter descripts how to develop FreeRTOS application based on RAM Console.

3.3.1.1.1 RAM Console technical details

RAM Console driver is located at the debug console (utilities/debug_console) in the repository mcux-sdk. There
is a 64-byte Console Header at the start of the RAM Console log memory. Figure 26 shows the memory layout.

MSB LSB

Header flag string
“RAM_CONSOLE”"

«—

5f

4d

41

52

53

00

45

4c

4f

00

00

(32bit)

console_start_address
i (32bit)

’ console_buffer_length ‘

console_cursor_position

(32bit) 00

00 00 00 00

00 00 00 00 00 00 00 00 00 00

console_start—| } X X X X X X X X X X X X X X XX XXX XX XXX XXX XXXXXXXXXXXX
XXX XXXXXXX

console_cursor

Console Buffer

[«— console_end

Figure 26. RAM console memory layout

The RAM Console Header includes the following parts:

* 16 bytes fixed string flag: "RAM_CONSOLE".
» console_start address: the memory physical address for the console_start of Console buffer.
 console_buffer_length: the length in bytes of Console Buffer from console_start to console_end.

e console_cursor_position: The current console cursor-related position from console_start. The cursor starts
from console_start, then moves toward console_end. With console log increment, when it reaches to
console_end, it jumps back to the console_start, and then moves toward console_end again.

3.3.1.1.2 Develop with RAM Console

Take the "hello world" program for the "evkmimx8mm ca53" board in the repository heterogeneous-
multicore as an example. Then follow the steps listed below to use RAM Console as debug console in RTOS
application.

1. Reserve a memory block for RAM Console, and add mmu mapping entry in app mmu. h.
2. In application's CMakeLists.txt

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

791404

https://github.com/nxp-mcuxpresso/mcux-sdk/tree/feature/heterogeneous_multicore
https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore
https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

SET (DEBUG_CONSOLE CONFIG "-DSDK DEBUGCONSOLE=2 -DCONFIG RAM CONSOLE")

include (utility assert ram console)
include (utility ram console)

3. Call RamConsole Init () with RAM Console memory block's address and size to initialize RAM Console

#ifdef CONFIG_RAM_CONSOLE

RamConsole_Init (RAM_CONSOLE_ADDR, RAM_CONSOLE_SIZE) ;
#else

BOARD InitDebugConsole () ;
#endif

4. In general, while running multiple RTOS instances, all the RAM Console memory addresses can be printed
out to physical debug console from the RTOS instances using physical debug console.

3.3.1.2 Use RAM Console in Zephyr

This chapter descripts how to develop Zephyr application based on RAM Console.

3.3.1.2.1 RAM Console Technical Details

In Zephyr RAM console, there is the same 64 bytes Console Header as the one in FreeRTOS, refer to
Section 3.3.1.1.1 "RAM Console technical details".

The RAM Console driver in Zephyris drivers/console/ram console.c.

3.3.1.2.2 Develop with RAM Console

Take the "hello world" program for the "evkmimx8mm ca53" board in the repository heterogeneous-
multicore as an example. Then follow the steps listed below to use RAM Console as debug console in Zephyr
application.

1. Enable the RAM console driver in the prj.conf, and disable the UART console driver.

CONFIG_RAM CONSOLE=y
CONFIG UART CONSOLE is not set

2. Add a device tree node to add a memory region and section for the RAM console buffer in the board dts file.

ram console: memory@93d00000 {
compatible = "zephyr,memory-region";
reg = <0x93d00000 DT SIZE K(4)>;
zephyr,memory-region = "RAM CONSOLE";
}i

3. In general, while running multiple RTOS instances, all the RAM Console memory addresses can be printed
out to physical debug console from the RTOSO instance using physical debug console.

3.3.1.3 Dump RAM Console Log

RAM Console Log can be dumped from U-Boot command line or from Linux userspace. While running multiple
OSes on MPU platform, the OS instances must be started using RAM Console first. Then start the OS using
physical UART Console. If the last OS using physical UART Console is RTOS, it can dump the other OS's
RAM Console log before from U-Boot command line start this last RTOS, otherwise it has to dump the console
memory by using JTAG tools. But if the last OS using physical UART Console is Linux, we can still dump the
other OS's RAM Console log by using Linux userspace tool after Linux boots up.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

80/ 404

https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore
https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore

NXP Semiconductors

REALTIMEEDGEUG

e Dump from U-Boot
In U-Boot comand line, use "md" command to dump the whole RAM Console memory including RAM Console

Real-time Edge Software User Guide

Header

u-boot=> dcache flush; md CI1FFF000

clfff000: 5f4d4152 534e4f43 00454c4f 00000000 RAM CONSOLE.....
clff£f010: clff£f040 00000000 00000fcO 00000000 @Q...vveeueneeneennn.
clf££020: 0000024d 00000000 00000000 00000000 M..'v''euwueeeeenn.
clf£f£f030: 00000000 00000000 00000000 00000000 & eveveeweeeeenn.
clfff040: 6f430a0d 78657472 3335412d 5452203a ..Cortex-A53: RT
clfff050: 3a31534f 6c654820 77206f6c 646c726f 0OS1l: Hello world
clfff060: 65522021 742d6c6l 20656d69 65676445 | Real-time Edge
clfff070: 206e6£f20 584d494d 2d504d38 0d4b5645 on MIMX8MP-EVK.
clfff080: 6369740a 63617420 63697420 63617420 .tic tac tic tac
clfff090: 63697420 63617420 63697420 63617420 tic tac tic tac
clfff0al: 63697420 63617420 63697420 63617420 tic tac tic tac
clfff0b0: 63697420 63617420 63697420 63617420 tic tac tic tac
clfff0c0: 63697420 63617420 63697420 63617420 tic tac tic tac

* Dump from Linux
There is a Linux userspace tool provided in the repository heterogeneous-multicore "tool" directory. Use this
tool to dump RAM Console log.

root@imx8mp-lpddré4-evk:~# ram console dump OxC1lFFFO000

RAM Console@O0xclfff000:

Cortex—-A53: RTOS1:

tic tac
tic tac
tic tac
tic tac

tic tac tic
tic tac tic
tic tac tic
tic tac tic

Hello world! Real-time Edge on MIMX8MP-EVK

tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac

>

3.3.2 Heterogeneous Multicore hello_world

3.3.2.1 Overview

Heterogeneous Multicore hello world application demonstrates flexible Real-time System on MPU
platforms. It can run single or multiple FreeRTOS or Zephyr RTOS instances on Cortex-A Core and single
FreeRTOS instance on Cortex-M with or without running Linux simulteneously.

Note: In this release, it only supports the Zephyr hello world application on Cortex-A cores.

Take i.MX 8M Plus Applications Processor as an example. It has four Cortex-A53 cores and one Cortex-M7
Core. It could run the following use cases on this MPU platform:

Table 23. Flexible Real-time System on i.MX 8M Plus

ID M7 A53 A53 A53 A53

0 RTOS SMP Linux

1 RTOS SMP Linux RTOS

2 RTOS SMP Linux RTOS RTOS

3 RTOS Linux RTOS RTOS RTOS

4 RTOS RTOS RTOS RTOS RTOS
REALTIMEEDGEUG Allinformation provided in this document is subject to legal disclaimers. ©2024 NXP B.V. Al rights reserved.
User guide Rev. 2.8 — 29 March 2024

8117404

https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3.3.2.2 Technical Points

Debug Console

Take i.MX 8M Plus Applications Processor as an example, in general, UART4 is used for Cortex-M Core
RTOS or Cortex-A Core RTOS, UARTZ2 is used for Linux, the other RTOS instance can use RAM Console.
The hello_world application could build all RTOS instances with any possible UART Console or RAM Console,
the following images are for i.MX 8M Plus EVK, the RTOSO0 provides images both for UART4 Console and
RAM Console, can run any of them according to usecase setup.

—— evkmimx8mp

hello world ca53 RTOSO RAM CONSOLE.bin
hello world ca53 RTOSO UART4.bin

hello world ca53 RTOS1 RAM CONSOLE.bin
hello world ca53 RTOS2 RAM CONSOLE.bin
hello world ca53 RTOS3 RAM CONSOLE.bin
hello world cab53 RTOS3 UART2.bin

GIC Controller Initialization

In case of running FreeRTOS on multiple Cortex-A cores, the core that boots the first FreeRTOS instance
must be the only one that configures the Generic Interrupt Controller (GIC). The other cores, must not
configure GIC as it is already initialized. For example, the following code makes sure that only the RTOS0
instance configures GIC.

#if (RTOSID ==)
GIC_Enable(l);
felse
GIC Enable(0);
#endif

So in general, RTOSO0 need to run firstly before running the other RTOS instances.

Memory Usage

— For FreeRTOS applications in the repository: heterogeneous-multicore, the memory resource used by
FreeRTOS kernel is defined in "os/freertos/Core AArché64/boards/<PLAT NAME>/rtos memory.
h", for example, in the following rtos_memory.h for i.MX 8M Plus, RTOS0, RTOS1, RTOS2 and RTOS3,
each RTOS uses 16M bytes memory from 0xC0000000, 0xC1000000, 0xC2000000 and 0xC3000000
respectively.

#ifndef RTOS MEMORY H
#define RTOS MEMORY H

/* Memory used by RTOS kernel */

#define M INTERRUPTS BASE (0xC0000000 + 0x1000000 * RTOSID)
#define M INTERRUPTS LEN 0x00002000 /* 8 kB */

#define M TEXT BASE (M_INTERRUPTS BASE + M INTERRUPTS LEN)
#define M TEXT LEN 0x005FE000 /* ~6 MB */

#define M DATA BASE (M_TEXT BASE + M TEXT LEN)

#define M DATA LEN 0x005FE0Q0Q0 /* ~6 MB */

#define M STACKS BASE (M_DATA BASE + M DATA LEN)

#define M STACKS LEN 0x00002000 /* 8 kB */

#define M STACKS NC BASE (M_STACKS BASE + M STACKS_ LEN)

#define M STACKS NC LEN 0x003FF000 /* ~4 MB */

/* Memory used by RAM Console */

#define RAM CONSOLE_ADDR (M_STACKS_NC_BASE + M _STACKS NC LEN)

#define RAM CONSOLE SIZE 0x00001000 /* 4KB */
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

8217404

https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

#define RTOS MEM LEN 001000000 /* 16 MB */

#endif

— For Zephyr applications in the repository: heterogeneous-multicore, the memory resource used by Zephyr
kernel is defined in "apps/hello world/zephyr/boards/<PLAT NAME>/rtos memory.h", for
example, in the following rtos_memory.h for i.MX 8M Plus, RTOS0, RTOS1, RTOS2 and RTOS3, each
RTOS uses 1M bytes memory for Zephyr kernel starting from 0xC0000000, 0xC1000000, 0xC2000000 and
0xC3000000 respectively, and 4K bytes memory for RAM console buffer appended.

#if (RTOSID == 0)

#define SRAM BASE c0000000
#define RAM CONSOLE BASE c0100000
#elif (RTOSID == 1)

#define SRAM BASE c1000000
#define RAM CONSOLE BASE c1100000
#elif (RTOSID == 2)

#define SRAM BASE c2000000
#define RAM CONSOLE BASE c2100000
#elif (RTOSID == 3)

#define SRAM BASE c3000000
#define RAM CONSOLE BASE c3100000
#else

#error "Unsupported RTOSID!"

#endif

— If run Linux kernel with RTOS simultaneously, need to reserve the memory space used by RTOS in device
tree, for example, in imx8mp-evk-multicore-rtos.dts:
/ *
* Reserve up to 48MB (16MB x 3) for three FreeRTOS instances
running on
* three Cortex-A Cores when booting Linux on at least on Cortex-—

A Core.
*/
ca53 reserved: ca53@c0000000 {
no-map;
reg = <0 0xc0000000 0x0 0x3000000>;
}i

/* Reserve 16MB for RTOS running on CM7 */
m7 reserved: m7@80000000 ({

no-map;

reg = <0 0x80000000 0 0x1000000>;
}i

3.3.2.3 Running flexible multicore hello_world application

3.3.2.3.1 Running use cases on i.MX 8M Plus LPDDR4 EVK
The following use cases can run on i.MX 8M Plus LPDDR4 EVK:

Table 24. Flexible Real-time System on i.MX 8M Plus

ID M7 A53 A53 A53 A53

0 RTOS SMP Linux
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

83 /404

https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 24. Flexible Real-time System on i.MX 8M Plus...continued

ID M7 A53 A53 A53 A53
1 RTOS SMP Linux RTOS
2 RTOS SMP Linux RTOS RTOS
3 RTOS Linux RTOS RTOS RTOS
4 RTOS RTOS RTOS RTOS RTOS

By default, Cortex-M Core's RTOS uses UART4 as debug Console. Refer to Section 2.7.1 "Booting Cortex-M
Core RTOS Image" for how to boot Cortex-M Core's RTOS image.

Cortex-A Core's RTOS could run with UART4 Console, RAM Console or UART2 Console, the following Cortex-
A Core's RTOS images are provided:

—— evkmimx8mp

hello world ca53 RTOSO RAM CONSOLE.bin
hello world ca53 RTOSO UART4.bin

hello world ca53 RTOS1 RAM CONSOLE.bin
hello world ca53 RTOS2 RAM CONSOLE.bin
hello world ca53 RTOS3 RAM CONSOLE.bin
hello world ca53 RTOS3 UART2.bin

RAM Console address for each RTOS:

For FreeRTOS instances:

RTOSO: RAM console@O0xcOf£f£000
RTOS1: RAM console@Oxclfff000
RTOS2: RAM console@0xc2ff£f000
RTOS3: RAM console@0xc3f£f£000

For Zephyr instances:

RTOSO0: RAM console@0xc0100000
RTOS1: RAM console@0xcl1100000
RTOS2: RAM console@0xc2100000
RTOS3: RAM console@0xc3100000

Ifyourunhello world ca53 RTOSO UART4.Dbin, it displays all the RAM console's address except RTOSO.

Refer to Section 2.5.3 "Booting native RTOS image on Cortex-A core" for how to boot RTOS on Cortex-A Core,
and refer to Section 3.3.1.3 "Dump RAM Console Log" for how to dump RAM Console log.

Take Usecase #2 as example, follow the following steps to boot multiple OS on the platform:

* Run the FreeRTOS applications:
1. Boot Cortex-M Core's RTOS

u-boot=> ext4load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/
hello-world-cm/release/hello world cm7 UART4.bin;

u-boot=> cp.b 0x48000000 0x7e0000 20000;

u-boot=> bootaux 0x7e0000

Then the following log is displayed from UART4:

Cortex-M7: RTOSO: Hello world! Real-time Edge on MIMX8MP-EVK

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

tic tac tic tac tic tac tic tac tic tac tic tac tic tac

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

847404

NXP Semiconductors

REALTIMEEDGEUG

2. Boot the first Cortex-A Core's RTOS on Core2

Real-time Edge Software User Guide

u-boot=> ext4load mmc 1:2 0xC0000000 /examples/heterogeneous-multicore/
hello-world-ca/ddr release/hello world ca53 RTOSO RAM CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 2 release 0xC0000000

Or boot the first Cortex-A Core's RTOS with UART4 Console if it is not used by Cortex-M Core RTOS:

u-boot=> extd4load mmc 1:2 0xC0000000 /examples/heterogeneous-multicore/
hello-world-ca/ddr release/hello world ca53 RTOSO UART4.bin

u-boot=> dcache flush;

icache flush;

cpu 2 release 0xC0000000

Then check the RAM Console's log as follows:

u-boot=>

cOf££000:
cOf££010:
cO0f£f£020:
cOf£f£030:
cOff£f£040:
cOff£f050:
cOf££060:
cOf££070:
cOf£f£080:
cOf£f£090:
cOff£f0al:
cOff£f0b0:
cO0ff£f0cO:
cOf££0d0:
c0fff0e0:
cOff£f0£f0:

dcache flush;

5f4d4152
cOf££040
00000182
00000000
6£430a0d
3a30534f
65520021
206e4£20
4£54560a
40656c6f
534£5452
3040656c¢
33534f5c
78304065
61742063
61742063

534e4£43
00000000
00000000
00000000
78657472
6c654820
742d6c61
584d494d
203a3153
31637830
52203a32
66326130
4152203a
66663363
69742023
69742063

md COFFFO000

00454c4f 00000000
00000£cO 00000000
00000000 00000000
00000000 00000000
3335412d 5452203a
77206f6c 646c326f
20656d69 65676445
2d500d38 0d4b5645
204d4152 736e6£f63
30666664 0a0d3030
63204d40 6£73666£
30306666 520a0d30
6£63204d 6c6f736e
30303066 69740a0d
61742063 69742063
61742043 69742063

..Cortex-A53: RT
0S0: Hello wo2ld
! .Real-time Edge
On MIMX8.P-EVK.
.VTOS1l: RAM cons
01le@0xcldff000..
RTOS2: R@M cofso
1e@00a2f££000..R
\OS3: RAM consol
e@0xc3f£f£f000..t1
c ta# tic tac ti
c tac tiC tac ti

3. Boot the second Cortex-A Core's RTOS on Core3

u-boot=> ext4load mmc 1:2 0xC1000000

/examples/heterogeneous-multicore/

hello-world-ca/ddr release/hello world ca53 RTOS1 RAM CONSOLE.bin

u-boot=> dcache flush;

icache flush;

cpu 3 release 0xC1000000

Then check the RAM Console's log as follows:

u-boot=>

clff£f000:
clf££f010:
clff£f020:
clfff030:
clfff040:
clff£f050:
clfff060:
clff££f070:
clfff080:
clff£f090:
clfff0al:
clfff0bO0:
clfff0cO:
clf££0d0:
clfff0el:
clfff0f0:

dcache flush;

5f4d4152
clff£040
00000079
00000000
6£430a0d
3a31534f
65522021
206e6£20
6369740a
63697420
63697420
63697420
00000000
00000000
00000000
00000000

534e4£43
00000000
00000000
00000000
78657472
6c654820
742d6c6l
584d494d
63617420
63617420
63617420
63617420
00000000
00000000
00000000
00000000

md CI1FFFO000

00454c4f 00000000
00000£fcO 00000000
00000000 00000000
00000000 00000000
3335412d 5452203a
77206f6c 646c726f
20656d69 65676445
2d504d38 0d4b5645
63697420 63617420
63697420 63617420
63697420 63617420
00000020 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000

..Cortex-A53: RT
0Sl: Hello world
! Real-time Edge
on MIMX8MP-EVK.
.tic tac tic tac
tic tac tic tac
tic tac tic tac
tic tac

4. Boot SMP Linux from Cortex-A Core0 and Core1:
If M-Core is booting up, use imx8mp-evk-multicore-rpmsg.dtb

u-boot=> setenv fdtfile imx8mp-evk-multicore-rpmsg.dtb

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024

85/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Otherwise, can also use imx8mp-evk-multicore-rtos.dtb:

u-boot=> setenv fdtfile imx8mp-evk-multicore-rtos.dtb

Then, boot up the kernel using the command below:

u-boot=> setenv mmcargs $mmcargs clk ignore unused
u-boot=> boot

After Linux kernel boots up, check Cortex-A Core's RTOS log from the RAM console:

root@imx8mp-lpddr4-evk:~# ram console dump OxCOFFF000
RAM Console@OxcOfff000:

Cortex-A53: RTOSO: Hello world! Real-time Edge on MIMX8MP-EVK

RTOS1: RAM console@Oxclfff000

RTOS2: RAM console@0xc2f££000

RTOS3: RAM console@0xc3ff£f000

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

tic tac tic tac tic tac tic tac tic tac tic tac tic

root@imx8mp-lpddr4-evk:~# ram console dump OxC1lFFF000
RAM Console@Oxclfff000:

Cortex-A53: RTOS1: Hello world! Real-time Edge on MIMX8MP-EVK

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

tic tac tic tac tic

* Run the Zephyr applications:
1. Boot the first Cortex-A Core's RTOS on Core2 with UART4

u-boot=> ext4load mmc 1:2 0xCO0000000 /examples/heterogeneous-multicore/
hello-world-ca-zephyr/hello world ca53 RTOSO UART4.bin
u-boot=> dcache flush; icache flush; cpu 2 release 0xC0000000

Then the UART4 shows the logs as follows:

*** Booting Zephyr OS build zephyr-v3.5.0-27-g24a3599%9ab7a0 ***

Cortex—-A53: RTOSO: Hello World! Real-time Edge on mimx8mp evk ab53

RTOS1: RAM console@0xcl1100000

RTOS2: RAM console@0xc2100000

RTOS3: RAM console@0xc3100000

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

86 / 404

NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic

2. Boot the second Cortex-A Core's RTOS on Core3

u-boot=> extd4load mmc 1:2 0xC1000000 /examples/heterogeneous-multicore/
hello-world-ca-zephyr/hello world ca53 RTOS1 RAM CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 3 release 0xC1000000

Then check the RAM Console's log as follows:

u-boot=>

c1100000:
cl1100010:
c1100020:
c1100030:
c1100040:
c1100050:
c1100060:
cl1100070:
c1100080:
c1100090:
c11000a0:
c11000b0:
c11000c0:
c11000d0:
cl11000e0:
cl11000£0:

dcache flush;

202a2a2a
4£207279
762d7279
39353361
6574726f
6548203a
2d6c6165
6d696d20
6369740a
63697420
63697420
63697420
63697420
69740a20
69742063
69742063

md C1100000

746£f6£42 20676€69
75622053 20646c69
2e352e33 37322d30
37626139 2a203061
35412d78 52203a33
206f6coc 6¢c726£57
656d6974 67644520
706d3878 6b76655f
63617420 63697420
63617420 63697420
63617420 63697420
63617420 63697420
63617420 63697420
61742063 69742063
61742063 69742063
61742063 69742063

6870655a
6870657a
3432672d
430a2a2a
31534f54
52202164
6e6f£2065
3335615f
63617420
63617420
63617420
63617420
63617420
61742063
61742063
61742063

*** Booting Zeph
yr OS build zeph
yr-v3.5.0-27-g24
a3599%9ab7a0 ***_C
ortex-A53: RTOS1

Hello World! R
eal-time Edge on
mimx8mp evk ab53
.tic tac tic tac
tic tac tic tac
tic tac tic tac
tic tac tic tac
tic tac tic tac
.tic tac tic ta
c tic tac tic ta
c tic tac tic ta

3. Boot SMP Linux from Cortex-A Core0 and Core1:

u-boot=> setenv fdtfile imx8mp-evk-multicore-rtos.dtb

Then, boot up the kernel using the command below:

u-boot=> setenv mmcargs $mmcargs clk ignore unused
u-boot=> boot

3.3.2.3.2 Running use cases for i.MX 8M Mini LPDDR4 EVK

The following use cases can run on the i.MX 8M Mini LPDDR4 EVK:

Table 25. Flexible Real-time System on i.MX 8M Mini

ID M4 A53 A53 A53 A53
0 RTOS SMP Linux

1 RTOS SMP Linux RTOS
2 RTOS SMP Linux RTOS RTOS
3 RTOS Linux RTOS RTOS RTOS
4 RTOS RTOS RTOS RTOS RTOS

By default, RTOS of the Cortex-M Core uses UART4 as debug Console. Refer to Section 2.7.1 "Booting Cortex-
M Core RTOS Image" for how to boot Cortex-M Core's RTOS image.

RTOS of the Cortex-A Core can run with UART4 Console, RAM Console, or UART2 Console. The following
Cortex-A Core's RTOS images are provided:

evkmimx8mm

=

REALTIMEEDGEUG

hello world ca53 RTOSO RAM CONSOLE.bin
hello world ca53 RTOSO UART4.bin

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024

871404

NXP Semiconductors

REALTIMEEDGEUG

hello world ca53 RTOS1 RAM CONSOLE.bin
hello world ca53 RTOS2 RAM CONSOLE.bin
hello world ca53 RTOS3 RAM CONSOLE.bin
hello world ca53 RTOS3 UART2.bin

Real-time Edge Software User Guide

RAM Console address for each RTOS:

For

RTOSO:
RTOS1:
RTOS2:
RTOS3:

For

RTOSO:
RTOS1:
RTOS2:
RTOS3:

FreeRTOS instances:

RAM
RAM
RAM
RAM

console@0x94bff000
console@0x95bf£f000
console@0x96bff000
console@0x97bf£000

Zephyr instances:

RAM
RAM
RAM
RAM

console@0x93d00000
console@0x94d00000
console@0x95d00000
console@0x96d00000

If run hello_world_ca53_RTOS0_UART4.bin, it displays all the RAM Console's address except RTOSO.

Refer to Section 2.5.3 "Booting native RTOS image on Cortex-A core" for how to boot RTOS on Cortex-A Core,
and refer to Section 3.3.1.3 "Dump RAM Console Log" for how to dump RAM Console log.

Take Usecase #2 as example, follow the following steps to boot multiple OS on the platform:

* Run the FreeRTOS applications:
1. Boot Cortex-M Core's RTOS

u-boot=> ext4load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/
hello-world-cm/release/hello world cm4 UART4.bin;

u-boot=> cp.b 0x48000000 0x7e0000 20000;
u-boot=> bootaux 0x7e0000

Then, the following log is displayed from UART4:

Cortex-M4: RTOSO: Hello world!

Real-time Edge on MIMX8MM-EVK

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic

tac

tic tac tic tac tic tac tic tac tic tac tic tac tic tac

2. Boot the first Cortex-A Core's RTOS on Core2

u-boot=> extd4load mmc 1:2 0x93C00000 /examples/heterogeneous-multicore/
hello-world-ca/ddr release/hello world ca53 RTOSO RAM CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 2 release 0x93C00000

Or boot the first Cortex-A Core's RTOS with UART4 Console if it is not used by Cortex-M Core RTOS:

u-boot=> extd4load mmc 1:2 0x93C00000 /examples/heterogeneous-multicore/
hello-world-ca/ddr release/hello world ca53 RTOSO UART4.bin
cpu 2 release 0x93C00000

u-boot=> dcache flush;

icache flush;

Then check the RAM Console's log as follows:

u-boot=> dcache flush; md 0x94bff000
94bff000: 5f4d4152 534e4f43
94bff010: 94bf£f040 00000000
94bf£f020: 000000c2 00000000
94bf£f030: 00000000 00000000
94bff040: 6£f430a0d 78657472
94bff050: 3a30534f 6¢c654820
94bff060: 65522021 742d6c6l

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

00454c4f
00000£cO
00000000
00000000
3335412d
77206f6¢C
20656d69

00000000
00000000
00000000
00000000
5452203a
646cT/26f
65676445

..Cortex—-A53: RT
0S0: Hello world
! Real-time Edge

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024

88 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

94bff070: 206e6f20 584d494d 2d4d4d38 0d4b5645 on MIMX8MM-EVK.
94bff080: 4f54520a 203a3153 204d4152 736e6f63 .RTOS1: RAM cons
94bff090: 40656c6f 35397830 30666662 0a0d3030 01e@0x95bLff000..
94bff0al0: 534f5452 52203a32 63204d41 6f736e6f RTOS2: RAM conso
94bff0b0: 3040656c 62363978 30306666 520a0d30 1e@0x96bff000..R
94bff0c0: 33534f54 4152203a 6£f63204d 6c6f736e TOS3: RAM consol
94bff0d0: 78304065 66623739 30303066 69740a0d e@0x97bff000..ti
94bff0el0: 61742063 69742063 61742063 69742063 ¢ tac tic tac ti
94bff0f0: 61742063 69742063 61742063 69742063 ¢ tac tic tac ti

3. Boot the second Cortex-A Core's RTOS on Core3

u-boot=> extd4load mmc 1:2 0x94C00000 /examples/heterogeneous-multicore/
hello-world-ca/ddr release/hello world ca53 RTOS1 RAM CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 3 release 0x94C00000

Then check the RAM Console's log as follows:

u-boot=> dcache flush; md 0x95bff000

95bff000: 5f4d4152 534e4f43 00454c4f 00000000 RAM CONSOLE.....
95bff010: 95bff040 00000000 00000fcO 00000000 Q....'uvveeeunnnn
95bf£f020: 000000af 00000000 00000000 00000000 v . v e v eee e
95bf£f030: 00000000 00000000 00000000 00000000 v . v v eeeeennnn
95bff040: 6£f430a0d 78657472 3335412d 5452203a ..Cortex-A53: RT
95bff050: 3a31534f 6c654820 77206f6c 646c726f 0OS1l: Hello world
95pff060: 65522021 742d6c6l 20656d69 65676445 | Real-time Edge
95bff070: 206e6£f20 584d494d 2d4d4d38 0d4b5645 on MIMX8MM-EVK.
95bff080: 6369740a 63617420 63697420 63617420 .tic tac tic tac
95bff090: 63697420 63617420 63697420 63617420 tic tac tic tac
95bff0al: 63697420 63617420 63697420 63617420 tic tac tic tac
95bff0b0: 63697420 63617420 63697420 63617420 tic tac tic tac
95bff0c0: 63697420 63617420 63697420 63617420 tic tac tic tac
95bff0d0: 740a0d20 74206369 74206361 74206369 ..tic tac tic t
95bff0el0: 74206361 74206369 74206361 00206369 ac tic tac tic
95bf£f0£f0: 00000000 00000000 00000000 00000000 v . v ieweeeeennnn

4. Boot SMP Linux from Cortex-A Core0 and Core1:
If M-Core is booting up, use imx8mm-evk-multicore-rpmsg.dtb

u-boot=> setenv fdtfile imx8mm-evk-multicore-rpmsg.dtb

Otherwise, can also use imx8mm-evk-multicore-rtos.dtb:

u-boot=> setenv fdtfile imx8mm-evk-multicore-rtos.dtb

Then, boot up the kernel using the command below:

u-boot=> setenv mmcargs S$mmcargs clk ignore unused
u-boot=> boot

After Linux kernel boots up, check Cortex-A Core's RTOS log from the RAM console:

root@imx8mm-lpddr4-evk:~# ram console dump 0x94bff000
RAM Console@0x94bff000:

Cortex-A53: RTOSO0: Hello world! Real-time Edge on MIMX8MM-EVK

RTOS1: RAM console@0x95bf£f000

RTOS2: RAM console@0x96bff000

RTOS3: RAM console@0x97bff000

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic

tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

89 /404

NXP Semiconductors

REALTIMEEDGEUG

tic

tic

tic

tic

tic

tic

tic

tic

tic

tac

tac

tac

tac

tac

tac

tac

tac

tac

tic

tic

tic

tic

tic

tic

tic

tic

tic

tac

tac

tac

tac

tac

tac

tac

tac

tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

Real-time Edge Software User Guide

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

root@imx8mm-lpddr4-evk:~# ram console dump 0x95bff000
RAM Console@0x95bff000:

Cortex-AS53:

tic tac
tac
tic tac
tac
tic tac
tac
tic tac
tac
tic tac
tac
tic tac
tac
tic tac
tac
tic tac
tac
tic tac
tac
tic tac
tac
tic tac
tac
tic tac

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

RTOS1:

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

Hello world!

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

Real-time Edge on MIMX8MM-EVK

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

* Run the Zephyr applications:
1. Boot the first Cortex-A Core's RTOS on Core2 with UART4.

u-boot=> ext4load mmc 1:2 0x93C00000 /examples/heterogeneous-multicore/
hello-world-ca-zephyr/hello world ca53 RTOSO UART4.bin
u-boot=> dcache flush; icache flush; cpu 2 release 0x93C00000

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024

90 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Then, the UART4 displays the logs as follows:

*** Booting Zephyr OS build zephyr-v3.5.0-27-g24a3599%ab7a0 ***

Cortex-A53: RTOSO: Hello World! Real-time Edge on mimx8mm evk a53

RTOS1: RAM console@0x94d00000

RTOS2: RAM console@0x95d00000

RTOS3: RAM console@0x96d00000

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
tac

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic

2. Boot the second Cortex-A core RTOS on Core3.

u-boot=> ext4load mmc 1:2 0x94C00000 /examples/heterogeneous-multicore/
hello-world-ca-zephyr/hello world ca53 RTOS1 RAM CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 3 release 0x94C00000

Then check the RAM Console log as follows:

u-boot=> dcache flush; md 94400000

94d00000: 202a2a2a 746f6f42 20676e69 6870655a *** Booting Zeph
94d00010: 4£207279 75622053 20646c69 6870657a yr OS build zeph
94d00020: 762d7279 2e352e33 37322d30 3432672d yr-v3.5.0-27-g24
94d00030: 39353361 37626139 2a203061 430a2a2a a3599%ab7a0 ***.C
94d00040: 6574726f 35412d78 52203a33 31534f54 ortex-A53: RTOS1
94d00050: 6548203a 206f6coc 6¢726£57 52202164 : Hello World! R
94d00060: 2d6c6165 656d6974 67644520 6e6f2065 eal-time Edge on
94d00070: 6d696d20 6d6d3878 o6b76655f 3335615f mimx8mm evk a53
94d00080: 6369740a 63617420 63697420 63617420 .tic tac tic tac
94d00090: 63697420 63617420 63697420 63617420 tic tac tic tac
94d000al0: 63697420 63617420 63697420 63617420 tic tac tic tac
94d000b0: 63697420 63617420 63697420 63617420 tic tac tic tac
94d000c0: 63697420 63617420 63697420 63617420 tic tac tic tac
94d000d0: 69740a20 61742063 69742063 61742063 .tic tac tic ta
94d000e0: 69742063 61742063 69742063 61742063 ¢ tic tac tic ta
94d000£f0: 69742063 61742063 69742063 61742063 ¢ tic tac tic ta

3. Boot SMP Linux from Cortex-A Core0 and Core1:

u-boot=> setenv fdtfile imx8mm-evk-multicore-rtos.dtb

Then, boot up the kernel using the command below:

u-boot=> setenv mmcargs $mmcargs clk ignore unused
u-boot=> boot

3.3.2.3.3 Running use cases on i.MX 93 EVK
The following use cases can run on i.MX 93 EVK:

Table 26. Flexible Real-time System on i.MX 8M Mini

ID M33 A55 A55
0 RTOS SMP Linux

1 RTOS Linux RTOS
2 RTOS RTOS RTOS

By default, RTOS of the Cortex-M core uses UART2 as debug console. Refer to Section 2.7.1 "Booting Cortex-
M Core RTOS Image" for how to boot Cortex-M Core's RTOS image.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

91/404

NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

RTOS of the Cortex-A core can run with UART2 console, RAM console, or UART1 console. The following
RTOS images are provided:

L — mcimx93evk
hello world ca55 RTOSO RAM CONSOLE.bin
hello world ca55 RTOSO UART2.bin
hello world ca55 RTOS1 RAM CONSOLE.bin
hello world ca55 RTOS1 UART1.bin
hello world cm33 UART2.bin

RAM console address for each RTOS is listed below:

For FreeRTOS instances:
RTOSO: RAM console@0xdO0ff£000
RTOS1: RAM console@O0xdlf£f£000

For Zephyr instances:

RTOS1: RAM console@0xd0100000
RTOS1: RAM console@0xd1100000

If you run the hello world ca55 RTOSO UART2.bin, it displays the addresses of all the RAM Consoles

except RTOSO0.

Refer to Section 2.5.3 "Booting native RTOS image on Cortex-A core" for how to boot RTOS on Cortex-A Core,

and refer to Section 3.3.1.3 "Dump RAM Console Log" for how to dump RAM Console log.

Taking Use Case #1 as an example, below are the steps to boot multiple operating systems on the platform:

* Run the FreeRTOS applications:
1. Boot Cortex-M Core's RTOS

u-boot=> extd4load mmc 1:2 0xd0000000 /examples/heterogeneous-multicore/
hello-world-cm/release/hello world cm33 UART2.bin;
u-boot=> cp.b 0xd0000000 0x201e0000 20000;
u-boot=> bootaux 0x1ffe0000

Then, the following log is displayed from UART2:

Cortex-M33: RTOSO:

tac

Hello world! Real-time Edge on MIMX93-EVK
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic

tic tac tic tac tic tac tic tac tic tac tic tac tic tac

2. Boot the Cortex-A Core's RTOS on Core1

u-boot=> ext4load mmc 1:2 0xd0000000 /examples/heterogeneous-multicore/
hello-world-ca/ddr release/hello world ca55 RTOSO RAM CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 1 release 0xd0000000

Then, check the RAM Console's log as follows:

u-boot=> dcache flush; md 0xdOf££000
dOf££f000: 5£4d4152 534e4f43 00454c4f 00000000 RAM CONSOLE.....
dOf££010: dO£££040 00000000 00000£fcO 00000000 @........covvenn.
dOf££020: 000000c9 00000000 00000000 00000000 .. vienennn.
dOf££030: 00000000 00000000 00000000 00000000 .. vieeennn.
dOfff040: 6£f430a0d 78657472 3535412d 5452203a ..Cortex-A55: RT
dOf£f£050: 3a30534f 6c654820 77206f6c 646¢c726f 0SO0: Hello world
dOf££f060: 65522021 742d6c6l 20656d69 65676445 ! Real-time Edge
dOf£f£070: 206e6£20 584d494d 452d3339 0a0d4b56 on MIMX93-EVK..
dOfff080: 534£f5452 52203a31 63204d41 6£f736e6f RTOS1l: RAM conso
dOf£f£090: 3040656c 66316478 30306666 740a0d30 1e@Oxdlfff000..t
REALTIMEEDGEUG Al information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. Al rights reserved.
User guide Rev. 2.8 — 29 March 2024

92/404

NXP Semiconductors

REALTIMEEDGEUG

dOf££0a0:
dOf£f£0b0:
dOff£0cO:
dOf££0d0:
dOff£f0e0:
dOf£f£f0£0:

74206369
74206369
74206369
74206369
74206369
6369740a

7420
7420
7420
7420
7420
6361

6361 74206369
6361 74206369
6361 74206369
6361 74206369
6361 74206369
7420 63697420

74206361
74206361
74206361
74206361
0d206361
63617420

Real-time Edge Software User Guide

ic tac
ic tac
ic tac
ic tac
ic tac

tic tac
tic tac
tic tac
tic tac
tic tac

o

.tic tac tic tac

3. Boot Linux from Cortex-A CoreO0:

u-boot=> setenv fdtfile imx93-11lxll-evk-multicore-rtos.dtb
u-boot=> setenv mmcargs $mmcargs clk ignore unused
u-boot=> boot

After Linux kernel boots up, check Cortex-A Core's RTOS log from the RAM console:

root@imx93evk:~# ram console dump OxdOff££f000

RAM Console@OxdOfff000:

Cortex—-A55:
RTOS1: RAM console@O0xdlf££000
tic tac tic tac

tic tac
tac
tic tac
tac
tic tac
tac
tic tac
tac
tic tac
tac
tic tac
tac
tic tac
tac
tic tac
tac
tic tac
tac
tic tac

tic

tic

tic

tic

tic

tic

tic

tic

RTOSO:

tac

tac

tac

tac

tac

tac

tac

tac

tic

tic

tic

tic

tic

tic

tic

tic

tic

tac

tac

tac

tac

tac

tac

tac

tac

tac

Hello world!

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

Real-time Edge on MIMX93-EVK

tic

tic

tic

tic

tic

tic

tic

tic

tic

tic

tac

tac

tac

tac

tac

tac

tac

tac

tac

tac

tic tac tic tac

tic

tic

tic

tic

tic

tic

tic

tic

tic

tac

tac

tac

tac

tac

tac

tac

tac

tac

tic

tic

tic

tic

tic

tic

tic

tic

tic

tac

tac

tac

tac

tac

tac

tac

tac

tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic tac

tic

tic

tic

tic

tic

tic

tic

tic

tic

tac

tac

tac

tac

tac

tac

tac

tac

tac

tic

tic

tic

tic

tic

tic

tic

tic

tic

* Run the Zephyr applications:

1. Boot the Cortex-A Core's RTOS on Core1 with UART2

u-boot=> ext4load mmc 1:2 0xd0000000 /examples/heterogeneous-multicore/
hello-world-ca-zephyr/hello world ca55 RTOSO UART2.bin
u-boot=> dcache flush;

icache flush;

cpu 1 release 0xd0000000

Then the UARTZ2 shows the logs as follows:

*** Booting Zephyr OS build zephyr-v3.5.0-27-g24a359%ab7a0 ***
Cortex-A55: RTOSO: Hello World! Real-time Edge on mimx93 evk ab53
RTOS1: RAM console@0xd1100000
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac

tac

tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac

tic

tic

2. Boot Linux from Cortex-A Core0:

u-boot=> setenv fdtfile imx93-1lxll-evk-multicore-rtos.dtb

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024

93/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Then, boot up the kernel using the command below:

u-boot=> setenv mmcargs $mmcargs clk ignore unused
u-boot=> boot

3.3.3 IwlIP Networking Stack

3.3.3.1 Overview

IwlP is a small independent implementation of the TCP/IP protocol suite, it is freely available under a BSD
license.

3.3.3.2 Running IwlP Application

Heterogeneous Multicore Framework provides a IwlP Ping application in the repository heterogeneous-
multicore, which supports i.MX 8M Mini LPDDR4 EVK, i.MX 8M Plus LPDDR4 EVK and i.MX93 EVK.

The Heterogeneous-multicore LWIP Ping application runs on Cortex-A Core. It initializes LWIP networking
stack and configures ENET port with the default IP address “192.168.0.100” and default gateway address
“192.168.0.254". Then ping the gateway.

1. Hardware Setup
Connect a test board's ENET port to another board with Ethernet cable and configure another board's
Ethernet interface with the IP address "192.168.0.254".
2. Run the IwlP Ping application
* Run the application on i.MX 8M Mini LPDDR4 EVK
Boot up i.MX 8M Mini LPDDR4 EVK board, and boot IwIP application from U-Boot command line:

u-boot=> ext4load mmc 1:2 0x93C00000 /examples/heterogeneous-multicore/lwip-

ping-ca/ddr release/lwip ping ca53.bin
u-boot=> dcache flush; icache flush; cpu 3 release 0x93C00000

* Run the application on i.MX 8M Plus LPDDR4 EVK
Boot up i.MX 8M Plus LPDDR4 EVK board, and boot IwIP application from U-Boot command line:

u-boot=> extdload mmc 1:2 0xC0000000 /examples/heterogeneous-multicore/lwip-

ping-ca/ddr release/lwip ping ca53.bin
u-boot=> dcache flush; icache flush; cpu 2 release 0xC0000000

* Run the application on i.MX93 EVK
Boot up i.MX93 EVK board, and boot IwlIP application from U-Boot command line:

u-boot=> ext4load mmc 1:2 0xD0000000 /examples/heterogeneous-multicore/lwip-

ping-ca/ddr release/lwip ping cab55.bin
u-boot=> dcache flush; icache flush; cpu 1 release 0xD000000O

Then, the following log is displayed on the FreeRTOS Console:

Initializing PHY...

B e A A b I A b A b B b b B B B B S b R B b e B b e A b S b b i 4

PING example
L R i b b b S b b b I e 2h b b S b I b b 2 b b g b b 2 b b 2 dh b b b b b 2 b b b 2 4

IPv4 Address : 192.168.0.100

IPv4 Subnet mask : 255.255.255.0

IPv4 Gateway : 192.168.0.254
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

94 /404

https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore
https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

R I i e b I e S I b b b I S b b I b b b 2 b b b b b b 2 I b 2 b b I dh b b dh b b b 2 4
ping: send
192.168.0.254

ping: recv
192.168.0.254
0 ms

ping: send
192.168.0.254

3.4 RPMSG data communication

3.4.1 Overview

RPMsg (Remote Processor Messaging) protocol defines a standardized binary interface and is used for inter-
core communication between Heterogeneous AMP on i.MX MPU platforms.

Currently Real-time Edge supports the following Heterogeneous AMP:

* Linux on Cortex-A core(s)
* RTOS on Cortex-M core
* RTOS on Cortex-A core(s)

Between these OS running different processes, Real-time Edge supports inter-core communication between
Cortex-M core and Cortex-A core. It also supports RPMSG between heterogeneous AMP on different Cortex-A
cores.

3.4.2 RPMSG performance evaluation

This RPMSG performance application provides a method to evaluate the RPMSG channel's benchmarks
between Linux as RPMSG master and FreeRTOS as RPMSG remote.

3.4.2.1 Running RPMsg performance application

The Freertos RPMsg remote can run on Cortex-M core or Cortex-A core to test the RPMsg performance
between Cortex-A core and Cortex-M core or between 2 Cortex-A cores. Follow the steps below to run the
application on i.MX 8M Plus LPDDR4 EVK:

1. Boot the FreeRTOS RPMsg remote on Cortex-M core or Cortex-A core
a. Run FreeRTOS on Cortex-M core

u-boot=> load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/rpmsg-
perf-cm/release/rpmsg perf cm7.bin

u-boot=> cp.b 48000000 70000 20000

u-boot=> bootaux 7e0000

b. Orrun FreeRTOS on Cortex-A core

u-boot=> load mmc 1:2 c0000000 /examples/heterogeneous-multicore/rpmsg-
perf-ca/ddr release/rpmsg perf cab53.bin

u-boot=> dcache flush; icache flush

u-boot=> cpu 3 release c0000000

The FreeRTOS boots up and waits for RPMsg link up, the logs on UART4 console as the following:

Cortex-M7/A53: RPMsg performance with linux:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

95/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

INFO: rpmsg init : RPMSG remote init
INFO: rpmsg remote init : waiting for link establish

2. Boot up the Linux with the required DTB.
a. When run FreeRTOS on Cortex-M core

u-boot=> setenv fdtfile imx8mp-evk-rpmsg.dtb
u-boot=> setenv mmcargs $mmcargs clk ignore unused
u-boot=> run bsp bootcmd

b. When run FreeRTOS on Cortex-A core

u-boot=> setenv fdtfile imx8mp-evk-rpmsg-ca53.dtb
u-boot=> setenv mmcargs $mmcargs clk ignore unused
u-boot=> run bsp bootcmd

The Linux boot up and kick the FreeRTOS to establish the RPMsg link.
Then the Remote peer FreeRTOS console displays the RPMsg link status as the following:

Cortex-M7/A53: RPMsg performance with linux:

INFO: rpmsg init : RPMSG remote init
INFO: rpmsg remote init : waiting for link establish
INFO: rpmsg remote init : RPMSG link up

3. Install the Linux rpmsg_perf driver module using the commands below:
The driver creates a char device rpmsg-per£30 as shown below, which is used by the user space tool
rpmsg_perf to test the RPMsg benchmarks:

root@imx8mp-lpddré4-evk:~# modprobe rpmsg perf
root@imx8mp-lpddrd-evk:~# 1ls /dev/rpmsg-perf30
/dev/rpmsg-perf30

4. Use the rpmsg perf tool to test the RPMsg performance in Linux prompt, refer to the usage below:

root@imx8mp-lpddrd-evk:~# rpmsg perf

usage: rpmsg perf <dev> <as sender> <no_ copy> <packet size> <test time>
dev: specify rpmsg device, see /dev/rpmsg-perf<x>
as_sender: true for as sender, false for as receiver
no copy: specify if use no _copy version API in remote side
packet size: specify the packet size, the MAX value is 496
test time: specify the test period in unit second
such as: rpmsg perf /dev/rpmsg-perf<x> true true 64 60

The example runs rpmsg perf /dev/rpmsg-perf30 true true 64 60 inthe usage:

root@imx8mp-lpddré-evk:~# rpmsg perf /dev/rpmsg-perf30 true true 64 60
[1643.799911] rpmsg perf: packet size: 64, sent packets: 4075370, time: 60
s, rate: 67 kpps

It means that Linux sends 64 Bytes packets to the FreeRTOS side during the given period 60s. The
FreeRTOS RPMsg remote receives these packets using no copy version APIs of rpmsg-lite, and the
performance is about 67 kpps.

3.4.3 RPMSG between Cortex-A Core and Cortex-M Core

Figure 27 shows RPMSG communication between RTOS running on Cortex-M core and Linux running Cortex-A
core.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

96 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

DDR

o Buffer Descriptors UEarpe
Application

Vring
RPMSG Lite on M-Core Kernel Space

Application

RPMSG) RPMSG

MU MU
mailbox MU mailbox

M-Core A-Core
Side Side
Registers Registers

Cortex-M NVIC nterrupt to M-Core Interrupt to A-Core| GIC Cortex-A

Figure 27. RPMSG between Cortex-A core and Cortex-M core

On i.MX MPU platforms, RPMSG builds virtual queue by leveraging Vring of VirtlO in shared memory of DDR.
MU (Message Unit) is a hardware component in MPU platform that provides inter-core interrupt between
Cortex-M core and Cortex-A core, so RPMG uses MU as a mailbox notification mechanism.

In Linux, RPMSG communication is based on VirtlO driver and MU mailbox drivers. The RPMsg-Lite is an
open-source component developed by NXP Semiconductors. It is a lightweight implementation of the RPMSG
protocol. RPMsg-Lite is used on RTOS. It includes VirtlO driver, mailbox driver, and RPMSG driver. RPMsg-Lite
is also enabled on RTOS running on Cortex-A cores.

Details about RPMsg-Lite can be found in the RPMsg-Lite User's Guide.

3.4.3.1 RPMSG with enhanced 8MB Vring buffer

3.4.3.2 RPMSG merits

The RPMSG bus implements 2 virtqueues for transmitting and receiving respectively, and currently each
virtqueue can support up to 256 RPMSG buffers with hardcode size 512B.

This feature increases the total number of RPMSG buffer to 8192 (4096 per direction) and extends the buffer
size to 1024B.

3.4.3.3 Building and running the RPMSG demo (Cortex-A and Cortex-M core)

To build and run the demo for RPMSG between Cortex-A and Cortex-M cores, follow the steps listed below:

1. Enable RPMSG 8M buffer support in Real-time Edge software using the below commands:

S cd yocto-real-time-edge/sources/meta-real-time-edge

Open file “conf/distro/include/real-time-edge-base.inc” add “rpmsg 8m buf”
to “DISTRO FEATURES” like this:

DISTRO FEATURES:append:mx8mm-nxp-bsp = " rpmsg 8m buf"

2. Build the image using the commands below:

S cd yocto-real-time-edge
S DISTRO=nxp-real-time-edge MACHINE=imx8mm-lpddr4-evk source real-time-edge-
setup-env.sh -b build-imx8mm-real-time-edge

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

97 1 404

https://github.com/nxp-mcuxpresso/rpmsg-lite

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

$ bitbake nxp-image-real-time-edge

3. Program the full SD card image. For this, use SD card with capacity of at least 4 GB.

S bzip2 -d -c nxp-image-real-time-edge-imx8mm-lpddrd-evk.wic.bz2 | pv | sudo
dd of=/dev/sdx bs=1M && sync

Note: find the right SD Card device name in your host machine and replace
the “sdx”.

4. Start up M-core firmware under U-Boot:

=> extd4load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/rpmsg-str-
echo-8m-cm/release/rpmsg str echo cm4 8m buf.bin

=> cp.b 0x48000000 0x7e0000 0x20000

=> bootaux 0x7e0000

5. Boot up Linux with RPMSG DTB:

=> setenv fdtfile imx8mm-evk-rpmsg-8m-buf.dtb
=> run bsp bootcmd

6. After Linux boots up, load imx rpmsg tty.ko

root@imx8mm-lpddré4-evk:~# modprobe imx rpmsg tty

Linux imx_rpmsg_tty driver sends a “hello world!” message when probed, and it is displayed on the
FreeRTOS console.

7. Test string transmitting through device “t t yRPMSG30” from Linux prompt, the FreeRTOS console displays
the received string. For example execute the following command:

root@imx8mm-lpddrd-evk:~# echo “any-string” > /dev/ttyRPMSG30

8. In this demo, the single RPMSG buffer size is 1024B and the RPMSG header overhead is 16B, so the
transmitting string will be split into up to 1008B fragments. Use the following commands to generate a file
larger than 1KB to verify:

root@imx8mm-lpddrd-evk:~# for i in {1..300}; do echo -n ‘seg -s "" 0 1 9 >>
num. txt; done
root@imx8mm-lpddr4-evk:~# echo “cat num.txt® > /dev/ttyRPMSG30

The log displays the message shown below:

Cortex-M4: RTOSO: Multiple Endpoints RPMsg String Echo FreeRTOS Demo...

INFO: rpmsg init : RPMSG remote init

INFO: rpmsg remote init : waiting for link establish

INFO: rpmsg remote init : RPMSG link up

INFO: rpmsg create ept : Sending Nameservice string: rpmsg-virtual-tty-channel-1
ept30: Get Message From Master Side : "hello world!"™ [len : 12]

ept30: Get Message From Master Side :

"0123456789012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
12345678901234567890123456789012345678901234567" [len : 1008]
ept30: Get Message From Master Side : "8" [len : 1]
ept30: Get Message From Master Side :

"9012345678901234567890123456789012345678901234567890123456789
0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

98 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
01234567890123456789012345678901234567890123456" [len : 1008]

ept30: Get Message From Master Side : "7" [len : 1]

ept30: Get Message From Master Side : "890123456789012345678901234567" [len : 30]

ept30: Get Message From Master Side :

"8901234567890123456789012345678901234567890123456789012345678
9012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678
9012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678
9012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678
9012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678
9012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678
9012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678
9012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678
9012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678

9012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789" [len
952]
ept30: Get New Line From Master Side

3.4.4 RPMSG between Cortex-A Core and Cortex-A Core

Heterogeneous Multicore Framework provides RPMSG communication between Cortex-A Core and Cortex-A
Core:

¢ RPMSG between Linux on Cortex-A Core and RTOS on Cortex-A Core
e RPMSG between RTOS on Cortex-A Core and RTOS on Cortex-A Core

There is no MU hardware mailbox that can be used between different Cortex-A cores. Therefore, a Generic
Software mailbox is created for message notification between Cortex-A cores. The Generic Software mailbox
uses shared memory to simulate MMIO registers that are used by the mailbox driver. Two unused SPI interrupts
in GIC are used as notification interrupts between Cortex-A cores. RPMsg-Lite is also enabled on RTOS of
Cortex-A cores.

3.4.4.1 RPMSG between Cortex-A Linux and Cortex-A RTOS

The following diagram illustrates the software setup for RPMSG between Linux on Cortex-A Core and RTOS on
Cortex-A Core.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

99 / 404

NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

RTOS

Application

RPMSG Lite on Cortex-A
RPMSG Slave

SPI
mailbox

DDR

Buffer Descriptors

Vring

Linux

User Space

Application

Kernel Space

RPMSG Master

SPI
mailbox

Cortex-A
(Processor B)

Cortex-A

(Processor A) Interrupt to A Side

- NXP Software

Figure 28. RPMSG between Linux and RTOS on different Cortex-A cores

3.4.4.1.1 Building the RPMSG demo on i.MX 8M Mini

Please refer to RTEDGEYOCTOUG to set up Yocto environment and build the nxp-image-real-time-
edge. All demo applications are located in the /examples directory of the rootfs.

Use the following command to compile the demo separately:

bitbake rpmsg-str-echo-ca

The demo is located in the tmp/deploy/images/imx8mm-1pddrd-evk/examples/ directory.

3.4.4.1.2 Running the RPMSG demo

1. Open 2 terminal emulators to connect UART2 and UART4, respectively with the following setup:
* 115200
* No parity
* 8 data bits
* 1 stop bit
2. Start up FreeRTOS on the selected A-core under U-Boot:

=> extd4load mmc 1:2 93c00000 /examples/heterogeneous-multicore/rpmsg-str-
echo-ca/ddr release/rpmsg str echo ca53 RTOSO UART4.bin

=> dcache flush; icache flush;

=> cpu 3 release 93c00000

3. Boot up Linux with RPMSG DTB:

=> setenv fdtfile imx8mm-evk-rpmsg-cab3.dtb
=> run bsp bootcmd

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

User guide Rev. 2.8 — 29 March 2024

© 2024 NXP B.V. All rights reserved.

100/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

4. After Linux boots up, load imx_rpmsg tty.ko, it will create 3 ttyRPMSG under /dev

root@imx8mm-lpddré4-evk:~# modprobe imx rpmsg tty
root@imx8mm-lpddrd-evk:~# 1ls /dev/ttyRPMSG*
/dev/ttyRPMSG3 /dev/ttyRPMSG4 /dev/ttyRPMSG5

5. Use minicom to open a console connecting one of the device ttyRPMSG on the Linux prompt as shown
below:

root@imx8mm-lpddrd-evk:~# minicom -D /dev/ttyRPMSG3

Observe that the input string should then be echoed back on the console.

3.4.4.2 RPMSG between Cortex-A RTOS and Cortex-A RTOS

The following diagram illustrates the software setup for RPMSG between different RTOS on different Cortex-A
Core.

RTOS1 DDR RTOS2

Buffer Descriptors

Application Application

“Available” Ring Buffer

RPMSG Lite on Cortex-A RPMSG Lite on Cortex-A
RPMSG Slave RPMSG Master

SPI SPI
mailbox mailbox

Software General Mailbox

Cortex-A
(Processor B)

- NXP Software

RPMSG between Cortex-A Cores on i.MX MPU Platforms

Cortex-A

(Processor A) Interrupt to A Side

Figure 29. RPMSG between RTOS and RTOS on different Cortex-A cores

3.4.4.2.1 Running the RPMSG ping-pong application

The RPMSG ping-pong application demonstrates the RPMSG communication between two FreeRTOS systems
running respectively on two Cortex-A core islands.

Follow the steps below to run the demo on i.MX 8M Plus LPDDR4 EVK:

1. First, boot the remote peer FreeRTOS on core2:

u-boot=> load mmc 1:2 0xC0000000 /examples/heterogeneous-multicore/rpmsg-
pingpong-remote-ca/ddr release/rpmsg pingpong remote cab3 UART4.bin
u-boot=> dcache flush; icache flush;

u-boot=> cpu 2 release 0xC0000000

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. Al rights reserved.

User guide Rev. 2.8 — 29 March 2024

101 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

The Remote peer boots up and waits for RPMSG link up, the logs on UART4 console are dsiplayed as the
following:

RPMsg Ping-Pong FreeRTOS Demo: remote: running at 0xc0000000
master RAM CONSOLE at Oxclfff000

INFO: rpmsg init : RPMSG remote init

INFO: rpmsg remote init : waiting for link establish

2. As a second step, boot the Master peer FreeRTOS on core3, which uses the RAM console as output.

u-boot=> load mmc 1:2 0xC1000000 /examples/heterogeneous-multicore/rpmsg-
pingpong-master-ca/ddr release/rpmsg pingpong master ca53 RAM CONSOLE.bin
u-boot=> dcache flush; icache flush;

u-boot=> cpu 3 release 0xC1000000

The Master boots up and kicks the Remote peer to start the pingpong tests.
Then the remote peer FreeRTOS console displays the test result as the following:

RPMsg Ping-Pong FreeRTOS Demo: remote: running at 0xc0000000
master RAM CONSOLE at Oxclfff000

INFO: rpmsg init : RPMSG remote init
INFO: rpmsg remote init : waiting for link establish
INFO: rpmsg remote init : RPMSG link up

Waiting for ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping
Received ping

(@}

NOOAOAIATPSNOONDAINPRNOOAABNODODOAAPRNOONDNPRRNOOOBNO—T————

— e — — e e e e e e e e e e e e e e e e e e i — — — — — — —
.

sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong

—~ o~~~ —~

e o~~~ O T T W
dJdO OO UTU U ERBEDADRWWWWWNNNNNR R PP ———— —

N Jo oo UTUUUurd DD DWWWWWNNNNNNRERE R R RERFE OO SN
WHROUJUOWHFRFROUJUOWROJUOWROJOWERE OJOWR OWJ0 W

N~~~ e~~~ o~~~ o~~~ o~~~ —~

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

102/ 404

NXP Semiconductors

REALTIMEEDGEUG

Received
Received
Received
Received
Received
Received
Received
Received
Received
Received
Received
Received
Received
Received

ping
ping
ping
ping
ping
ping
ping
ping
ping
ping
ping
ping
ping
ping

O W W WYWWOoO O 0 o 0 JJ
O OO BN BDNOOO D
O = — — — — — — — — — — — —

RPMsg demo ends

sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong
sending pong

1)

Real-time Edge Software User Guide

The Master peer also displays the result on the RAM console:

u-boot=> dcache flush; md clfff000 260
clfff000: 734d5052 69502067 502d676e 20676e6f RPMsg Ping-Pong
clfff010: 65657246 534£5452 6d654420 6d203a6f FreeRTOS Demo: m
clfff020: 65747361 72203a72 696e6e75 6120676e aster: running a
clfff030: 78302074 30303163 30303030 4e490a0d t 0xcl000000..IN
clfff040: 203a4f46 736d7072 6e695f67 20207469 FO: rpmsg init
clff£f050: 20202020 20202020 203a2020 534d5052 RPMS
clfff060: 616d2047 72657473 6966920 2e2e2074 G master init
clfff070: 490d0a2e 3a4d4fdede 6d707220 6d5f6773 ...INFO: rpmsg m
clfff080: 65747361 6e695f72 20207469 3a202020 aster init :
clfff090: 4d505220 6d204753 65747361 534e2072 RPMSG master NS
clfff0al: 72657320 65636976 61657220 0d0a7964 service ready..
clfff0b0: 74696157 20676e69 20726£f66 6120534e Waiting for NS a
clfff0cO0: 756f6ebe 2065636e 0d2e2e2e 464e490a nnounce INF
clfff0d0: 72203a4f 67736d70 6d6lee5f 72657365 O: rpmsg nameser
clfff0el: 65636976 7361745f 63203a6b 74616572 vice task: creat
clfff0f0: 45206465 28205450 3a637273 202c3120 ed EPT (src: 1,
clfff100: 3a747364 29303320 65530d0a 6e69646e dst: 30)..Sendin
clfff110: 69702067 2820676e 2e202930 72202e2e g ping (0) ... r
clfff120: 69656365 20646576 676e6f70 29312820 eceived pong (1)
clfff130: 65530a0d 6e69646e 69702067 2820676e ..Sending ping (
clfffl140: 2e202932 72202e2e 69656365 20646576 2) ... received
clfff150: 676e6£f70 29332820 65530a0d 6e69646e pong (3)..Sendin
clfffl160: 69702067 2820676e 2e202934 72202e2e g ping (4) ... r
clfffl170: 69656365 20646576 676e6f70 29352820 eceived pong (5)
clfff180: 65530a0d 6e69646e 69702067 2820676e ..Sending ping (
clfff190: 2e202936 72202e2e 69656365 20646576 6) ... received
clffflalO: 676e6£f70 29372820 65530a0d 6e69646e pong (7)..Sendin
clffflb0: 69702067 2820676e 2e202938 72202e2e g ping (8) ... r
clffflcO0: 69656365 20646576 676e6f70 29392820 eceived pong (9)
clfffl1d0: 65530a0d 6e69646e 69702067 2820676e ..Sending ping (
clfffleO: 20293031 202e2e2e 65636572 64657669 10) ... received
clfffl1f0: 6e6£7020 31282067 0a0d2931 646e6553 pong (11)..Send
clfff200: 20676e69 676e6970 32312820 2e2e2029 ing ping (12)
clfff210: 6572202e 76696563 70206465 20676e6f received pong
clfff220: 29333128 65530a0d 6e69646e 69702067 (13)..Sending pi
clfff230: 2820676e 20293431 202e2e2e 65636572 ng (14) ... rece
clfff240: 64657669 6e6£7020 31282067 0a0d2935 ived pong (15)..
clfff250: 646e6553 20676e69 676e6970 36312820 Sending ping (16
clfff260: 2e2e2029 6572202e 76696563 70206465) ... received p
clfff270: 20676e6f 29373128 65530a0d 6e69646e ong (17)..Sendin
clfff280: 69702067 2820676e 20293831 202e2e2e g ping (18)
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

103/ 404

NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

clfff290: 65636572 64657669 6e6f7020 31282067 received pong (1
clfff2al0: 0a0d2939 646e6553 20676e69 6766970 9)..Sending ping
clfff2b0: 30322820 2e2e2029 6572202e 76696563 (20) ... receiv
clfff2c0: 70206465 20676e6f 29313228 65530a0d ed pong (21)..Se
clfff2d0: 6e69646e 69702067 2820676e 20293232 nding ping (22)
clfff2e0: 202e2e2e 65636572 64657669 6e6£7020 received pon
clfff2f0: 32282067 0a0d2933 646e6553 20676e69 g (23)..Sending
clfff300: 676e6970 34322820 2e2e2029 6572202e ping (24) ... re
clfff310: 76696563 70206465 20676e6f 29353228 ceived pong (25)
clfff320: 65530a0d 6e69646e 69702067 2820676e ..Sending ping (
clfff330: 20293632 202e2e2e 65636572 64657669 26) ... received
clfff340: 6e6f7020 32282067 0a0d2937 646e6553 pong (27) ..Send
clfff350: 20676e69 676e6970 38322820 2e2e2029 ing ping (28)
clfff360: 6572202e 76696563 70206465 20676e6f received pong
clfff370: 29393228 65530a0d 6e69646e 69702067 (29)..Sending pi
clfff380: 2820676e 20293033 202e2e2e 65636572 ng (30) ... rece
clfff390: 64657669 6e6£7020 33282067 0a0d2931 ived pong (31)..
clfff3a0: 646e6553 20676e69 676e6970 32332820 Sending ping (32
clfff3b0: 2e2e2029 6572202e 76696563 70206465) ... received p
clfff3c0: 20676e6f 29333328 65530a0d 6e69646e ong (33)..Sendin
clfff3d0: 69702067 2820676e 20293433 202e2e2e g ping (34)
clfff3e0: 65636572 64657669 6e6f7020 33282067 received pong (3
clfff3f0: 0a0d2935 646e6553 20676e69 6766970 5)..Sending ping
clfff400: 36332820 2e2e2029 6572202e 76696563 (36) ... receiv
clfff410: 70206465 20676e6f 29373328 65530a0d ed pong (37)..Se
clfffd20: 6e69646e 69702067 2820676e 20293833 nding ping (38)
clfffd430: 202e2e2e 65636572 64657669 6e6£7020 received pon
clfffd440: 33282067 0a0d2939 646e6553 2067669 g (39)..Sending
clfff450: 676e6970 30342820 2e2e2029 6572202e ping (40) ... re
clfffd60: 76696563 70206465 20676e6f 29313428 ceived pong (41)
clfff470: 65530a0d 6e69646e 69702067 2820676e ..Sending ping (
clfff480: 20293234 202e2e2e 65636572 64657669 42) ... received
clfff490: 6e6f£7020 34282067 0a0d2933 646e6553 pong (43)..Send
clfffd4dal: 20676e69 676e6970 34342820 2e2e2029 1ing ping (44)
clfffdb0: 6572202e 76696563 70206465 20676e6f received pong
clfffdc0: 29353428 65530a0d 6e69646e 69702067 (45)..Sending pi
clfffd4d0: 2820676e 20293634 202e2e2e 65636572 ng (46) ... rece
clfffdeO: 64657669 6e6£7020 34282067 0a0d2937 ived pong (47) ..
clfffdf0: 646e6553 20676e69 6766970 38342820 Sending ping (48
clfff500: 2e2e2029 6572202e 76696563 70206465) ... received p
clfff510: 20676e6f 29393428 65530a0d 6e69646e ong (49)..Sendin
clfff520: 69702067 2820676e 20293035 202e2e2e g ping (50)
clfff530: 65636572 64657669 6e6£7020 35282067 received pong (5
clfff540: 0a0d2931 646e6553 20676e69 6766970 1)..Sending ping
clfff550: 32352820 2e2e2029 6572202e 76696563 (52) ... receiv
clfff560: 70206465 20676e6f 29333528 65530a0d ed pong (53)..Se
clfff570: 6e69646e 69702067 2820676e 20293435 nding ping (54)
clfff580: 202e2e2e 65636572 64657669 6e6£7020 received pon
clff£f590: 35282067 0a0d2935 646e6553 2067669 g (55)..Sending
clfff5al: 676e6970 36352820 2e2e2029 6572202e ping (56) ... re
clfff5b0: 76696563 70206465 20676e6f 29373528 ceived pong (57)
clfff5c0: 65530a0d 6e69646e 69702067 2820676e ..Sending ping (
clfff5d0: 20293835 202e2e2e 65636572 64657669 58) ... received
clfff5e0: 6e6f7020 35282067 0a0d2939 646e6553 pong (59)..Send
clfff5f0: 20676e69 676e6970 30362820 2e2e2029 ing ping (60)
clfffe00: 6572202e 76696563 70206465 20676e6f received pong
clfffel0: 29313628 65530a0d 6e69646e 69702067 (61)..Sending pi
clfffe20: 2820676e 20293236 202e2e2e 65636572 ng (62) ... rece
clfff630: 64657669 6e6£7020 36282067 0a0d2933 ived pong (63)..
clfff640: 646e6553 20676e69 676e6970 34362820 Sending ping (64
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

104 /404

NXP Semiconductors

REALTIMEEDGEUG

clfffe650:
clfff660:
clfffe70:
clfffe80:
clfffe90:
clfffeal:
clfffeb0:
clfffoecO:
clfffedO:
clfffeel:
clfffef0:
clff£700:
clff£f710:
clfff720:
clff£f730:
clff£f740:
clff£f750:
clfff760:
clff£f770:
clfff780:
clff£f790:
clfff7a0:
clfff7b0:
clfff7c0:
clff£7d0:
clfff7e0:
clfff7£0:
clff£f800:
clff£f810:
clff£f820:
clff£f830:
clfff840:
clff£850:
clfff860:
clff£870:
clfff880:
clff£f890:
clfff8al:
clff£f8b0:
clfff8cO:
clff£8d0:
clfff8el:
clfff8f£f0:
clf£f£900:
clff£f910:
clff£f920:
clff£f930:
clff£f940:
clf£f£950:
clfff960:
clff£f970:

2e2e2029
20676e6f
69702067
65636572
0a0d2937
38362820
70206465
6e69646e
202e2e2e
37282067
6766970
76696563
65530a0d
20293437
6e6£7020
20676e69
6572202e
29373728
2820676e
64657669
6466553
2e2e2029
20676e6f
69702067
65636572
0a0d2933
34382820
70206465
6e696406e
202e2e2e
38282067
6766970
76696563
65530a0d
20293039
6e6f7020
20676e69
6572202e
29333928
2820676e
64657669
646e6553
2e2e2029
20676e6f
69702067
65636572
0a0d2939
30312820
20646576
50520a0d
000a0d73

6572202e 76696563
29353628 65530a0d
2820676e 20293636
64657669 6e6£7020
646e6553 20676e69
2e2e2029 6572202e
20676e6f 29393628
69702067 2820676e
65636572 64657669
0a0d2931 646e6553
32372820 2e2e2029
70206465 20676e6£
6e69646e 69702067
202e2e2e 65636572
37282067 0a0d2935
6766970 36372820
76696563 70206465
65530a0d 6e69646e
20293837 202e2e2e
6e6£7020 37282067
20676e69 676e6970
6572202e 76696563
29313828 65530a0d
2820676e 20293238
64657669 6e6£7020
6466553 20676e69
2e2e2029 6572202e
20676e6f 29353828
69702067 2820676e
65636572 64657669
0a0d2937 646e6553
38382820 2e2e2029
70206465 20676e6f
6e69646e 69702067
202e2e2e 65636572
39282067 0a0d2931
6766970 32392820
76696563 70206465
65530a0d 6e69646e
20293439 202e2e2e
6e6£7020 39282067
20676e69 676e6970
6572202e 76696563
29373928 65530a0d
2820676e 20293839
64657669 6e6£7020
646e6553 20676e69
2e202930 72202e2e
676e6£70 30312820
2067734d 6f6d6564
00000000 00000000

70206465
6e696406e
202e2e2e
36282067
6766970
76696563
65530a0d
20293037
6e6£7020
20676e69
6572202e
29333728
2820676e
64657669
646e6553
2e2e2029
20676e6f
69702067
65636572
0a0d2939
30382820
70206465
6e696406e
202e2e2e
38282067
6766970
76696563
65530a0d
20293638
6e6f7020
20676e69
6572202e
29393828
2820676e
64657669
646e6553
2e2e2029
20676e6f
69702067
65636572
0a0d2935
36392820
70206465
6e696406e
202e2e2e
39282067
6766970
69656365
0a0d2931
646e6520
00000000

Real-time Edge Software User Guide

) ... received p
ong (65)..Sendin
g ping (66)
received pong (6
7) ..Sending ping
(68) ... receiv
ed pong (69)..Se
nding ping (70)
received pon
g (71)..Sending
ping (72) ... re
ceived pong (73)
..Sending ping (
74) ... received
pong (75)..Send
ing ping (76)
received pong
(77) ..Sending pi
ng (78) ... rece
ived pong (79)..
Sending ping (80
) ... received p
ong (81)..Sendin
g ping (82)
received pong (8
3) ..Sending ping
(84) ... receiv
ed pong (85)..Se
nding ping (86)
received pon
g (87)..Sending
ping (88) ... re
ceived pong (89)
..Sending ping (
90) ... received
pong (91)..Send
ing ping (92)
received pong
(93) ..Sending pi
ng (94) ... rece
ived pong (95) ..
Sending ping (96
) ... received p
ong (97)..Sendin
g ping (98)
received pong (9
9) ..Sending ping
(100) ... recei
ved pong (101)..
. .RPMsg demo end

3.4.5 Complex RPMSG on MPU

3.4.5.1 Overview

To demonstrate a typical RPMSG use case on the MPU platform, a complex RPMsg str-echo application is
available in the repository: heterogeneous-multicore.

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024

105/ 404

https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Figure 30 shows the application setup:

RPMSG

FreeRTOS SMP Linux FreeRTOS FreeRTOS

Cortex-M Cortex-A53 x 2 Cortex-A53 Cortex-A53

RAM RAM

LARIS LARLZ Console Console

Figure 30. Complex RPMsg set up on MPU

Rpmsg-str-echo application setup enables RPMsg communication between FreeRTOS and Linux. FreeRTOS
runs RPMSG master endpoint and Linux runs RPMSG remote endpoint. By default, it creates three endpoints
on both the master side and remote side. Each endpoint is one-to-one connected with the other side. Therefore,
there are three RPMSG channels between the master and remote side. Application on FreeRTOS receives data
from the remote side and then sends it back to the same RPMSG channel. On the Linux side, if data is sent to
the master side, the same data is received or echoed back from the same channel.

3.4.5.2 Running the Complex str-echo application

This section describes the steps for running the Complex str-echo application on i.MX 8M Plus LPDDR4 EVK
and i.MX 8M Mini LPDDR4 EVK boards.

3.4.5.2.1 Running the application on i.MX 8M Plus LPDDR4 EVK

The following RTOS images are provided to run the application:

rpmsg_str echo ca53 RTOSO RAM CONSOLE.bin
rpmsg_str echo ca53 RTOSO UART4.bin
rpmsg_str echo ca53 RTOS1 RAM CONSOLE.bin
rpmsg_str echo cm7.bin

There are two RTOS images provided for RTOSO0 on Cortex-A53, one uses RAM console, the other uses
UART4 console. The RAM Console image must be run if running RTOS on Cortex M7 core simultaneously
because Cortex M7 Core images use UART4 console by default.

Use the following steps to run the whole setup on i.MX 8M Plus LPDDR4 EVK:
1. Boot the First Cortex-A Core RTOS:

u-boot=> extdload mmc 1:2 0xC0000000 /examples/heterogeneous-multicore/rpmsg-
str-echo-ca/ddr release/rpmsg str echo ca53 RTOSO RAM CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 2 release 0xC0000000

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

106 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2. Boot the Second Cortex-A Core RTOS:

u-boot=> extdload mmc 1:2 0xC1000000 /examples/heterogeneous-multicore/rpmsg-
str-echo-ca/ddr release/rpmsg str echo ca53 RTOS1 RAM CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 3 release 0xC1000000

3. Boot Cortex-M Core RTOS:

u-boot=> extdload mmc 1:2 0x48000000 /examples/heterogeneous-multicore/rpmsg-
str-echo-cm/release/rpmsg str echo cm7.bin

u-boot=> cp.b 0x48000000 0x7e0000 20000;

u-boot=> bootaux 0x7e0000

The below log is displayed for the UART4 console:

Cortex-M7: RTOSO: Multiple Endpoints RPMsg String Echo FreeRTOS Demo...
INFO: rpmsg init : RPMSG init
INFO: rpmsg_init : waiting for link establish

4. Boot up Linux using the commands:

u-boot=> setenv fdtfile imx8mp-evk-multicore-rpmsg.dtb
u-boot=> setenv mmcargs Smmcargs clk ignore unused
u-boot=> boot

5. When Linux is up, install tty driver module

root@imx8mp-lpddr4-evk:~# modprobe imx rpmsg tty

[21.770356] imx rpmsg tty virtioO.rpmsg-virtual-tty-channel-1.-1.3: new
channel: 0x400 -> 0x3!

[21.770576] Install rpmsg tty driver!

[21.773539] imx rpmsg tty virtioO.rpmsg-virtual-tty-channel-1.-1.4: new
channel: 0x401 -> 0x4!

[21.773804] Install rpmsg tty driver!

[21.774034] imx rpmsg tty virtioO.rpmsg-virtual-tty-channel-1.-1.5: new
channel: 0x402 -> 0x5!

[21.774156] Install rpmsg tty driver!

[21.774275] imx rpmsg tty virtiol.rpmsg-virtual-tty-channel-1.-1.6: new
channel: 0x400 -> 0x6!

[21.774360] Install rpmsg tty driver!

[21.774443] imx rpmsg tty virtiol.rpmsg-virtual-tty-channel-1.-1.7: new
channel: 0x401 -> 0x7!

[21.774530] Install rpmsg tty driver!

[21.774586] imx rpmsg tty virtiol.rpmsg-virtual-tty-channel-1.-1.8: new
channel: 0x402 -> 0x8!

[21.774663] Install rpmsg tty driver!

[21.774726] imx rpmsg tty virtioZ.rpmsg-virtual-tty-channel-1.-1.0: new
channel: 0x400 -> 0xO0!

[21.774810] Install rpmsg tty driver!

[21.774880] imx rpmsg tty virtio2.rpmsg-virtual-tty-channel-1.-1.1: new
channel: 0x401 -> 0x1!

[21.774960] Install rpmsg tty driver!

[21.775022] imx rpmsg tty virtioZ.rpmsg-virtual-tty-channel-1.-1.2: new
channel: 0x402 -> 0x2!

[21.775111] Install rpmsg tty driver!

6. Then check the Cortex-A RTOS0's RAM Console Log:

root@imx8mp-lpddré4-evk:~# ram console dump OxCOFFFO000
RAM Console@0OxcOfff000:

Cortex—-A53: RTOSO: Multiple Endpoints RPMsg String Echo FreeRTOS Demo...
RTOS1: RAM console@0xclfff000

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

107 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

INFO: rpmsg init : RPMSG remote init

INFO: rpmsg remote init : waiting for link establish

INFO: rpmsg remote init : RPMSG link up

ept3: Get Message From Master Side : "hello world!" [len : 12]

eptd: Get Message From Master Side : "hello world!" [len : 12]

ept5: Get Message From Master Side : "hello world!"™ [len : 12]
e e e e e e e e ettt et ettt e e e et e

7. Check Cortex-A RTOS1's RAM Console Log:

root@imx8mp-lpddré4-evk:~# ram console dump OxC1lFFFO000
RAM Console@Oxclfff000:

Cortex—-Ab53: RTOS1: Multiple Endelnts RPMsg String Echo FreeRTOS Demo.

INFO: rpmsg init : RPMSG remote init

INFO: rpmsg remote init : waiting for link establish

INFO: rpmsg remote init : RPMSG link up

ept6: Get Message From Master Side : "hello world!"™ [len : 12]

ept7: Get Message From Master Side : "hello world!"™ [len : 12]

ept8: Get Message From Master Side : "hello world!" [len : 12]
e e e e e e e e e e e e e ettt e e e e e e e e e e et

The following log for Cortex-M Core's UART4 Log:
Cortex-M7: RTOSO: Multiple Endp01nts RPMsg String Echo FreeRTOS Demo.

INFO: rpmsg init : RPMSG remote init

INFO: rpmsg remote init : waiting for link establish

INFO: rpmsg remote init : RPMSG link up

ept0: Get Message From Master Side : "hello world!" [len : 12]
eptl: Get Message From Master Side : "hello world!" [len : 12]
ept2: Get Message From Master Side : "hello world!" [len : 12]

It creates the following RPMsg devices:

root@imx8mp-lpddrd-evk:~# 1ls /dev/ttyRPMSG*
/dev/ttyRPMSGO /dev/ttyRPMSGl /dev/ttyRPMSG2 /dev/ttyRPMSG3 /dev/
ttyRPMSG4 /dev/ttyRPMSG5 /dev/ttyRPMSG6 /dev/ttyRPMSG7 /dev/ttyRPMSGS8

/dev/ttyRPMSGO ~ 2 are three endpoints connected to Cortex-M Core RTOS, /dev/ttyRPMSG3 ~ 5 are
three endpoints connected to Cortex-A Core RTOSO, /dev/ttyRPMSG6 ~ 8 are three endpoints connected to
Cortex-A Core RTOSH1,

8. Test RPMSG Communication:
Use "echo" or "minicom" to verify the RPMsg communication between the two RTOS.
For example, use "echo" and send a sample string to the Cortex-M Core's endpoint:

root@imx8mp-lpddrd-evk:~# echo "adfad" > /dev/ttyRPMSG2

Then in the Cortex-M Core's Console, the below string is received:

ept2: Get Message From Master Side : "adfad" [len : 5]
ept2: Get New Line From Master Side

Or use a minicom to open one RPMsg endpoint. It echoes back the character inputted in the minicom
console:

root@imx8mp-lpddrd-evk:~# minicom -D /dev/ttyRPMSG6

9. Then input some characters typed in using the minicom console. This character is sent to the RTOS
endpoint from Linux. Then the application running on RTOS sends the characters back to Linux.
Finally all characters are echoed back in the minicom console. For example, if you input the characters
"dadfddeddddd", the below log would be displayed:

Welcome to minicom 2.8

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

108 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

OPTIONS: Il1l8n

Compiled on Jan 1 2021, 17:45:55.

Port /dev/ttyRPMSG6, 08:36:41

Press CTRL-A Z for help on special keys

dadfddeddddd

Known Issues:

* Do not turn the data cache off in U-Boot while booting Cortex-M Core RTOS.

3.4.5.2.2 Running the application on i.MX 8M Mini LPDDR4 EVK

The following RTOS images are provided to run the application:

rpmsg_str echo ca53 RTOSO RAM CONSOLE.bin
rpmsg_str echo ca53 RTOSO UART4.bin
rpmsg_str echo ca53 RTOS1 RAM CONSOLE.bin
rpmsg_str echo cm4.bin

There are two RTOS images provided for RTOSO0 on Cortex-A53, one uses RAM Console, the other uses
UART4 Console, it needs to run RAM Console image if run RTOS on Cortex M4 Core simultaneously because
Cortex M4 Core images uses UART4 Console by default.

Follow the following steps to run the whole setup on i.MX 8M Mini LPDDR4 EVK:
1. Boot the First Cortex-A Core RTOS

u-boot=> ext4load mmc 1:2 0x93C00000 /examples/heterogeneous-multicore/rpmsg-
str-echo-ca/ddr release/rpmsg str echo ca53 RTOSO0 RAM CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 2 release 0x93C00000

2. Boot the Second Cortex-A Core RTOS

u-boot=> extdload mmc 1:2 0x94C00000 /examples/heterogeneous-multicore/rpmsg-
str-echo-ca/ddr release/rpmsg str echo cab53 RTOS1 RAM CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 3 release 0x94C00000

3. Boot Cortex-M Core RTOS

u-boot=> ext4load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/rpmsg-
str-echo-cm/release/rpmsg str echo cmé4.bin

u-boot=> cp.b 0x48000000 0x7e0000 20000;

u-boot=> bootaux 0x7e0000

The log for UART4 Console will be the following log:

Cortex-M4: RTOSO: Multiple Endpoints RPMsg String Echo FreeRTOS Demo. ..
INFO: rpmsg init : RPMSG init
INFO: rpmsg init : waiting for link establish

4. Boot Linux up

u-boot=> setenv fdtfile imx8mm-evk-multicore-rpmsg.dtb
u-boot=> setenv mmcargs $mmcargs clk ignore unused
u-boot=> boot

5. When Linux is up, install tty driver module

root@imx8mm-lpddr4-evk:~# modprobe imx rpmsg tty

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

109 / 404

NXP Semiconductors

REALTIMEEDGEUG

[21.770
channel:
[21.770
[21.773
channel:
[21.773
[21.774
channel:
[21.774
[21.774
channel:
[21.774
[21.774
channel:
[21.774
[21.774
channel:
[21.774
[21.774
channel:
[21.774
[21.774
channel:
[21.774
[21.775
channel:
[21.775

Real-time Edge Software User Guide

356]
0x400
5761
539]
0x401
804]
034]
0x402
156]
275]
0x400
360]
443]
0x401
530]
5861
0x402
663]
726]
0x400
810]
8801
0x401
960]
022]
0x402
111]

imx rpmsg tty
-> 0x3!
Install rpmsg
imx rpmsg tty
-> 0x4!
Install rpmsg
imx rpmsg tty
-> 0x5!
Install rpmsg
imx rpmsg tty
-> 0x6!
Install rpmsg
imx rpmsg tty
-> 0x7!
Install rpmsg
imx rpmsg tty
-> 0x8!
Install rpmsg
imx rpmsg tty
-> 0x0!
Install rpmsg
imx rpmsg tty
-> 0x1!
Install rpmsg
imx rpmsg tty
-> 0x2!
Install rpmsg

virtioO.rpmsg-virtual-tty-channel-1.

tty driver!

virtioO.rpmsg-virtual-tty-channel-1.

tty driver!

virtioO.rpmsg-virtual-tty-channel-1.

tty driver!

virtiol.rpmsg-virtual-tty-channel-1.

tty driver!

virtiol.rpmsg-virtual-tty-channel-1.

tty driver!

virtiol.rpmsg-virtual-tty-channel-1.

tty driver!

virtio2.rpmsg-virtual-tty-channel-1.

tty driver!

virtio2.rpmsg-virtual-tty-channel-1.

tty driver!

virtio2.rpmsg-virtual-tty-channel-1.

tty driver!

-1.3: new
-1.4: new
-1.5: new
-1.6: new
-1.7: new
-1.8: new
-1.0: new
-1.1: new
-1.2: new

6. Then check Cortex-A RTOSO0's RAM console log:

root@imx8mm-lpddr4-evk:~# ram console dump 0x94BFF000
RAM Console@0x94b£ff000:

Cortex—-A53:

RTOSO0:

RTOS1: RAM console@Ox95BffOOO

INFO: rpmsg init RPMSG remote init

INFO: rpmsg remote init waiting for link establish

INFO: rpmsg remote init : RPMSG link up

ept3: Get Message From Master Side "hello world!" [len 12]

eptd: Get Message From Master Side "hello world!" [len 12]

ept5: Get Message From Master Side "hello world!" [len 12]
>

Multiple Endpoints RPMsg String Echo FreeRTOS Demo. ..

7. And check the Cortex-A RTOS1's RAM console Log:

root@imx8mm-lpddré4-evk:~# ram console dump 0x95BFF000
RAM Console@0x95bff000:

Cortex—-A53:

RTOS1:

INFO: rpmsg init RPMSG remote init

INFO: rpmsg remote init waiting for link establish

INFO: rpmsg remote init : RPMSG link up

ept6: Get Message From Master Side "hello world!" [len 12]

ept7: Get Message From Master Side "hello world!" [len 12]

ept8: Get Message From Master Side "hello world!" [len 12]
>

Multiple Endp01nts RPMsg String Echo FreeRTOS Demo.

The following is the log displayed for Cortex-M Core's UART4 console:

Cortex-M4: RTOSO: Multiple Endpoints RPMsg String Echo FreeRTOS Demo. ..

INFO: rpmsg init RPMSG remote init

INFO: rpmsg remote init waiting for link establish
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

110/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

INFO: rpmsg remote init : RPMSG link up

ept0: Get Message From Master Side : "hello world!" [len : 12]
eptl: Get Message From Master Side : "hello world!" [len : 12]
ept2: Get Message From Master Side : "hello world!" [len : 12]

The following RPMsg devices are created:

root@imx8mm-lpddrd-evk:~# 1ls /dev/ttyRPMSG*
/dev/ttyRPMSGO /dev/ttyRPMSG1 /dev/ttyRPMSG2 /dev/ttyRPMSG3 /dev/
ttyRPMSG4 /dev/ttyRPMSG5 /dev/ttyRPMSG6 /dev/ttyRPMSG7 /dev/ttyRPMSGS8

/dev/ttyRPMSGO ~ 2 are three endpoints connected to Cortex-M Core RTOS, /dev/ttyRPMSG3 ~ 5 are
three endpoints connected to Cortex-A Core RTOSO, /dev/ttyRPMSG6 ~ 8 are three endpoints connected to
Cortex-A Core RTOS1.

8. Test RPMsg Communication
Use "echo" or "minicom" to verify the RPMsg communication between the two real-time operating systems.
For example, use "echo" send some string to the Cortex-M Core's endpoint:

root@imx8mm-lpddrd-evk:~# echo "adfad" > /dev/ttyRPMSG2

Then in Cortex-M Core's Console finds the string is received:

ept2: Get Message From Master Side : "adfad" [len : 5]
ept2: Get New Line From Master Side

Or use a minicom to open one RPMsg endpoint. It then echoes back the character typed in the minicom
console:

root@imx8mm-lpddrd-evk:~# minicom -D /dev/ttyRPMSG6

9. Then input some characters typed in using the minicom console. These characters are sent to the
RTOS endpoint from Linux. Then the application running on RTOS sends the character back to Linux.
Finally, all characters are echoed back to the minicom console. For example, if you input the characters
"dadfddeddddd", the following would be the log displayed:

Welcome to minicom 2.8

OPTIONS: Il1l8n

Compiled on Jan 1 2021, 17:45:55.

Port /dev/ttyRPMSG6, 08:36:41

Press CTRL-A Z for help on special keys

dadfddeddddd

Known Issues:

* Do not turn the data cache off in U-Boot while booting Cortex-M Core RTOS.
3.5 RPMSG based resource sharing

3.5.1 Overview

On NXP MPU platforms, in general, RTOS runs on Cortex-M Core(s) and Linux runs on Cortex-A Core(s). In
some use cases, considering power management and real-time performance, Cortex-M Core owns and controls
physical resources or peripherals, but needs to share these physical resources or peripherals with Cortex-A
Core(s). The rpmsg lite uart sharing rtos is a FreeRTOS example to share physical UART owned by
Cortex-M Core with Cortex-A Core.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

11117404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3.5.2 Software architecture and design

This chapter describes different software architectures based on different technologies.

3.5.3 Resource sharing based on SRTM

This example uses the Simplified Real-Time Messaging (SRTM) protocol to communicate between Cortex-A
and Cortex-M Cores. SRTM is used for communication among SoCs/processors in the same SoC. The figure
below shows the software architecture for resource sharing based on SRTM.

Resource Owner/Sharer Resource User

Application Application

Virtual Device Drivers

SRTM Services

| 12C Service | | RTC Service | | Keypad Service | 12C Driver RTC Driver

| Audio Service | | 10 Service | I UART Service l
~10Driver |
| PWM Service | | Sensor Service | I Ethernet Service l
N Ethernet
. P driver |
Link Manager Message Dispatcher
RPMSG (Lite) RPMSG (Lite)
VirtlO VirtlO
MU or
Shared Memo .
Hardware ry General-Software-Mailbox

Figure 31. Resource sharing software architecture

SRTM runs on Cortex-M Core which owns the hardware resources. To share these, it provides an application
protocol based on RPMSG.

Virtual Device Drivers run on the resource user. The drivers provide standard device service on Cortex-A, which
needs to use the hardware resources shared by SRTM.

3.5.3.1 UART sharing design details

The UART sharing example is designed with the following features:

* RTOS on Cortex-M Core owns and fully controls the physical UART ports.

* SRTM service runs on RTOS and provides physical device sharing service to Linux.
Virtual UART driver on Linux provides standard UART device service to applications.

* Multiple virtual UART ports are provided in Linux.

» Each virtual UART port in Linux can map to a dedicated physical UART on FreeRTOS.
Multiple virtual UART ports can be mapped to the same physical UART.

Supported Platforms: i.MX 8M Mini LPDDR4 EVK, i.MX 93 EVK

It includes the following software components:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

112/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Physical UART driver on FreeRTOS

SRTM UART sharing service on FreeRTOS

* rpmsg_lite uart sharing rtos application on FreeRTOS
Virtual UART driver in Linux

Figure 32 illustrates the software architecture of a UART sharing design.

Linux Userspace

FreeRTOS

Application J

) SRT,
Device Driver Service Driver |
Message Connectio
Dispatcher n Manager

RPMSG(lite)

(VirtiO)

Physical Device

Figure 32. UART sharing software architecture

Application
Linux Kernel Data
Virtual Device Driver I
Control
RPMSG
VirtloO N
L__Data___J&———»| Vring Buffer]
Linux General Memory <
Shared Memory MU b
RTO enera Memory
— < | >l vring Buffer |

In order to support multiple virtual UART on a single physical UART, a multiple virtual UART protocol is used.

The example described in this document follows the packet format described in the Table 27 "Packet format for

UART sharing".
Table 27. Packet format for UART sharing
Fields Start Flags Address Payload Size Payload
(4 bytes) (1 bytes) (1 bytes) (n bytes)
HEX 24 55 54 2C X n XXXXXX. ..
ASCII $ U T)

The packet header includes fields that indicate start flags, address, and payload size.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

It is 6 bytes by default.

© 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

113 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

“Start flags” field is used to figure out the start of data packets, user can configure start flags with specified
characters and size. The default start flags are 4 bytes: “SUT,”.

The “Address” field is reused by receive from transmit directions. For receive direction (blue colored path in
Figure 32), it is the destination address or ID of target virtual device. For transmit direction (orange colored path
in Figure 32), it is the source address or ID from which virtual device is transmitted.

“Payload Size” is the size of payload data. It is one byte, so the maximum payload size is 255 bytes. "Payload”
is the actual data exchanged within protocol and it follows the packet header.

3.5.4 Source code files and configuration

1. Source code files:
The source files for different software components are listed in the Table 28 "Software source code list":

Table 28. Software source code list

Name Software component Source Files/Directory

FreeRTOS application: mcux-sdk-examples evkmimx8mm/multicore examples/
rpmsg lite uart sharing rpmsg lite uart sharing rtos/
rtos

SRTM Service mcu-sdk components/srtm/services/

srtm uart service.c
srtm uart service.h
srtm uart adapter.c
srtm uart adapter.h

Virtual UART driver real-time-edge-linux |drivers/tty/rpmsg tty.c
2. Linux Virtual UART driver
By default, the Real-time Edge kernel builds the virtual UART driver as module (rpmsg_tty. ko) by
enabling the configurable item: CONFIG RPMSG TTY=m.
3. Virtual UART and physical UART mapping
The UART Sharing Service supports three modes of mapping between virtual UART and physical UART:
a. Virtual UART to physical UART 1:1 mapping
* Virtual UARTs on the A-core have 1:1 mapping to physical UART on the M-core.
» Each physical UART connects to a different device.
» Each virtual UART uses a dedicated RPMsg endpoint.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

114 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

RPMSG data
Header

UART Sharing
devittyRPMSG1 e Service !

dev/ttyRPMSG2 — !
dev/ttyRPMSG3 R I - .

device 2

device
10

dev/ttyRPMSG10 | _— e) UI:!I,?T

Virtual UART Driver SRTM RPMSG Service Physical UARTs
on A-Core on M-Core

Devices

i.MX 8M Mini board

Figure 33. Virtual UART to physical UART 1:1 mapping

b. Virtual UART to physical UART n:1 mapping
* Multiple Virtual UARTs on A-core maps to a single physical UARTs on M-core.
* Physical UART connects to a device or another board.
» Each virtual UART uses a dedicated RPMsg Endpoint.

* A multiple UART Header is used to establish multiple virtual UART channels on a single physical
UART connect. For details about multiple UART Headers, refer to the section Section 3.5.3.1 "UART

Multi-UART
Header

o
)

ta

sharing design details".
Header | data

UART Sharing

Service

dev/ttyRPMSG1
dev/ttyRPMSG2

dev/ttyRPMSG3

dev/ttyRPMSG10

Virtual UART Driver SRTM RPMSG Service Physical UARTs
on A-Core on M-Core

1
1
1
1
I
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
I
| Devices
1

1

1

1

i.MX 8M Mini board

Figure 34. Virtual UART to physical UART n:1 mapping

c. Virtual UART to physical UART flexible mapping: This mapping mode can support virtual UART to
physical UART 1:1 mapping and n:1 mapping simultaneously. The following figure shows flexible
mapping between two i.MX 8M Mini boards.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

11517404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

RPMSG RPMSG
e | o | o
——
- aE P
‘ H ! ‘ UART Sharing ‘
ETTT S T AN Ty M
o
dev/ttyRPMSG2 — ‘ . ‘ — devittyRPMSG2
otioron L
o
devittyRPMSG3 ——i-| 2 i o e devittyRPMSG3
4
i
: ‘ - i ‘ - :
// Multi-UART \\ :
devittyRPMSG10 e EE o devittyRPMSG10
evitty| 1 — N Dammuni evittyl
o
i
Vo
Virtual UART Driver SRTM RPMSG Service Physical UARTs| !Physical UARTs SRTM RPMSG Service Virtual UART Driver
on A-Core on M-Core Vo on M-Core on A-Core
”””””””””” iMX8MMiniboard1 7777777 imMX8MMiniboard2 "~

Figure 35. Virtual UART to physical UART flexible mapping

The mapping between virtual UART and physical UART is configured in Linux device tree, as shown in a dts
node example below:

uart rpbus 3: uart-rpbus-3 {
compatible = "fsl,uart-rpbus";
bus id = <3>; /* use uart3 */
flags=<IMX SRTM UART SUPPORT MULTI UART MSG FLAG>;
status = "okay";
}i
This dts node is configured for virtual UART3.
Note:
» The “bus_1d” specifies the physical UART instance ID that this virtual UART maps to. If the property

of “bus_1d”is not configured, the message sent from Linux to this virtual UART is display on M-core’s
debug console directly.

* Physical UART ID is configured in the FreeRTOS application “rpomsg lite uart sharing rtos”

e On i.MX 8M Mini LPDDR4 EVK, physical UART3 can be used, so all virtual UART ports are mapped to
physical UART3 by default.

* Oni.MX 93 EVK, physical LPUARTS can be used, so all virtual UART ports are mapped to physical
LPUARTDS5 by default.

* If flags is set with the value TMX SRTM UART SUPPORT MULTI UART MSG_FLAG, the multiple virtual
UART is mapped to a single physical UART instance specified by bus_id (that implies that multiple
virtual UART protocol packet headers are used).

* If f1ags is not set, this virtual UART is mapped 1:1 with physical UART instance specified by bus id.

By default, there are 11 virtual UARTSs in the dtb file imx8mm-evkrpmsg.dtb” for i.MX 8M Mini LPDDR4
EVK and imx93-11x11-evk-rpmsg.dtb for iMX 93 EVK.

e The virtual UART 0 to 9 are n:1 mapped to physical UART.
* The virtual UART 10 has no bus_1id and displays messages sent from Linux to M-core’s debug console.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

116/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3.5.5 Building and running the demo on i.MX 8M Mini LPDDR4 EVK

3.5.5.1 Hardware setup for i.MX 8M Mini EVK

Use flying wire to connect UART3 between two i.MX 8M Mini EVK boards. UART3’s pin is provided in J1003
connector; use the following pin connection between the two boards.

Table 29. PIN connection between two i.MX 8M Mini boards

i.MX 8M Mini Board1 Connection i.MX 8M Mini Board2
Pin Function Pin Function
6 GND <> 6 GND
8 UART3_TXD <> 10 UART3_RXD
10 UART3_RXD <> 8 UART3_TXD

3.5.5.2 Building the demo images

The demo images "rpmsg _uart sharing.bin" are by default compiled with the i.MX 8M Mini LPDDR4 EVK
target image compiling, and are installed into the "/examples" directory of the target rootfs.

Or the image can be built separately by using the following Yocto command:
DISTRO=nxp-real-time-edge MACHINE=imx8mm-lpddr4-evk bitbake rpmsg-uart-sharing-cm

The image can be found on directory "<image-build-dir>/tmp/deploy/images/imx8mmevk/
examples/" on building host.

3.5.5.3 Running the i.MX 8M Mini EVK demo

1. Connect two i.MX8M Mini EVK boards by following the steps in section of “Hardware Setup”.

2. Connect two i.MX8M Mini EVK boards to your PC via USB cable between the USB-UART connector and
the PC USB connector.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial
port number, two debug consoles for each board, one for the Linux debug console and another for the
FreeRTOS debug console.

4. Deploy Real-time Edge release root files in SD card and modify the on-board switch to boot from MicroSD
card.

5. Power on the board and enter into U-Boot command line, then execute the following command:

u-boot => setenv fdtfile imx8mm-evk-rpmsg.dtb

To make the above change permanent, execute the following command once:

u-boot => saveenv

6. Then, use the following commands to download and run FreeRTOS image:

u-boot => extd4load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/
rpmsg-uart-sharing-cm/release/rpmsg uart sharing.bin;
u-boot => cp.b 0x48000000 0x7e0000 20000; bootaux 0x7e0000

Then, FreeRTOS debug console would display the following log:

FHEHFHFHFHHH### 444444 RPMSG UART SHARING DEMO ##########4444444444
Build Time: Mar 2 2022--09:38:19

R R I b I S b I S b I S I I b S db b db b b b b a4

Wait the Linux kernel boot up to create the link between M core and A
core.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

117 1 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

LR R I b e I I b b S b I b b b S b b S b b b 4

7. Then, boot the Linux kernel by executing the following commands:

u-boot => setenv jh clk clk ignore unused
u-boot => boot

After the Linux kernel boots up, the below line on the FreeRTOS debug console indicates that RPMSG
connection between Cortex-A core and Cortex-M core has been established:

Task A is working now.

Execute the above steps (1 to 7) on each i.MX 8M Mini EVK board.
8. After Linux boots up, enter Linux command line, use the following commands to test the demo:
a. Check device files are available:

root@imx8mm-lpddrd-evk:~# 1ls /dev/ttyRPMSG*

There should be 11 device files from “/dev/ttyRPMSGO0” to “/dev/ttyRPMSG10” if the default dtb
file imx8mm-evk-rpmsg.dtb is used. The “/dev/ttyRPMSGO0” to “/dev/ttyRPMSG9”have n:1
mapping to physical UARTS3, “/dev/ttyRPMSG10” is without “bus_1id” and displays the message sent
from Linux to M-core’s debug console.

b. Check each virtual UART from “/dev/ttyRPMSG0” to “/dev/ttyRPMSGS” is connected to peer virtual
UART between two boards, for example, use "minicom" to open and configure the same virtual UART
on both boards:

root@imx8mm-lpddrd-evk:~# minicom -s -D /dev/ttyRPMSG6

Then configure the UART as shown in the following figures:

[configuration]
Filenames and paths
File transfer protocols
Serial port setup
Modem and dialing

Screen and keyboard
Save setup as dfl
Save setup as..
Exit

Exit from Minicom

Figure 36. Configuring RPMSG Virtual UART Step1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

118 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Serial Device 1 /dev/ttyRPMSG6H
Lockfile Location i /var/lock
Callin Program :
Callout Program :
Bps/Par/Bits : 115200 8N1
Hardware Flow Control : No
Software Flow Control : No
R5485 Enable : No
R5485 Rts On Send : No
R5485 Rts After Send : HNo
RS485 Rx During Tx : No
R5485 Terminate Bus : HNo
RS485 Delay Rts Before: ©
RS485 Delay Rts After : ©

Change which setting? |}

Figure 37. Configuring RPMSG Virtual UART Step2

Save the settings and back to minicom main window, then input any characters in one board's minicom
window. These characters would be displayed on the other board's minicom window.

3.5.6 Building and running the demo on i.MX 93 EVK

3.5.6.1 Hardware setup for i.MX 93 EVK

Use flying wire to connect LPUARTS between two i.MX 93 EVK boards. LPUART5’s pin is provided in J1001
connector. Use the following pin connection between the two boards.

Table 30. PIN connection between two i.MX 93 EVK boards

i.MX 93 EVK Board1 Connection i.MX 93 EVK Board2
Pin Function Pin Function
30 GND <> 30 GND
28 LPUARTS5_RX <-> 27 LPUART5_TX
27 LPUARTS5_TX <-> 28 LPUARTS5_RX

3.5.6.2 Building the demo images

The demo image "rpmsg uart sharing.bin"is by default compiled with the i.MX 93 EVK target image
compiling, and are installed into the "/examples" directory of the target rootfs.

Or the image can be built separately by using the following Yocto command:

DISTRO=nxp-real-time-edge MACHINE=imx93evk source real-time-edge-setup-env.sh -b
<build dir>

bitbake rpmsg-uart-sharing-cm

The image can be found on directory "<image-build-dir>/tmp/deploy/images/imx93evk/
examples/" on building host.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

119/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3.5.6.3 Running the i.MX 93 demo

1.

2.

Connect two i.MX 93 EVK boards by following the steps listed in Section 3.5.6.1 "Hardware setup for i.MX
93 EVK".

Connect two i.MX 93 EVK boards to your PC via USB cable between the USB-UART connector and the PC
USB connector.

. Open the terminal application on the PC, such as PuUTTY or TeraTerm, and connect to the debug serial port

number, four debug consoles for each board. Use the third one for the Linux debug console and the fourth
one for the FreeRTOS debug console.

4. Deploy Real-time Edge release root files in SD card and modify the on-board switch to boot from MicroSD
card.
5. Power on the board and enter into U-Boot command line. Then, execute the following command:
u-boot => setenv fdtfile imx93-11lxll-evk-uart-sharing-cm33.dtb
To make changes permanent, execute the following commands once (after setenv above):
u-boot => saveenv
6. Then, use the following command to download and run FreeRTOS image:
u-boot => extd4load mmc 1:2 0x80000000 /examples/heterogeneous-multicore/
rpmsg-uart-sharing-cm/release/rpmsg uart sharing.bin
u-boot => cp.b 0x80000000 0x201e0000 0x10000
u-boot => bootaux 0x1ffe0000 O
Then, FreeRTOS debug console would display the following log:
$HEFEHHE S S 44444 RPMSG UART SHARING DEMO ####### 4444444444444
Build Time: Apr 5 2011 23:00:00
Start SRTM communication
kAhkkhkkhkkhkhkkhkkhhkhkkhkhkhkkhkk hkhkkhkkhkhrkhkk ik kxkhk*x*%x
Wait for the Linux kernel boot up to create the link between M core and A
Ccore.
7. And then, boot Linux kernel by executing the following command:
u-boot => setenv jh clk clk ignore unused
u-boot => boot
8. After the Linux kernel boots up, in the FreeRTOS console, an extra line of log as shown below indicates that
RPMSG connection between Cortex-A core and Cortex-M core has been established:
Task A is working now.
Execute the above steps (1 to 7) on each i.MX 93 EVK board.
9. After Linux boots up, enter Linux command line, use the following commands to test the demo:
a. Check device files are available:
root @imx93evk:~# 1ls /dev/ttyRPMSG*
There should be 11 device files from “/dev/ttyRPMSGO0” to “/dev/ttyRPMSG10” if the default dtb
file imx93-11x1l-evk-uart-sharing-cm33.dtb is used. The “/dev/ttyRPMSGO0” to “/dev/
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

120/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

ttyRPMSG9” have n:1 mapping to physical LPUARTS, “/dev/ttyRPMSG10” is without “bus id” and
displays the message sent from Linux to M-core’s debug console.

b. Check each virtual UART from “/dev/ttyRPMSGO0” to “/dev/ttyRPMSG9” is connected to peer virtual
UART between two boards, for example, execute the following on the first board:
* Use "minicom" to open and configure the same virtual UART on both boards:

root@imx93evk:~# minicom -s -D /dev/ttyRPMSG6

Then configure the UART as shown in the following figures

[configuration]
Filenames and paths
File transfer protocols
Serial port setup
Modem and dialing

Screen and keyboard
Save setup as dfl
Save setup as..
Exit

Exit from Minicom

Figure 38. Configure RPMSG Virtual UART Step1

Serial Device 1 /dev/ttyRPMSG6H
Lockfile Location i /var/lock
Callin Program :
Callout Program :
Bps/Par/Bits : 115200 8N1
Hardware Flow Control : No
Software Flow Control : No
R5485 Enable : No
R5485 Rts On Send : No
R5485 Rts After Send : HNo
RS485 Rx During Tx
R5485 Terminate Bus :
RS485 Delay Rts Before:
RS485 Delay Rts After :

Change which setting? |}

Figure 39. Configure RPMSG Virtual UART Step2

Save the settings and go back to minicom main window, then input any characters in one board's
minicom window. Then, the characters would be displayed on the other board's minicom window.

3.5.7 Building and running the demo on i.MX 93 QSB

3.5.7.1 Hardware setup for i.MX 93 QSB

Use flying wire to connect LPUARTS between two i.MX 93 QSB boards. LPUARTS’s pin is provided in J1401
connector. Use the following pin connection between the two boards.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

1217404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 31. PIN connection between two i.MX 93 QSB boards

i.MX 93 QSB Board1 Connection i.MX 93 QSB Board2
Pin Function Pin Function
30 GND <> 30 GND
28 LPUART5_RX <> 27 LPUART5_TX
27 LPUARTS5_TX <> 28 LPUART5_RX

3.5.7.2 Building the demo images

The demo image "rpmsg_lite uart sharing rtos.bin"is by default compiled with the i.MX 93 QSB
target image compiling, and are installed into the "/examples" directory of the target rootfs.

Or the image can be built separately by using the following Yocto command:

DISTRO=nxp-real-time-edge MACHINE=1mx93-9x9-1pddr4-gsb source real-time-edge-
setup-env.sh -b <build dir>

bitbake rpmsg-lite-uart-sharing-rtos-mcimx93gsb

The image can be found on directory "<image-build-dir>/tmp/deploy/images/imx93-9x9-1pddrd-
gsb/examples/" on building host.

3.5.7.3 Running the demo on i.MX 93 QSB

1. Connect two i.MX 93 QSB boards by following the steps listed in Section 3.5.7.1 "Hardware setup for i.MX
93 QSB".

2. Connect two i.MX 93 QSB boards to your PC via USB cable between the USB-UART connector and the PC
USB connector.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port
number, four debug consoles for each board. Use the third one for the Linux debug console and the fourth
one for the FreeRTOS debug console.

4. Deploy Real-time Edge release root files in SD card and modify the on-board switch to boot from MicroSD
card.

5. Power on the board and enter into U-Boot command line. Then, execute the following command:

u-boot => setenv fdtfile imx93-9x9-gsb-uart-sharing-cm33.dtb

To make changes permanent, execute the following commands once (after setenv above):

u-boot => saveenv

6. Then, use the following command to download and run FreeRTOS image:

u-boot => ext4load mmc 1:2 0x80000000 /examples/rpmsg-lite-uart-sharing-rtos-
mcimx93gsb/release/rpmsg lite uart sharing rtos.bin

u-boot => cp.b 0x80000000 0x201e0000 0x10000

u-boot => bootaux 0x1ffe0000 O

Then, FreeRTOS debug console would display the following log:

FHEHFH A4S 4#4$ RPMSG UART SHARING DEMO ##### 44444444444 H4#
Build Time: Oct 30 2023 11:20:34
Start SRTM communication
R I b e db b b IR I b b I b i S b b I b b db b b 2 db b b 3b 3
Wait for the Linux kernel boot up to create the link between M core and A
core.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

122/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

7. And then, boot Linux kernel by executing the following command:

u-boot => setenv jh clk clk ignore unused
u-boot => boot

8. After the Linux kernel boots up, in the FreeRTOS console, an extra line of log as shown below indicates that
RPMSG connection between Cortex-A core and Cortex-M core has been established:

Task A is working now.

Execute the above steps (1 to 7) on each i.MX 93 QSB board.
9. After Linux boots up, enter Linux command line using the following commands to test the demo:
a. Check the device files are available:

root@imx93-9x9-1pddrd-gsb:~# 1ls /dev/ttyRPMSG*

There should be 11 device files from “/dev/ttyRPMSGO0” to “/dev/ttyRPMSG10” if the default dtb
file imx93-9x9-gsb-uart-sharing-cm33.dtb is used. The “/dev/ttyRPMSG0” to “/dev/
ttyRPMSG9” have n:1 mapping to physical LPUARTS, “/dev/ttyRPMSG10” is without “bus_id” and
displays the message sent from Linux to M-core’s debug console.

b. Check each virtual UART from “/dev/ttyRPMSGO0” to “/dev/ttyRPMSG9” is connected to peer virtual
UART between two boards, for example, ues "minicom" to open and configure the same virtual UART
on both boards:

root@imx93-9x9-1pddrd-gsb:~# minicom -s -D /dev/ttyRPMSG6

Then configure the UART as shown in the following figures:

[configuration]
Filenames and paths
File transfer protocols
Serial port setup
Modem and dialing

Screen and keyboard
Save setup as dfl
Save setup as..
Exit

Exit from Minicom

Figure 40. Configure RPMSG Virtual UART Step1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

123 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Serial Device 1 /dev/ttyRPMSG6H
Lockfile Location i /var/lock
Callin Program :
Callout Program :
Bps/Par/Bits : 115200 8N1
Hardware Flow Control : No
Software Flow Control : No
R5485 Enable : No
R5485 Rts On Send : No
R5485 Rts After Send : HNo
RS485 Rx During Tx : No
R5485 Terminate Bus : HNo
RS485 Delay Rts Before: ©
RS485 Delay Rts After : ©

Change which setting? |}

Figure 41. Configure RPMSG Virtual UART Step2

Save the settings and go back to minicom main window, then input any characters in one board's
minicom window. Then, the characters would be displayed on the other board's minicom window.

3.6 Heterogeneous Multicore VirtlO and networking sharing

3.6.1 Heterogeneous Multicore VirtlO

Heterogeneous Multicore VirtlO applies para-virtualization VirtlO technology to build resource sharing between
Heterogeneous asymmetric multiprocessing (AMP). The main difference from para-virtualization VirtlO is that
Heterogeneous Multicore VirtlO does not use and depend on any hypervisor. Therefore, it can be used for
resource sharing between Cortex-A and Cortex-M cores, or between multiple Cortex-A cores.

The VirtlO is a standard for para-virtualization to provide high-performance IO device virtualization for VM. The
Figure 42 shows the architecture of the VirtlO solution.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

124 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

O¥l NdOA

IXIINA
nanbuip

Available Used
ring ring

——{ Backend: VitlO device |

/

Hypervisor

Host
N

Figure 42. Para-virtualization VirtlO on hypervisor

The front-end VirtlO driver runs in the guest kernel space, and the backend VirtlO device runs in the Hypervisor.
The Virtqueue and Vring provide data transfer capability via shared memory. The hypervisor emulates the
device logic by VMExit and injecting vCPU IRQ. Therefore, para-virtualization VirtlO is used for resource
sharing between Virtual Machine guest OS and host OS, and it depends on the Hypervisor to run the VirtlO
backend.

The Heterogeneous Multicore VirtlO in Real Time Edge uses VirtlO technology. However, it runs VirtlO backend
on any CPU core including Cortex-A core and Cortex-M core. The VirtlO front-end runs on any other CPU core.
This technology uses VirtlO to establish communication between the front-end and backend, which run on
different CPU cores. Therefore, VirtlO can be used to share hardware resources between different CPU cores.

In the current implementation, the backend runs on RTOS and owns the hardware resources, such as
peripherals. The front-end runs on Linux. As there is no hypervisor providing VMEXxit and vCPU IRQ injecting
mechanism, the hardware or software mailbox between the front-end and back-end is needed. Figure 43 shows
the architecture of the Heterogeneous Multicore VirtlO.

Linux p \
APP RTOS
User
Frontend driver ailbox Backend: device
wrtqueue | YI,R,Q, e | virtqueue
driver
Kernel Access nptification o o
\ J N\ =
~ — —= -

Hardware

Figure 43. Heterogeneous Multicore VirtlO

Heterogeneous Multicore VirtlO uses shared memory to build Vring structure and data buffers. The shared
memory must be coherent between front end and Backend.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

125/ 404

NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

3.6.2 Heterogeneous Multicore VirtlO performance evaluation

A VirtlO transmission device is introduced for evaluating the performance between the frontend and backend
through virtqueues. There are 2 virtqueues for transmitting and receiving directions separately, and the device
configuration registers are used to configure and control the test cases.

The Table 32 "Heterogeneous Multicore VirtlO performance evaluation" lists the combination of supported

cases.

Table 32. Heterogeneous Multicore VirtlO performance evaluation

. i . Frontend Backend
Direction Pkt size
Buffer copy Buffer copy
TX
. Max 2KB Y/N Y/N
(Linux -> FreeRTOS)
RX
. Max 2KB Y/N Y/N
(FreeRTOS -> Linux)
3.6.3 Heterogeneous Multicore VirtlO network sharing
Figure 44 shows the heterogeneous Multicore VirtlO network sharing architecture.
Cortex-M/A RTOS Cortex-A Linux Cortex-A RTOS
Application Application Application
_ _ 1 : ?
Virtua| Networking Backend - l vir(tlt:;n’ite S‘e;;m) l virtio-net
I T (Frontend)
) Virtlo MMIO (Bus) j E
Control Virtual Switch H Hypervisor-less MMIO Portal
Module o T i L2 2 VirtlO Driver
T —\/"\"‘:“/"'\"‘:"/" W l VirtlO Driver I -
—) _I I_l \E‘ A
virtio-net virtio-net virtio-net 4¥ 4>
A i ‘ Shared Memory ‘ ‘ Shared Memory ‘
l El:lET Vi_rlIO Vi!'tIO VirtIO 4¥ 4>
Driver Drlvar‘ Driver Drlvs‘r‘ ‘ Mailbox ‘ ‘ Mailbox ‘

ENET

New
Software

Data Path

Existing
Software

packets

Figure 44. Heterogeneous Multicore VirtlO Networking Sharing

Control Path

Hardware

The virtual networking frontend runs on Cortex-A core, the frontend in Linux reuses the existing “drivers/
net/virtio net.c” driver by selecting kernel configuration item “CONFIG VIRTIO NET”. RTOS frontend
driver is not enabled in this release.

The Virtual Networking Backend can run in RTOS on Cortex-A core or Cortex-M core. The virtio-net backend
drivers use Heterogeneous Multicore VirtlO to communicate with virtio-net frontend. It includes two data paths to
handle data packets receiving/transmitting of frontend and one control path to handle control requirements from

the frontend.

A Virtual Switch in the backend is used to switch packets from different ports. The switch ports include one
“remote port” and many “local ports”. In general, a “remote port” is a physical Ethernet port such as physical
ENET port, which is used to receive/transmit packets from/to the physical Ethernet port. Here, “local port” refers

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024

126/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

to the virtual software port, such as the local port for virtio-net backend used to receive/transmit from/to virtio-net
backend. In fact, the packet is from/to virtio-net frontend through data path of Heterogeneous Multicore VirtlO
and another type of “local port” is used to connect to “virt-net” on RTOS to provide virtual Ethernet interface for
RTOS locally.

In the current implementation, an Ethernet L2 switch acts as a virtual switch. Each “local port” has a different
MAC address, so the packets received from a “remote port” can be switched to the destination “local port”
according to destination MAC address in the networking packets. The packets whose destination MAC address
does not match any “local port” are discarded, except broadcast packets. For the packets received from the
“local port”, the switch tries to check whether destination MAC address matches the address of other “local
ports”. If a matching entry is found, the packet is switched to the matched “local port”, so that the virtual switch
can implement switching packets between “local ports” locally. In case a match is not found, the packets are
sent to the external by “remote port”. That is to say Virtual Switch supports “local switch” and “remote switch”.

The Virtual Switch can connect to multiple “local port”, that is to say single physical Ethernet port, controlled by
CPU Core running backend, can be shared with multiple OS running on different CPU Core by though multiple
front-end, and local virtual Ethernet driver in back-end also provide Ethernet service for back-end CPU core
locally.

Note: In this release, “virt-net” on backend is not included and cannot provide local Ethernet service for back-
end CPU Core. The “virtio-net” front-end on RTOS is also not included in this release.

3.6.4 Building Heterogeneous Multicore VirtlO backend firmware

Refer to RTEDGEYOCTOUG to set up Yocto environment and build the nxp-image-real-time-edge. All demo
applications are located in the /examples directory of the rootfs.

The command bellow is used to compile the demo separately.

bitbake <multicore-app-name>

Where: "<multicore-app-name>" can be "virtio-perf-ca", "virtio-perf-cm", "virtio-net-backend-ca" or "virtio-net-
backend-cm".

The backend firmware is located in the directory:
tmp/deploy/images/imx8mm-1pddrd-evk/examples/heterogeneous-multicore/

For example, for i.MX8MM, the following binary images are located:

* “virtio-perf-cm/release/virtio perf cm4.bin”

* “virtio-perf-ca/ddr release/virtio perf ca53.bin”

* “virtio-net-backend-cm/release/virtio net backend cm4.bin”

* "virtio-net-backend-ca/ddr release/virtio net backend cab53.bin"

3.6.5 Building Heterogeneous Multicore VirtlO Frontend linux images

Refer to the RTEDGEYOCTOUG to set up Yocto environment and build the nxp-image-real-time-edge,
Linux image. Use the dtb files, which are located in rootfs images.

Alternatively, use the command bellow to compile the demo separately.

bitbake linux-imx

Then copy the following images to board’s first FAT32 partition:

* arch/armé64/boot/Image:. Kernel Image

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

127 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

* arch/armé64/boot/dts/freescale/imx8mm-evk-virtio-perf-ca53.dtb: i.MX8MM DTB file for
VirtlO performance evaluation, backend on Cortex-A53.

* arch/armé64/boot/dts/freescale/imx8mm-evk-virtio-perf-cm4.dtb: i.MX8MM DTB file for
VirtlO performance evaluation, backend on Cortex-M4.

* arch/armé64/boot/dts/freescale/imx8mm-evk-virtio-net-ca53.dtb: i.MX8MM DTB file for
VirtlO networking sharing, backend on Cortex-A53.

e arch/armé64/boot/dts/freescale/imx8mm-evk-virtio-net-cm4.dtb: i.MX8MM DTB file for VirtlO
networking sharing, backend on Cortex-M4.

* arch/armé64/boot/dts/freescale/imx8mp-evk-virtio-net-cab3.dtb: i.MX8MP DTB file for
VirtlO networking sharing, backend on Cortex-A53.

e arch/armé64/boot/dts/freescale/imx8mp-evk-virtio-net-cm7.dtb: i.MX8MP DTB file for VirtlO
networking sharing, backend on Cortex-M7.

* arch/armé64/boot/dts/freescale/imx93-11x11-evk-virtio-net-ca55.dtb:i.MX93 DTB file for
VirtlO networking sharing, backend on Cortex-A55.

e arch/armé64/boot/dts/freescale/imx93-11x11-evk-virtio-net-cm33.dtb: i.MX93 DTB file for
VirtlO networking sharing, backend on Cortex-M33.

3.6.6 Running VirtlO performance testing

The VirtlO performance testing supports running on i.MX 8M Mini LPDDR4 EVK and i.MX 8M Plus LPDDR4
EVK.

Perform the following steps for VirtlO performance testing:

1. Set up the UART console for the frontend and backend
Connect the DEBUG UART slot on the board to your PC through the USB Cable. On the PC, this step
creates two USB serial ports (port0 and port1) for i.MX 8M Mini EVK board, and four USB serial ports (port0
~ port3) for i.MX 8M Plus EVK board. Open two UART consoles for UART port0 and port1 on i.MX 8M Mini
EVK board or port2 and port3 on i.MX 8M Plus EVK board with the following setup:
¢ 115200
* No parity
8 data bits
* 1 stop bit
The first UART console is used for Linux that runs the VirtlO frontend, the another is used for RTOS that
runs the VirtlO backend.
2. Boot up VirtlO backend FreeRTOS and frontend Linux
Heterogeneous Multicore VirtlO Backend can run on Cortex-A core or Cortex-M core to evaluate different
use cases.
¢ Running VirtlO performance Backend on i.MX 8M Mini LPDDR4 EVK
a. Run the backend on Cortex-M core
On the U-Boot command line, execute the following commands to boot Cortex-M core with backend
firmware:

=> extd4load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/virtio-
perf-cm/release/virtio perf cm4.bin

=> cp.b 0x48000000 0x7e0000 0x20000

=> bootaux 0x7e0000

Then, boot Linux kernel:

=> setenv fdtfile imx8mm-evk-virtio-perf-cmé.dtb
=> setenv mmcargs S$mmcargs clk ignore unused
=> run bsp bootcmd

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

128 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

b. Or run the backend on Cortex-A53 core
Execute the following command in U-Boot command line:

=> extd4load mmc 1:2 0x93c00000 /examples/heterogeneous-multicore/virtio-
perf-ca/ddr release/virtio perf ca53.bin

=> dcache flush; icache flush;

=> cpu 3 release 0x93c00000

Then, boot Linux kernel:

=> setenv fdtfile imx8mm-evk-virtio-perf-ca53.dtb
=> setenv mmcargs $mmcargs maxcpus=3
=> run bsp bootcmd

* Running VirtlO performance Backend on i.MX 8M Plus LPDDR4 EVK
a. Run the backend on Cortex-M core

On the U-Boot command line, execute the following commands to boot Cortex-M core with backend
firmware:

=> extd4load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/virtio-
perf-cm/release/virtio perf cm7.bin

=> cp.b 0x48000000 0x7e0000 0x20000

=> bootaux 0x7e0000

Then, boot Linux kernel:

=> setenv fdtfile imx8mp-evk-virtio-perf-cm7.dtb
=> setenv mmcargs Smmcargs clk ignore unused
=> run bsp bootcmd

b. Or run the backend on Cortex-A53 core
Execute the following command in U-Boot command line:

=> ext4load mmc 1:2 0xc0000000 /examples/heterogeneous-multicore/virtio-
perf-ca/ddr release/virtio perf cab53.bin

=> dcache flush; icache flush;

=> cpu 3 release 0xc0000000

Then, boot Linux kernel:

=> setenv fdtfile imx8mp-evk-virtio-perf-cab3.dtb
=> setenv mmcargs S$mmcargs maxcpus=3
=> run bsp bootcmd

3. Use the “vt_test.sh” tool in Linux to start the performance testing use case.
The following is the help information of the tool.

root@imx8mm-lpddr4-evk:~# vt test.sh -h

USAGE: vt test.sh [-h] [-s pkt size] [-r regression] [-t type] [-b backend
copyl] [-f frontend copy]

-s: Packet size: max 2048 Bytes, default: 64 Bytes

-r: Regression times: default: 1000

-t: Test type: 0: TX (frontend to backend); 1: RX (backend to frontend)
-b: Backend copy buffer option: O0: not copy; 1l: copy

-f: Frontend copy buffer option: 0: not copy; 1l: copy

-h: This USAGE info

a. “-s” specifies the packet size to be used for testing, such as “-s 64”, it uses 64-byte packets for testing.
b. “t” specifies the testing direction:

* “t 0” means the test sends packets from frontend (Linux) to backend(RTOS on A-Core or M-Core),

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

129/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

* “t 1” means the test sends packets from backend (RTOS on A-Core or M-Core) to frontend(Linux).
c. “r” specifies the regression times:
* “r 100000 indicates that the test case sends 100000 packets with the direction from backend to
frontend or frontend to backend, which is specified by the “-t” parameter.
d. “-b” specifies whether there is a memory copy in the backend:

» For the memory copy case, use “-b 17, for enabling memory copy from Vring buffer to user application
buffer when receiving packet from fontend, or copy from user application buffer to Vring buffer when
transmitting packets to frontend.

* For no memory copy case “-b 0”, specifies there will be no memory copy in backend for each packet
receiving or transmitting.

e. “f’ specifies whether there is a memory copy in the frontend.
For example, see the command below:

vt test.sh -s 64 -r 1000000 -t 0 -b O -f O

The above test case transmits 1000000 packets from frontend (Linux) to backend (RTOS on A-Core or M-
Core), each packet size is 64 bytes, there is no memory copy both on frontend and backend. The test log is
as follows:

root@imx8mm-lpddré4-evk:~# vt test.sh -s 64 -r 1000000 -t 0 -b 0 -f£ O

[20_561527] B b e i b b e b b B b B b I I R B I b B I R I b R I S b B b e B b e S b B 2 B b b i 4

[20.561539] Front-end: interrupt mode
[20.561543] Back-end: interrupt mode
[20.561544] Front-end: do NOT copy buffer
[20.561546] Back-end: do NOTcopy buffer

]
]
]
]
[20.561547] Test case: TX
]
]
]

[20.561547 pkt size: <64>
[20.561547 regress times: <1000000>
[21.868494] tx test: pkt size (64 B), pkt cnt (1000000), period (1298108 ns)

The log shows that 1000000 packets are transmitted from frontend to backend in 1298108 us. Therefore,
the performance is 770 kpps or 394 Mbit/s.

3.6.7 Running VirtlO network sharing

VirtlO Network Sharing supports running on i.MX 8M Mini, i.MX 8M Plus, and i.MX 93 platforms.

1. Set up the UART console for the frontend and backend
Connect the DEBUG UART slot on the board to your PC through the USB Cable. On the PC, this step
creates two USB serial ports (port0 and port1) for i.MX 8M Mini EVK board, and four USB serial ports (port0
~ port3) for i.MX 8M Plus EVK board and i.MX93 EVK board. Open two UART consoles for UART port0 and
port1 on i.MX 8M Mini EVK board or port2 and port3 on i.MX 8M Plus EVK board and i.MX93 EVK board
UART with the following setup:
¢ 115200
* No parity
* 8 data bits
* 1 stop bit
The first UART console is used for Linux that runs the VirtlO frontend. The UART console is used for RTOS,
which runs the VirtlO backend.

2. Hardware setup
Connect ENET port on EVK board to a networking switch or another board by using an Ethernet cable.
For i.MX 8M Mini EVK board, there is a single Ethernet port on the board. So, use this port for testing.
For i.MX 8M Plus EVK board and i.MX93 EVK board, there are two Ethernet ports are on the board. The
first one, which is close to DEBUG USB port is ENET port and it is used for VirtlO Networking Sharing. So

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

130/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

connect this port to the networking link. Another Ethernet port is an ENET QoS port and it is not used for
this demo.

3. Booting backend and frontend
Heterogeneous Multicore VirtlO backend can run on Cortex-A core or Cortex-M core.
* Running Virtio Networking Backend on i.MX8 MM
a. Run the backend on a Cortex-M4 core
On U-Boot command prompt, execute the following commands to boot Cortex-M core with firmware:

=> extd4load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/virtio-
net-backend-cm/release/virtio net backend cm4.bin

=> cp.b 0x48000000 0x7e0000 0x20000

=> bootaux 0x7e0000

Then boot Linux kernel:

=> setenv fdtfile imx8mm-evk-virtio-net-cméd.dtb

=> setenv mmcargs Smmcargs mem=2048MB clk ignore unused
=> run bsp bootcmd

b. Or run the backend on the Cortex-A53 core
Execute the following command in the U-Boot command line:

=> extd4load mmc 1:2 0x93c00000 /examples/heterogeneous-multicore/virtio-
net-backend-ca/ddr release/virtio net backend cab53.bin

=> dcache flush; icache flush;

=> cpu 3 release 0x93c00000

Then, boot the Linux kernel:

=> setenv fdtfile imx8mm-evk-virtio-net-cab3.dtb
=> setenv mmcargs S$mmcargs maxcpus=3 clk ignore unused
=> run bsp bootcmd

* Running Virtio Networking Backend on i.MX 8MP
a. Run the backend on Cortex-M7 core
U-Boot command prompt, execute the following commands to boot Cortex-M core with firmware:

=> extd4load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/virtio-
net-backend-cm/release/virtio net backend cm7.bin

=> cp.b 0x48000000 0x7e0000 0x20000

=> bootaux 0x7e0000

Then, boot Linux kernel:

=> setenv fdtfile imx8mp-evk-virtio-net-cm7.dtb
=> setenv mmcargs Smmcargs mem=2048MB clk ignore unused
=> run bsp bootcmd

b. Or running the backend on Cortex-A53 core
Execute the following command in U-Boot command line:

=> extd4load mmc 1:2 0xC0000000 /examples/heterogeneous-multicore/virtio-
net-backend-ca/ddr release/virtio net backend cab53.bin

=> dcache flush; icache flush;

=> cpu 3 release 0xC0000000

Then boot Linux kernel:

=> setenv fdtfile imx8mp-evk-virtio-net-cab53.dtb
=> setenv mmcargs S$mmcargs maxcpus=3 clk ignore unused
=> run bsp bootcmd

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

1317404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

* Running Virtio Networking Backend on i.MX93
a. Running the backend on Cortex-M33

On U-Boot command prompt, execute the following commands to boot Cortex-M core with firmware:

=> extd4load mmc 1:2 0xd0000000 /examples/heterogeneous-multicore/virtio-

net-backend-cm/release/virtio net backend cm33.bin

=> cp.b 0xd0000000 0x201e0000 20000
=> bootaux 0x1ffe0000

Then boot Linux kernel:

=> setenv fdtfile imx93-11lxll-evk-virtio—-net-cm33.dtb

=> setenv mmcargs S$mmcargs clk ignore unused
=> run bsp bootcmd

b. Or running the backend on Cortex-A55
Execute the following command in the U-Boot command line:

=> ext4load mmc 1:2 0xd0000000 /examples/heterogeneous-multicore/virtio-

net-backend-ca/ddr release/virtio net backend cab55.bin

=> dcache flush && icache flush
=> cpu 1 release 0xd0000000

Then boot Linux kernel:

=> setenv fdtfile imx93-1lxll-evk-virtio-net-cab5.dtb
=> setenv mmcargs Smmcargs maxcpus=1l clk ignore unused

=> run bsp bootcmd

4. Evaluate Networking Sharing

After backend starts, the second UART console displays the following backend log:

Starting Virtio networking backend...

virtio network device initialization succeed!
Switch enabled with enet remote port succeed!
ENET: PHY link is up with speed 1000M full-duplex

After the kernel boots up, use “i fconfig” and “ping” commands to verify the virtual networking interface.
In the following log, "ethQ" is virtio_net interface, but it may be different on different platform. So, use
"ethtool" to find out the virtio_net interface that is using "virtio_net" driver, and the default MAC address of

virtio_net interface is "00:04:9f:00:01:02".

root@imx8mm-lpddrd-evk:~# ifconfig

ethO: flags=4163<UP,BROADCAST, RUNNING, MULTICAST> mtu 1500
broadcast 192.168.1.255

inet 192.168.1.107 netmask 255.255.255.0

inet6 fd08:d7d5:e652::733 prefixlen 128 scopeid 0x0<global>

inet6 £d08:d7d5:e652:0:201:2ff:£fe03:405 prefixlen 64

0x0<global>
inet6 fe80::201:2ff:fe03:405 prefixlen 64
ether 00:04:9£:00:01:02 txgueuelen 1000
RX packets 54 bytes 5544 (5.4 KiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 143 bytes 20887 (20.3 KiB)

TX errors 0 dropped 0 overruns 0O carrier O

root@imx8mm-lpddrd-evk:~# ethtool -i ethO
driver: virtio net

version: 1.0.0

firmware-version:

expansion-rom-version:

bus-info: b8400000.virtio net
supports-statistics: yes

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

scopeid

scopeid 0x20<link>
(Ethernet)

collisions 0

© 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

1327404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

supports—-test: no
supports—-eeprom-access: no
supports-register-dump: no
supports-priv-flags: no

root@imx8mm-lpddrd-evk:~# ping 192.168.1.1

PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.

64 bytes from 192.168.1.1: icmp seg=1 ttl=64 time=0.888 ms
64 bytes from 192.168. : icmp seg=2 ttl=64 time=0.541 ms
64 bytes from 192.168. icmp seg=3 ttl=64 time=2.13 ms
64 bytes from 192.168. icmp seg=4 ttl=64 time=2.29 ms
64 bytes from 192.168. icmp seg=5 ttl=64 time=1.73 ms

R
e N

Use the following command to change the MAC address of virtio net:

root@imx8mm-lpddrd-evk:~# ifconfig eth0 hw ether 00:04:9£:00:01:03

3.7 Unified Life Cycle management

3.7.1 Overview

Heterogeneous Multicore Framework provides unified Life Cycle Management for both Cortex-A and Cortex-M
cores.

Real-time Edge supports bootstrapping the native Zephyr and native FreeRTOS on the Cortex-A core and
Cortex-M core with U-Boot command and with the RemoteProc under Linux as listed in the below table.

Table 33. Bootstrapping options for Cortex-A and CortexM cores

Core Type U-Boot RemoteProc on Linux
NativeZephyr on M core Y Y
NativeFreeRTOS on M core Y Y
NativeZephyr on A core Y -
NativeFreeRTOS on A core Y -

3.7.2 Booting Native RTOS Cortex-A core image from U-Boot

Downloading the Pure RTOS Cortex-A Core image into DDR memory firstly, and then use U-Boot command
"go" to boot the image from Core0 or use U-Boot command "cpu" to boot the image from the other Cortex-A
Cores.

Refer to Section 2.5.3 "Booting native RTOS image on Cortex-A core" for details.

3.7.3 Booting Native RTOS Cortex-M Core image from U-Boot

U-boot command "bootaux" is used to boot Cortex-M Core RTOS Image from U-Boot, for example, after the
board is booted into the U-Boot console.

* Use the following command to boot Arm Cortex-M core on i.MX 8M Mini LPDDR4 EVK board:

=> ext4load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/hello-world-cm/
release/hello world cm4 UART4.bin; cp.b 0x48000000 0x7e0000 20000;
=> bootaux 0x7e0000

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

133/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

* Use the following command on i.MX 8M Plus LPDDR4 EVK board:

=> extd4load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/hello-world-cm/
release/hello world cm7 UART4.bin; cp.b 0x48000000 0x7e0000 20000;
=> bootaux 0x7e0000

Use the following command on i.MX93 EVK board:

=> ext4load mmc 1:2 0xd0000000 /examples/heterogeneous-multicore/hello-world-cm/
release/hello world cm33 UART2.bin; cp.b 0xd0000000 0x201e0000 20000;
=> bootaux 0x1ffe0000

3.7.4 Using RemoteProc to boot RTOS Cortex-M Core Image

If you choose to use RemoteProc to start the remote core directly, execute run prepare mcore in U-Boot
before starting the Linux OS.

=> run prepare mcore

Then, use the following command to use RPMSG dtb file to boot the kernel:

On imx8mm-lpddr4-evk board

=> setenv fdtfile imx8mm-evk-rpmsg.dtb
=> boot

On imx8mp-lpddr4-evk board
=> setenv fdtfile imx8mp-evk-rpmsg.dtb
=> boot

Then, after the Linux kernel boots up, run the commands for i.MX 8MP:

root@imx8mp-lpddr4-evk:~# echo -n imx8mp m7 TCM hello world.elf > /sys/class/
remoteproc/remoteprocO/firmware

root@imx8mp-lpddrd-evk:~# echo start > /sys/class/remoteproc/remoteprocO/state
[19.668712] remoteproc remoteprocO: powering up imx-rproc

[19.670341] remoteproc remoteprocO: Booting fw image

imx8mp m7 TCM hello world.elf, size 153316

root@imx8mp-lpddrd-evk:~# [20.191036] remoteproc remoteprocO:

remote processor
imx-rproc is now up

For i.MX 8MM, run the following commands:

root@imx8mm-lpddr4-evk:~# echo -n imx8mm m4 TCM hello world.elf > /sys/class/
remoteproc/remoteprocO/firmware

root@imx8mm-lpddrd4-evk:~# echo start > /sys/class/remoteproc/remoteprocO/state
[209.654414] remoteproc remoteproc(O: powering up imx—-rproc

[209.656646] remoteproc remoteprocO: Booting fw image

imx8mm m4 TCM hello world.elf, size 146136

root@im§8ma—lpadr4—e§k:~# [210.174456] remoteproc remoteprocO: remote processor
imx-rproc is now up

After these steps are followed, the remote processor imx-rproc is up.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

User guide Rev. 2.8 — 29 March 2024

© 2024 NXP B.V. All rights reserved.

134 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

4 Heterogeneous Multi-SoC Framework

This section describes the features of heterogeneous Multi-SoC framework and how to implement it using NXP
hardware platforms.

4.1 Introduction

Heterogeneous Multi-SoC Framework enables the usage of a combination of MPU and i.MX RT1180 as an
Industrial Switch. This extends the MPU hardware capability with the i.MX RT1180 hardware capability, thereby
providing switch functionality, TSN functionality, and the capability of supporting different Industrial Protocols.
The i.MX RT1180 can be used to run real-time tasks such as industrial protocols in the real-time domain,
whereas the MPU can process compute-heavy tasks, in the non-real-time domain.

The external Ethernet ports of i.MX RT1180 can be exposed to the MPU side as standard Ethernet interfaces as
data path. Different interfaces such as SPI or 12C can be used as the management interface between MPU and
i.MX RT1180.

4.2 Software architecture

The Linux Distributed Switch Architecture (DSA) framework is used to expose the i.MX RT1180 NETC
switch ports to MPU side. In this architecture, one of the NETC switch ports or ENETC port is used as the
data interface. Different interfaces (for example LPSPI, I2C or message unit) can be used as management
interfaces.

For more information regarding Linux DSA, refer to https://docs.kernel.org/networking/dsa/dsa.html.

Management interface

N 4 —F a

MX MPU

LPSPI 12c or
-) Powerlink A -
TS eCAT slave N
Linux tc, ethtool Profinet IE-Link TSN stack
Linux DSA Ethernet/IP HSR Virtual switch
0
PCle ENET Qos)

/ Eth | Eth Eth Eth >

Data interface

Figure 45. Using switch port as DSA CPU port which is connected to MPU

Note: The industrial protocols listed in the box of i.MX RT1180 are not supported yet.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

135/404

https://docs.kernel.org/networking/dsa/dsa.html

NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

Management interface

MX MPU LPSPI 2c \ = 80
. N PowerlLink
HAGES eCAT slave >
Linux tc, ethtool Profinet IE-Link TSN stack
Linux DSA Ethernet/IP HSR Virtual switch
0
PCle ENET Qos 0 -
/ Eth Eth Eth Eth ————
Data interface

Figure 46. Using ENETC port as DSA CPU port which is connected to MPU

The software architecture implementation includes:

* NETC DSA switch driver on Linux
* Device driver of DSA control interface on Linux DSA
* Service driver of DSA control interface on i.MX RT1180
* NETC DSA switch configuration on i.MX RT1180
— Using NETC switch port as DSA CPU port
— Using ENETC port as DSA CPU port
The external Ethernet ports of i.MX RT1180 are exposed to MPU with Linux DSA framework. The ports can be
viewed as standard Ethernet ports which could support the below operations:
— Binding Linux IP address to a specific port
— Broadcast on a specific port and others

To identify the source traffic of incoming traffic, the outer VLAN tag is used as the DSA tag to indicate which
port the traffic is coming from. The VID field of the VLAN tag is encoded to include the source/destination port.
Below is the description of the12-bit VID field:

Table 34. VID field description

11 10 9 8 7 6 5 4 3 2 1 0

RSV VBID SWITCH ID VBID PORT

Note: The above custom VID definition is coming from the Linux tag 8021q source code (net/dsa/
tag 8021q.c) which is used by the Linux NETC DSA driver. As a result, VLAN ID 3072 to 3076 as well as
3088 are reserved by the Linux NETC DSA driver and will not be allowed to be used by the user.

4.2.1 Using one of the i.MX RT1180 switch ports as DSA CPU port

Consider the case when one of the i.MX RT1180 switch ports is used as DSA CPU port that is connected to
MPU. In such a situation, the packets received on the external ports of i.MX RT1180 are filtered using Ingress
Port Filter Table. The incoming packets will be filtered according to the ingress port ID, and forwarded to

the DSA CPU port by either stream forwarding (by-passing the 802.1Q bridge forwarding) or 802.1Q bridge
forwarding using Ingress Stream Table. The outer VLAN tag is added by using Egress Treatment Table on
egress DSA CPU port.

REALTIMEEDGEUG
User guide

All information provided in this document is subject to legal disclaimers.

Rev. 2.8 — 29 March 2024

© 2024 NXP B.V. All rights reserved.

136 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

The packets received on the DSA CPU port are filtered according to the DSA tag, which is viewed a VID from
i.MX RT1180 perspective. This is done by using Ingress Port Filter Table and the packets are directed to the
port mapped to the VID by using Ingress Stream Table. The outer VLAN tag is removed on ingress DSA CPU
port by also using Ingress Stream Table.

4.2.2 Using i.MX RT1180 ENETC port as DSA CPU port

For the case using the ENETC port as the DSA CPU port that is connected to MPU, the packets received on the
external ports of i.MX RT1180 are filtered using the Ingress Port Filter Table. The incoming packets are filtered
according to the ingress port ID, and forwarded to the internal switch port (also called switch management

port). The forwarding is done by either stream forwarding (by-passing the 802.1Q bridge forwarding) or 802.1Q
bridge forwarding using Ingress Stream Table. The software virtual switch running on the CPU of i.MX RT1180
receives the packets and the software virtual switch adds the DSA tag and forwards the packets to the ENETC
port.

The packets received on the ENETC port are forwarded by the software virtual switch to the internal switch port,
where the packets are filtered according to the DSA tag, which is viewed as VID from i.MX RT1180 perspective.
This is done by using Ingress Port Filter Table and the packets are directed to the port mapped to the VID by
using Ingress Stream Table. The outer VLAN tag is removed by using Egress Treatment Table on egress switch
port.

4.3 Running the Heterogeneous Multi-SoC Framework

This section describes the process to implement and run the heterogeneous Multi-SoC framework on supported
MPU platforms and i.MX RT1180 EVK.

4.3.1 Building and running on MPU + i.MX RT1180 EVK

The currently supported MPU platforms include i.MX 8M Plus EVK and i.MX 93 EVK.

Note: Fori.MX RT1180 EVK, the supported board revision is SCH-50577 REV C2 (700-50577 REVC), which
has i.MX RT1180 Rev. BO chip.

4.3.1.1 Hardware setup for i.MX 8M Plus EVK and i.MX RT1180 EVK

1. SPI connection between i.MX 8M Plus EVK and i.MX RT1180 EVK
On i.MX 8M Plus EVK, ECSPI2 pins are available on J21 connector, but due to signal incompatibility
with the i.MX RT1180 EVK LPSPI3 pins on J44 connector, board rework is needed on i.MX 8M Plus EVK
to replace a translating transceiver NBT0104 U55 which has limited capacitive loading for 70 pF with
NTS0104GU12, which has internal pull-up of 10K and bigger capacitive loading. Refer to the schematic
shown in the Figure 47 below:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

1371404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

vDD_1V8 VEXP_3V3
C228 C229
=—0.1uF = —0.1uF
25V 25V
_ | o402 CC -~ | o402 _CC
— Uss - =
GND < o GND
ECSPI2 SS0 2 = = 10 ECSPI2 SS0 3V3
4 ECSPI2_SSO ECSPI2 MOS] 3] Al Bl 5 —FCSPl2 MOSI 3V3
4 ECSPI2_MOSI A2 B2
4 ECSPI2_MISO ECSPI2 MISO 4 A5 B3 3 ECSPI2 MISO 3V3
4 ECSPI2_SCLKK. ECSPIZ SCLK 5 A1 B 7 ECSPI2 SCLK 3V3
R223 . 10K 12
VDD_1V8—P ANANA 1OE =
O]
©| NTB0104GU12
GND
Figure 47. Hardware rework for SPI signals on i.MX 8M Plus EVK

Connect ECSPI2 pins on J21 connector to i.MX RT1180 EVK LPSPI3 pins by following the connection in
Table 35 "Pin connection between i.MX 8M Plus EVK and i.MX RT1180 EVK".

Table 35. Pin connection between i.MX 8M Plus EVK and i.MX RT1180 EVK

i.MX 8M Plus EVK i.MX RT1180 EVK

Connection
Pin Function Pin Function
21 ECSPI2_MISO <> 10 LPSPI3_SIN
19 ECSPI2_MOSI <> 8 LPSPI3_SOUT
23 ECSPI2_SCLK <> 12 LPSPI3_CLK
24 ECSPI2_SS0 <> 6 LPSPI3_PCSO
6 GND <> 14 GND

2. Ethernet connection between i.MX 8M Plus EVK and i.MX RT1180 EVK
For the case using one of the i.MX RT1180 external switch ports as DSA CPU port, use Ethernet cable to
connect i.MX 8M Plus EVK ENET2 port (eth1 in Linux) on J8 RJ45 connector and i.MX RT1180 EVK NETC
switch port 3 (ENET3) on J31 RJ45 connector.
For the case using ENETC port as DSA CPU port, use Ethernet cable to connect i.MX 8M Plus EVK ENET2
port (eth1l in Linux) on J8 RJ45 connector and i.MX RT1180 EVK ENETC port (ENET4) on J32 RJ45
connector.

4.3.1.2 Hardware setup for i.MX 93 EVK and i.MX RT1180 EVK

1. LPSPI connection between i.MX 93 EVK and i.MX RT1180 EVK
Using flying wire to connect i.MX 93 EVK LPSPI3 pins on J1001 connector and i.MX RT1180 EVK LPSPI3
pins on J44 connector by following the pin connection in below table:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

138 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 36. Pin connection between i.MX 93 EVK and i.MX RT1180 EVK

i.MX 93 EVK i.MX RT1180 EVK

Connection
Pin Function Pin Function
19 LPSPI3_SOUT <> 10 LPSPI3_SIN
21 LPSPI3_SIN <> 8 LPSPI3_SOUT
23 LPSPI3_CLK <> 12 LPSPI3_CLK
24 LPSPI3_PCS0 <> 6 LPSPI3_PCS0
25 GND <> 14 GND

2. Ethernet connection between i.MX 93 EVK and i.MX RT1180 EVK
For the case using one of the i.MX RT1180 external switch ports as DSA CPU port, use Ethernet cable to
connect i.MX 93 EVK ENET_QOS port (ethl in Linux) on J501 RJ45 connector and i.MX RT1180 EVK
NETC switch port 3 (ENET3) on J31 RJ45 connector.
For the case using ENETC port as DSA CPU port, use Ethernet cable to connect i.MX 93 EVK ENET_QOS
port (eth1l in Linux) on J501 RJ45 connector and i.MX RT1180 EVK ENETC port (ENET4) on J32 RJ45
connector.

4.3.1.3 Building the DSA switch application for i.MX RT1180 EVK

The demo application images dsa_switch.elf/dsa _switch.bin and dsa_enetc.elf/dsa enetc.bin
for i.MX RT1180 EVK are installed into target rootfs with the MPU Yocto image build, and are available in /
examples/heterogeneous-multi-soc/dsa-switch-evkmimxrt1180-cm33/ directory.

Also, the demo application images can be deployed into the Yocto build directory by using the following Yocto
commands:

For i1i.MX 8M Plus EVK

$ DISTRO=nxp-real-time-edge MACHINE=imx8mp-lpddrd4-evk source real-time-edge-

setup-env.sh -b <build dir>

S bitbake dsa-switch-evkmimxrtl1180-cm33

For i.MX 93 EVK

$ DISTRO=nxp-real-time-edge MACHINE=imx93evk source real-time-edge-setup-env.sh
-b <build dir>

S bitbake dsa-switch-evkmimxrt1180-cm33

After the Yocto bitbake command is used, the demo application images can be found in the below directory on
the build host:

<build dir>/tmp/deploy/images/<MACHINE>/examples/heterogeneous-multi-soc/dsa-
switch-evkmimxrt1180-cm33

The demo applications are available in both release and ram release mode. The release image boots
from the external QuadSPI NOR flash and then relocates to internal memory (Code TCM, System TCM and
OCRAM) and needs to be flashed in the external NOR flash. The ram release image boots from internal
memory and needs to be loaded directly into internal memory by host debug tools.

4.3.1.4 Bringing up MPU and i.MX RT1180 EVK

1. Make SPI and Ethernet connections between i.MX 8M Plus EVK or i.MX 93 EVK and i.MX RT 1180 EVK by
following the steps in the Section Section 4.3.1.1 "Hardware setup for i.MX 8M Plus EVK and i.MX RT1180
EVK" or Section 4.3.1.2 "Hardware setup for i.MX 93 EVK and i.MX RT1180 EVK".

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

139 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2. Make a serial connection between J23 connector on i.MX 8M Plus EVK or J1401 connector on i.MX 93 EVK
and USB connector on host PC usmg USB cable. Open the terminal application on host PC, such as PuTTY
or TeraTerm, and connect to the 3™ debug console which is used by Linux running on MPU.

3. Make a serial connection between J53 connector on i.MX RT1180 EVK and USB connector on host PC
using USB cable. Open another terminal application on host PC, and connect to the debug console which
is used by FreeRTOS running on i.MX RT1180 EVK. Note that the terminal settings ‘Implicit CR in every LF’
should be enabled for correct display of the logs.

4. Power on i.MX RT1180 EVK board, and flash the binary image release/dsa switch.bin or release/
dsa_enetc.bin oni.MX RT1180 EVK and power cycle the board. Alternatively, one can download the elf
Imageram,release/dsa switch.elf or ram release/dsa enetc.elf by host debug tools (e.g.
using JTAG debugger connected to J37 connector) After the demo application is running, there should be
continuous logs displayed in the console.

5. Power on the MPU board and enter U-Boot command line. Then execute the corresponding commands
depending on which port on i.MX RT1180 is used as DSA CPU port.

For the case using one of the i.MX RT1180 external switch ports as DSA CPU port:

For i1.MX 8M Plus EVK
u-boot=> setenv fdtfile imx8mp-evk-revb4-dsa.dtb
u-boot=> boot

For 1.MX 93 EVK
u-boot=> setenv fdtfile imx93-11xll-evk-dsa.dtb
u-boot=> boot

For the case using ENETC port as DSA CPU port:

For i.MX 8M Plus EVK
u-boot=> setenv fdtfile imx8mp-evk-revb4-dsa-enetc.dtb
u-boot=> boot

For 1.MX 93 EVK
u-boot=> setenv fdtfile imx93-11xll-evk-dsa-enetc.dtb
u-boot=> boot

After Linux is up on MPU, refer to the Section 4.3.1.5 "Runtime usage on MPU and i.MX RT1180 EVK" for the
detailed usage on how to show and configure various NETC switch features on i.MX RT1180.

4.3.1.5 Runtime usage on MPU and i.MX RT1180 EVK

This section describes the major i.MX RT1180 NETC switch features that can be queried or configured on MPU
+i.MX RT1180 EVK heterogeneous multi-SoC architecture using Linux DSA (Distributed Switch Architecture).

4.3.1.5.1 i.MX RT1180 NETC switch interface under Linux

On MPU, after Linux is up, on successful initialization of the Linux NETC DSA driver, the i.MX RT1180 NETC
front panel switch port 0 (ENETO), port 1 (ENET1), port 2 (ENET2), port 3 (ENET3) should have a network
device interface attached with the swpX name format.

Table 37. i.MX RT1180 EVK NETC switch port mapping in Linux on MPU

i.MX RT1180 EVK NETC switch port Label on i.MX RT1180 EVK Linux network device name on MPU
Port 0 ENETO (J28) swp0
Port 1 ENET1 (J29) swp1
Port 2 ENET2 (J30) swp2
Port 3 ENTES3 (J31) N/A or swp3 (see note)
REALTIMEEDGEUG Al information provided in this document is subject to legal disclaimers. ©2024 NXP B.V. Al rights reserved.
User guide Rev. 2.8 — 29 March 2024

140/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 37. i.MX RT1180 EVK NETC switch port mapping in Linux on MPU...continued
i.MX RT1180 EVK NETC switch port Label on i.MX RT1180 EVK Linux network device name on MPU

Port 4 (internal) N/A N/A

Note: Linux DSA does not currently create user network device for CPU port. When using one of the i.MX
RT1180 external switch ports as CPU port (i.e. the i.MX RT1180 NETC switch port 3 is used as CPU port), it
is not visible to the user as a normal network device in Linux. When using ENETC port as CPU port, the i.MX
RT1180 NETC switch port 3 is shown as swp3 in Linux.

One can use ifconfig -a command to show these network device interfaces.

Example - NETC switch port interfaces swpX shown by ifconfig -a

ifconfig -a
[...]
swpO: flags=4098<BROADCAST,MULTICAST> mtu 1500
ether 00:04:9£:08:49:31 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 Dbytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

swpl: £lags=4098<BROADCAST,MULTICAST> mtu 1500
ether 00:04:9£:08:49:31 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame O
TX packets 0 Dbytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions O

swp2: flags=4098<BROADCAST,MULTICAST> mtu 1500
ether 00:04:9f:08:49:31 txqueuelen 1000 (Ethernet)
RX packets 78 bytes 19158 (18.7 KiB)
RX errors 0 dropped 78 overruns 0 frame O
TX packets 0 Dbytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

/* swp3 is only available when using ENETC port as DSA CPU port */
swp3: flags=4098<BROADCAST,MULTICAST> mtu 1500

ether 00:04:9f:08:49:31 txqueuelen 1000 (Ethernet)

RX packets 0 bytes 0 (0.0 B)

RX errors 0 dropped 0 overruns 0 frame O

TX packets 0 Dbytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions O

Also, the ip 1ink show command uses the swpX@ethl name format to also indicate the associated master
Ethernet interface (eth1) on MPU for the DSA switch port.

Example - NETC switch port interfaces swpx and DSA master interface ethl shown by ip 1ink show.

ip link show
[..]
3: ethl: <BROADCAST,MULTICAST,UP, LOWER UP> mtu 1504 gdisc mg state UP mode
DEFAULT group default glen 1000

link/ether 00:04:9f:08:49:31 brd ff:ff:ff:ff:ff:ff
4: swpO@ethl: <BROADCAST,MULTICAST> mtu 1500 gdisc noop state DOWN mode DEFAULT
group default glen 1000

link/ether 00:04:9f:08:49:31 brd ff:ff:ff:ff:ff:ff

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

141/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

5: swpl@ethl: <BROADCAST,MULTICAST> mtu 1500 gdisc noop state DOWN mode DEFAULT
group default glen 1000

link/ether 00:04:9f:08:49:31 brd ff:ff:ff:ff:ff:ff
6: swp2@ethl: <BROADCAST,MULTICAST> mtu 1500 gdisc noop state DOWN mode DEFAULT
group default glen 1000

link/ether 00:04:9f:08:49:31 brd ff:ff:ff:ff:ff:£ff
/* swp3Q@ethl is only available when using ENETC port as DSA CPU port */
7: swp3@ethl: <BROADCAST,MULTICAST> mtu 1500 gdisc noop state DOWN mode DEFAULT
group default glen 1000

link/ether 00:04:9f:08:49:31 brd ff:ff:ff:ff:ff:ff

4.3.1.5.2 Maximum frame size configuration

The Linux NETC DSA driver correlates between Layer-2 maximum frame size and Layer-3 MTU. Typical
settings of Layer-2 maximum frame size is 1518 bytes for standard untagged frames and the corresponding
Layer-3 MTU is 1500 bytes.

Example 1: Setting Layer-3 MTU of NETC switch port 1 (swp1) to 1000 bytes

ifconfig swpl mtu 1000
or
ip link set dev swpl mtu 1000

Note:

Setting the Layer-3 MTU for an external NETC switch port on i.MX RT1180 EVK to a value larger than 1500
bytes also changes the Layer-3 MTU of both the CPU port on i.MX RT1180 EVK and the master Ethernet
interface (eth1) on MPU accordingly.

As the maximum MTU of eth1 is 1600, the maximum MTU value that can be configured on an external NETC
switch port is 1596 bytes. However, the NETC Ethernet MAC supports configurable maximum frame size up
fo 2000 bytes. The 4 extra bytes in MTU for both the CPU port on i.MX RT1180 EVK and the master Ethernet
interface (eth1) on MPU are used to store the 4-bytes 802.1Q DSA tag.

4.3.1.5.3 Single port mode for i.MX RT1180 NETC switch ports

After Linux is up on MPU, by default all the i.MX RT1180 NETC switch ports available in Linux works in single
port mode. In this configuration mode the traffic received on other switch ports is forwarded to the CPU port
(i.MX RT1180 NETC switch port 3). Each of the other external switch port interface can be used independently
to send and receive packets.

Example 1: Single port configuration of the Linux NETC DSA driver

/* configure IP address on external switch interfaces */

ip addr add 192.168.1.1/24 dev swp0

ip addr add 192.168.2.1/24 dev swpl

ip addr add 192.168.3.1/24 dev swp2

/* swp3 is only available when using ENETC port as DSA CPU port */
ip addr add 192.168.4.1/24 dev swp3

/* master interface to be brought up first - up by default */

ip link set ethl up

/* bring up the switch slave interfaces */

ip link set swpO up

ip link set swpl up

ip link set swp2 up

/* swp3 is only available when using ENETC port as DSA CPU port */

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

142/ 404

NXP Semiconductors

REALTIMEEDGEUG

ip link set swp3 up

Real-time Edge Software User Guide

Assuming there is one remote host connected to each of the external switch ports, one can ping the remote

host.

/* Assuming the IP is
ping 192.168.1.2
PING 192.168.1.2 (192.1
64 bytes from 192.168.1.
64 bytes from 192.168.1
64 bytes from 192.168.1
[...]

/* Assuming the IP is
ping 192.168.2.2
PING 192.168.2.2 (192.1
64 bytes from 192.168.2
64 bytes from 192.168.2.
64 bytes from 192.168.2
[...]

/* Assuming the IP is
ping 192.168.3.2
PING 192.168.3.2 (192.1
64 bytes from 192.168.3
64 bytes from 192.168.3.
64 bytes from 192.168.3
[...]

/* swp3 i1s only available
/* Assuming the IP is 192.
ping 192.168.4.2

PING 192.168.4.2 (192.168.
64 bytes from 192.168.4.2:
64 bytes from 192.168.4.2:
64 bytes from 192.168.4.2:

[...]

2o 2)

.2.2)

.3.2)

.168.1.2 for

56 (84)
icmp seg=1
icmp seq=2
icmp seq=3

.168.2.2 for

56(84)
icmp seqg=1
icmp seq=2
icmp seqg=3

.168.3.2 for

56 (84)
icmp seqg=1
icmp seg=2
icmp seg=3

the remote host connected to

bytes of data.

ttl=64 time=1.75 ms
ttl=64 time=1.77 ms
ttl=64 time=1.76 ms

the remote host connected to

bytes of data.

ttl=64 time=3.23 ms
ttl=64 time=1.75 ms
ttl=64 time=1.75 ms

the remote host connected to

bytes of data.

ttl=64 time=2.80 ms
ttl=64 time=1.76 ms
ttl=64 time=1.77 ms

when using ENETC port as DSA CPU port */

168.4.2 for

4.2) 56(84)
icmp seqg=1
icmp seq=2
icmp seqg=3

the remote host connected to

bytes of data.

ttl=64 time=2.80 ms
ttl=64 time=1.76 ms
ttl=64 time=1.77 ms

swp0

swpl

sSwWp2

swp3

*/

*/

*/

*/

4.3.1.5.4 Bridge mode for i.MX RT1180 NETC switch ports

In this configuration mode, the external switch ports (DSA slave interfaces) are added to a bridge for L2
forwarding. The eth1 interface is brought up as the DSA master interface.

Example 1: Bridge configuration of the Linux NETC DSA driver

/* bring up master interface before the slave ports - up by default */

ip link set ethl up

/* bring up the switch slave interfaces */

ip link set swpO up
ip link set swpl up
ip link set swp2 up

/* swp3 i1s only available when using ENETC port as DSA CPU port */

ip link set swp3 up

/* create bridge */

ip link add name br0 type bridge

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024

143 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

/* add the external switch ports to the bridge */

ip link set dev swpO master br0

ip link set dev swpl master brO0

ip link set dev swp2 master br0

/* swp3 is only available when using ENETC port as DSA CPU port */
ip link set dev swp3 master br0

/* configure IP address and bring up the bridge */
ip addr add 192.168.2.1/24 dev br0
ip link set dev br0 up

Assuming there is a remote host connected to one of the external switch ports, one can ping the remote host.

/* Assuming the IP is 192.168.2.2 for the remote host connected to
* one of the external switch ports (swpO, swpl and swp2) when using one
* of the i.MX RT1180 switch ports as DSA CPU port or (swpO, swpl,
* swp2 and swp3) when using ENETC port as DSA CPU port.

* /

ping 192.168.2.2

PING 192.168.2.2 (192.168.2.2) 56(84) bytes of data.

64 bytes from 192.168.2.2: icmp seg=1 ttl=64 time=1.76 ms

64 bytes from 192.168.2.2: icmp seg=2 ttl=64 time=1.80 ms

64 bytes from 192.168.2.2: icmp seg=3 ttl=64 time=1.77 ms
[..]

At the same time, the L2 forwarding works using the external switch ports (swp0, swpl and swp2) when using
one of the i.MX RT1180 external switch ports as DSA CPU port or (swp0, swpl, swp2 and swp3) when using
ENETC port as DSA CPU port. Assuming there is one remote host connected to each of the external switch
ports, each remote host can ping other hosts.

4.3.1.5.5 i.MX RT1180 NETC switch port statistics counters

The NETC DSA switch driver supports ethtool -S swpX statistics reporting for each external DSA slave
switch port through the associated net devices. Note that the first 4 stats (tx packets, tx bytes,
rx_packets, rx bytes)are counted by Linux networking stack and the other stats are directly read from
NETC switch hardware.

Example 1: Query the port statistics counters of NETC switch port 1 (swp1)

ethtool -S swpl

NIC statistics:
tx packets: 232
tx bytes: 30985
rx packets: 1178
rx bytes: 76913
in-bytes: 150749
in-valid-bytes: 150749
in-pause-frames: 0
in-valid-frames: 1846
in-vlan-frames: 0
in-uc-frames: 814
in-mc-frames: 85
in-bc-frames: 947
in-frames: 1846

out-bytes: 381591

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

144 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

out-valid-bytes: 381591
out-pause-frames: 0
out-valid-frames: 4539
out-vlan-frames: 0
out-uc-frames: 810
out-mc-frames: 3673
out-bc-frames: 56
out-frames: 4539

g0-rejected-bytes: 0
g0-rejected-frames: 0
g0-dequeue-bytes: 0
g0-dequeue-frames: 0
g0-dropped-bytes: 0
g0-dropped-frames: 0O
g0-frames: 0

g7-rejected-bytes: 0
g7-rejected-frames: 0
g7-dequeue-bytes: 0
g7-dequeue-frames: 0
g7-dropped-bytes: 0
g7-dropped-frames: 0
g7-frames: O

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

145/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

4.3.1.5.6 VLAN configuration

By default, the DSA switch application running on i.MX RT1180 EVK configures the NETC switch as VLAN
filtering enabled. The bridge tool from iproute2 package can be used to manipulate the VLAN filter table.

To make the bridge VLAN aware in Linux, run the below command to toggle the vlian filtering property on
the bridge that already exists.

ip link set dev br0O type bridge vlan filtering 1

By default, only the default pvid (1) of the bridge is installed on all the switch ports. So, all VLAN-tagged traffic,
except that tagged with VID 1, will be dropped.

Note: Since the default pvid (port-based VLAN) is 1, all untagged traffic will also get internally processed by
the switch as having VID 1. So

» Untagged traffic is treated the same as traffic tagged with VID 1, or any other value that the pvid may have.
» Deleting VID 1 from the VLAN table will effectively block untagged traffic too.

Note: VLAN ID 3072 to 3076 as well as 3088 are reserved by the Linux NETC DSA driver and won't be
allowed to be used by the user.

Example 1: To add a new VLAN filter entry by which both the NETC switch port 1 (swp1) and port 2 (swp2) can
accept and transmit tagged traffic with VLAN ID 100:

bridge vlan add dev swpl vid 100
bridge vlan add dev swp2 vid 100

Example 2: To delete the VLAN filter entry added in previous example.

bridge vlan delete dev swpl vid 100
bridge vlan delete dev swp2 vid 100

Example 3: To display the current VLAN filter table:

bridge vlan show

Itis also possible for the switch to tag untagged traffic with a different VLAN ID on ingress using the pvid
option.

Example 4: To add new VLAN filter entries by which both the NETC switch port 1 (swp1) and port 2 (swp2) can
accept and transmit tagged traffic with VLAN ID 100 and 200, also configure the PVID of NETC switch port 1
(swp1l) to 100 and configure the PVID of NETC switch port 2 (swp2) to 200.

bridge vlan add dev swpl vid 100 pvid
bridge vlan add dev swp2 vid 100
bridge vlan add dev swpl vid 200
bridge vlan add dev swp2 vid 200 pvid

Using the above configuration, when an untagged packet enters swp1, it gets internally processed by the switch
as having VID 100. If it is forwarded to swp2 as a result of FDB lookup and exits swp2, it is tagged with VLAN
ID 100. Similarly, when an untagged packet enters swp2, it gets internally processed by the switch as having
VID 200. If it is forwarded to swp1 as a result of FDB lookup and exits swp1, it is tagged with VLAN ID 200.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

146 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

In the above example, if the VLAN tag added by PVID on the original untagged packet is not desired, it can be
stripped on egress using the untagged option.

Example 5: To strip the VLAN tag added by PVID on untagged source traffic:

bridge vlan add dev swpl vid 100 pvid untagged
bridge vlan add dev swp2 vid 100 untagged
bridge vlan add dev swpl vid 200 untagged
bridge vlan add dev swp2 vid 200 pvid untagged

Using the above configuration, when an untagged packet enters swp1, it gets internally processed by the switch
as having VID 100. If it is forwarded to swp2 as a result of FDB lookup and exits swp2, it is still untagged.
Similarly, when an untagged packet enters swp2, it gets internally processed by the switch as having VID 200. If
it is forwarded to swp1 as a result of FDB lookup and exits swp1, it is still untagged.

4.3.1.5.7 FDB configuration

By default, hardware MAC learning is enabled. FDB table entries <MAC, VID, PORT> are added or updated in
the FDB table when packets with new unique <MAC + VID> are received on the NETC switch port.

Example 1: To display the current FDB table entries related to NETC switch port swp1l

bridge fdb show | grep swpl

Example 2: To add a static FDB entry associated with NETC switch port swp1

bridge fdb add dev swpl 11:22:33:44:55:66 vlan 1 master static

Note that the VLAN filter entry for the VLAN ID specified for v1an option must have been added before adding
the FDB entry for that VLAN ID.

Example 3: To delete a static FDB entry

bridge fdb del dev swpl 11:22:33:44:55:66 vlan 1 master static

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

147 1 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

5 Real-time networking

5.1 Time Sensitive Networking (TSN) on NXP platforms

Time Sensitive Networking (TSN) is an extension to traditional Ethernet networks, providing a set of standards
compatible with IEEE 802.1 and 802.3. These extensions intend to address the limitations of standard Ethernet
in sectors ranging from industrial and automotive applications to live audio and video systems. Applications
running over traditional Ethernet must be designed to be very robust in order to withstand corner cases such as
packet loss, delay, or even reordering. TSN aims to provide guarantees for deterministic latency and packet loss
under congestion. Therefore, it allows critical and non-critical traffic to be converged in the same network.

This chapter describes the process and use cases for implementing TSN features on the i.MX 8M LPDDR4
Plus, i.MX 8DXL LPDDR4 EVK, i.MX 93 EVK, i.MX 93 9x9 QSB, i.MX 93 14x14 EVK and LS1028ARDB boards.

5.1.1 TSN hardware capability

Table 38. TSN hardware capability on different platforms

Platform 802.1Qbv 802.1Qbu 802.1Qav 802.1AS 802.1CB 802.1Qci
(Enhancements|and 802.3br |(Credit Based |(Precision (Frame (Per Stream
for Scheduled |(Frame Shaper) Time Protocol) |Replication Filtering and
Traffic) Preemption) and Policing)

Elimination for
Reliability)

ENETC (LS1028 |Y Y Y Y N Y

A)

Felix switch Y Y Y Y Y Y

(LS1028A)

Stmac (i.MX Y Y Y Y N N

8DXL, i.MX 8M

Plus, i.MX 93)

5.1.2 TSN configuration
The table below describes the TSN configuration tools support on different platforms

Table 39. TSN configuration tool support on different hardware platforms

Platform 802.1Qbv 802.1Qbu 802.1Qav 802.1AS 802.1CB 802.1Qci (Per
(Enhancements |and 802.3br | (Credit (Precision (Frame Stream Filtering
for Scheduled |(Frame Based Time Replication and Policing)
Traffic) Preemption) |Shaper) Protocol) and

Elimination for
Reliability)

ENETC tc-taprio ethtool tc-cbs ptp4l N/A tc-flower

(LS1028A) tsntool tsntool tsntool tsntool

Felix switch tc-taprio ethtool tc-cbs ptp4l, Gen tsntool tc-flower

(LS1028A) tsntool tsntool tsntool AVB/TSN tsntool

stack

Stmac (i.MX tc-taprio ethtool tc-cbs ptp4l, Gen N/A N/A

8DXL, i.MX 8M AVB/TSN

Plus, i.MX 93) stack

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

148 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

5.1.2.1 Using Linux traffic control (tc)

Enable the following configurations in kernel when using Linux traffic control (tc):

Symbol: NET SCH MQPRIO [=y] && NET SCH CBS [=y] && NET SCH TAPRIO [=y]

[*] Networking support --->
Networking options --->
[*] QoS and/or fair queueing —--->

<k > Credit Based Shaper (CBS)

<F> Time Aware Priority (taprio) Scheduler

S Multi-queue priority scheduler (MQPRIO)
%) Actions --->

<xE> Traffic Policing

<*F> Generic actions

<k > Redirecting and Mirroring

<*> SKB Editing

<*E> Vlan manipulation

S Frame gate entry list control tc action

On IS1028A platform, ENETC QoS driver needs to be set to support tc configuration.

Symbol: FSL ENETC QOS [=y]
Device Drivers—-->
[*] Network device support --->
[%] Ethernet driver support --->
=] Freescale devices
[ENETC hardware Time-sensitive Network support

1. The below link provides details for using tc-taprio to set Qbv:

https://man7.org/linux/man-pages/man8/tc-taprio.8.html

2. The below link provides details for using tc-cbs to set Qav:

https://man7.org/linux/man-pages/man8/tc-cbs.8.html

3. The below link provides details for using tc-flower to set Qci and ACL:

https://man7.org/linux/man-pages/man8/tc-flower.8.html

5.1.2.2 Tsntool

Tsntool is a tool to set the TSN capability of the Ethernet ports of TSN Endpoint and TSN switch. It is used on
LS1028A platform. You should enable TSN, ENETC TSN, and MSCC_FELIX SWITCH TSN to support tsntool
configuration on LS1028A.

Symbol: TSN [=y]
[*] Networking support --->
Networking options --->
[*] 802.1 Time-Sensitive Networking support
Symbol: ENETC TSN [=y] && FSL ENETC PTP CLOCK [=y] && FSL ENETC HW TIMESTAMPING

[=v]
Device Drivers —--->
[*] Network device support --->
[*] Ethernet driver support --->
[*] Freescale devices
<* > ENETC PF driver
<K > ENETC VF driver
=%= ENETC MDIO driver
<*k> ENETC PTP clock driver
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

149 /404

https://man7.org/linux/man-pages/man8/tc-taprio.8.html
https://man7.org/linux/man-pages/man8/tc-cbs.8.html
https://man7.org/linux/man-pages/man8/tc-flower.8.html

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

[%] ENETC hardware timestamping support
[*] TSN Support for NXP ENETC driver
Symbol: MSCC FELIX SWITCH TSN [=y]
Device Drivers —--->
[*] Network device support --->
Distributed Switch Architecture drivers --->
<*> Ocelot / Felix Ethernet switch support --->

<K > TSN on FELIX switch driver

Enable PKTGEN in the kernel to use pktgen for testing using the commands below:

Symbol: NET PKTGEN [=y]
[*] Networking support --->
Networking options --->
Network testing —--—->
<*> Packet Generator (USE WITH CAUTION)

Refer to Tsntool User Manual for the details.

5.1.2.2.1 Tsntool User Manual

Tsntool is a tool to set the TSN capability of the Ethernet ports of TSN Endpoint and TSN switch. This document
describes how to use tsntool for NXP's LS1028ARDB hardware platform.

Note: Tsntool supports only the LS1028ARDB platform.

5.1.2.2.1.1 Getting the source code

Github of the tsntool code is mentioned below.

https://github.com/nxp-gorig/tsntool

5.1.2.2.1.2 Tsn tool commands

The Table 40 "TSN tool commands and their description" lists the TSN tool commands and their description.

Table 40. TSN tool commands and their description

Command Description

help Lists commands support

version Shows software version

verbose Debugs on/off for tsntool

quit Quits prompt mode

gqbvset Sets time gate scheduling config for <i fname>
qbvget Gets time scheduling entries for <i fname>
cbstreamidset Sets stream identification table

cbstreamidget Gets stream identification table and counters
qcisfiset Sets stream filter instance

qcisfiget Gets stream filter instance

qcisgiset Sets stream gate instance

qcisgiget Gets stream gate instance

REALTIMEEDGEUG Allinformation provided in this document is subject to legal disclaimers. ©2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

150/ 404

https://github.com/nxp-qoriq/tsntool

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 40. TSN tool commands and their description...continued

Command Description
qcisficounterget Gets stream filter counters
qcifmiset Sets flow metering instance
qcifmiget Gets flow metering instance
cbsset Sets TCs credit-based shaper configuration
cbsget Gets TCs credit-based shaper status
qbuset Sets one 8-bits vector showing the preemptable traffic class
gbugetstatus Not supported
tsdset Not supported
tsdget Not supported
ctset Sets cut through queue status (specific for Is1028 switch)
cbgen Sets sequence generate configure (specific for Is1028 switch)
cbrec Sets sequence recover configure (specific for Is1028 switch)
dscpset Sets queues map to DSCP of Qos tag (specific for Is1028 switch)
sendpkt Not supported
regtool Registers read/write of bar0 of PFs (specific for Is1028 enetc)
ptptool ptptool get/set ptp timestamp. Useful commands:

#get ptp0 clock time ptptool -g

#get ptpl clock time ptptool -g -d /dev/ptpl
dscpset Set queues map to DSCP of QoS tag (specific for Is1028 switch)
qcicapget Gets max capability of the gci instance
tsncapget Gets tsn capability of the device

5.1.2.2.1.3 Tsntool commands and parameters

This section lists the tsntool commands along with the parameters and arguments, with which they can be used.

Table 41 "gbvset" lists the gbvset parameter and its arguments.

Table 41. qbvset

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0.

-—entryfile A file script to input gatelist format. It has the following arguments:
<filename> #'NUMBER' 'GATE VALUE' 'TIME LONG'

e NUMBER: #'t' or 'T' head. Plus entry number. Duplicate entry number will result in an error.
* GATE_VALUE: # format: xxxxxxxxb . # The MSB corresponds to traffic class 7. The LSB
corresponds to traffic class 0. # A bit value of 0 indicates closed, whereas, a bit value of 1
indicates open.
* TIME LONG: # nanoseconds. Do not input O time long.
t0 11101111b 10000 t1 11011111b 10000
Note: Entryfile parameter must be set. If not set, there will be a vi text editor prompt,
"require to input the gate list".

--basetime <value> AdminBaseTime
A 64-bit hex value means nanosecond until now.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

15117404

NXP Semiconductors

REALTIMEEDGEUG

Table 41. qbvset...continued

Real-time Edge Software User Guide

Parameter <argument>

Description

OR a value input format as: Seconds.decimalSecond
Example: 115.000125means 115 seconds and 125 ps.

--cycletime <value>

AdminCycleTime

--cycleextend <value>

AdminCycleTimeExtension

-—-enable | --disable

* enable: enables the gbv for this port.
e disable: disables the gbv for this port.
By default, the value is set to enable, if user does not provide any input.

--maxsdu <value>

queueMaxSDU

--initgate <value>

AdminGateStates

--configchange ConfigChange. Default set to 1.
--configchangetime ConfigChangeTime

<value>

Table 42. gbvget

Parameter <argument> Description

--device <ifname>

An interface such as eno0/swp0

Table 43. cbstreamidset

Parameter <argument>

Description

-—-enable | --disable

* enable: Enables the entry for this index.
» disable: Disables the entry for this index.

By default, this field is set to enable if there is no enable or disable input.

-—-index <value>

Index entry number in this controller. Mandatory parameter.
This value corresponds to tsnStreamIdHandle on switch configuration.

--device <string>

An interface such as eno0/swp0

--streamhandle tsnStreamIdHandle

<value>

--infacoutport tsnStreamIdInFacOutputPortList
<value>

--outfacoutport tsnStreamIdOutFacOutputPortlList
<value>

--infacinport <value>

tsnStreamIdInFacInputPortList

--outfacinport tsnStreamIdOutFacInputPortList

<value>

--nullstreamid | - tsnStreamIdIdentificationType:

-sourcemacvid | - e —nullstreamid:Null Stream identification

-destmacvid | -- ¢ —sourcemacvid: Source MAC and VLAN Stream identification
ipstreamid

* —destmacvid: not supported
e —ipstreamid: not supported

--nulldmac <value>

tsnCpeNullDownDestMac

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024

1527404

NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 43. cbstreamidset ...continued

Parameter <argument>

Description

--nulltagged <value>

tsnCpeNullDownTagged

--nullvid <value>

tsnCpeNullDownVlan

—--sourcemac <value>

tsnCpeSmacVlanDownSrcMac

—-—-sourcetagged
<value>

tsnCpeSmacVlanDownTagged

--sourcevid <value>

tsnCpeSmacVlanDownVlan

Table 44. cbstreamidget

Parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

-—-index <value>

Index entry number in this controller. Mandatory to have.

Table 45. qcisfiset

Parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

--enable | --disable

* enable: enable the entry for this index
e disable: disable the entry for this index
By default, this field is set to enable if there is no enable or disable input.

--maxsdu <value>

Maximum SDU size.

-—-flowmeterid <value>

Flow meter instance identifier index number.

--index <value>

StreamFilterInstance. index entry number in this controller.

This value corresponds to tsnStreamIdHandle of cbstreamidset command on switch
configuration.

--streamhandle
<value>

StreamHandleSpec
This value corresponds to tsnStreamIdHandle of cbstreamidset command.

--priority <value>

PrioritySpec

--gateid <value>

StreamGateInstanceID

--oversizeenable

StreamBlockedDueToOversizeFrameEnable

--oversize

StreamBlockedDueToOversizeFrame

Table 46. qcisfiget

parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

--index <value>

Index entry number in this controller. Mandatory to have.

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024
153 /404

NXP Semiconductors

REALTIMEEDGEUG

Table 47. qcisgiset

Real-time Edge Software User Guide

Parameter <argument>

Description

-—-device <ifname>

An interface such as eno0/swp0

-—-index <value>

Index entry number in this controller. Mandatory to have.

--enable | --disable |* enable: enable the entry for this index. PSFPGateEnabled

* disable: disable the entry for this index.

By default, this field is set to enable if there is no enable or disable input.

--configchange configchange
--enblkinvrx PSFPGateClosedDueToInvalidRxEnable
--blkinvrx PSFPGateClosedDueToInvalidRx
--initgate PSFPAdminGateStates
-—-initipv AdminIPV
--cycletime Default not set. Get by gatelistfile.
--cycletimeext PSFPAdminCycleTimeExtension
--basetime PSFPAdminBaseTime

A 64-bit hex value means nanosecond until now.

OR a value input format as: Seconds.decimalSecond

Example: 115.000125means 115 seconds and 125 ps.
--gatelistfile PSFPAdminControlList. A file input the gate list: 'NUMBER' 'GATE VALUE' 'IPV''TIME

LONG' 'OCTET MAX'

* NUMBER: #'t' or 'T' head. Plus entry number. Duplicate entry number will result in an error.

* GATE_VALUE: format: xb: The MSB corresponds to traffic class 7. The LSB corresponds
to traffic class 0. A bit value of 0 indicates closed, A bit value of 1 indicates open.

e IPV: #0~7

e TIME LONG: in nanoseconds. Do not input time long as 0.

* OCTET_MAX: The maximum number of octets that are permitted to pass the gate. If zero,
there is no maximum.
Example:
t0 1b -1 50000 10

Table 48. qcisgiget

Parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

--index <value>

Index entry number in this controller. Mandatory to have.

Table 49. qcifmiset

Parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

--index <value>

Index entry number in this controller. Mandatory to have.

--disable

If not set disable, then to be set enable.

--cir <value>

cir. kbit/s.

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024
154 /404

NXP Semiconductors

REALTIMEEDGEUG

Table 49. qcifmiset ...continued

Real-time Edge Software User Guide

Parameter <argument> Description
--cbs <value> cbs. octets.
—-—eir <value> eir.kbit/s.
--ebs <value> ebs.octets.

--cf cf. couple flag.
--cm cm. color mode.
-—dropyellow drop yellow.

-—-markred enable

mark red enable.

--markred

mark red.

Table 50. qcifmiget parameter

Parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

-—-index <value>

Index entry number in this controller. Mandatory to have.

Table 51. gbuset parameter

Parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

--preemptable <value>

8-bit hex value. Example: Oxfe The MS bit corresponds to traffic class 7.

The LS bit to traffic class 0. A bit value of 0 indicates express. A bit value of 1 indicates
preemptable.

Table 52. cbsset command

Parameter <argument>

Description

-—-device <ifname>

An interface such as eno0/swp0

-—-tc <value>

Traffic class number.

--percentage <value>

Set percentage of tc limitation.

--all <tc-percent:tc- |Not supported.
percent...>

Table 53. cbsget

Parameter <argument> Description

--device <ifname>

An interface such as eno0/swp0

--tc <value>

Traffic class number.

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024
155/404

NXP Semiconductors

REALTIMEEDGEUG

Table 54. regtool

Real-time Edge Software User Guide

Parameter <argument>

Description

Usage: regtool { pf
number } { offset }
[data]

pf number: pf number for the pci resource to act on

of fset: offset into pci memory region to act upon

data: data to be written

Table 55. ctset

Parameter <argument>

Description

--device <ifname>

An interface such as swp0

--queue stat <value>

Specifies which priority queues have to be processed in cut-through mode of operation. Bit
0 corresponds to priority 0, Bit 1 corresponds to priority 1 so-on.

Table 56. cbgen

Parameter <argument>

Description

--device <ifname>

An interface such as swp0

--index <value>

Index entry number in this controller. Mandatory to have.
This value corresponds to tsnStreamIdHandle of cbstreamidset command.

--iport _mask <value>

INPUT_PORT_MASK: If the packet is from input port belonging to this port mask, then it's a
known stream and Sequence generation parameters can be applied

--split _mask <value>

SPLIT_MASK: Port mask used to add redundant paths (or ports). If split is enabled
(STREAM_SPLIT) for a stream. This is OR'ed with the final port mask determined by the
forwarding engine.

--seq_len <value>

SEQ_SPACE_LOG2: Minimum value is 1 and maximum value is 28.
tsnSegGenSpace = 2**SEQ SPACE LOG2
For example, if this value is 12, then valid sequence numbers are from 0x0 to OxFFF.

-—-seq_num <value>

GEN_REC_SEQ_NUM: The sequence number to be used for outgoing packet passed to
SEQ_GEN function.

Note: Only lower 16-bits are sent in RED_TAG.

Table 57. cbrec

Parameter <argument>

Description

--device <ifname>

An interface such as swp0

--index <value>

Index entry number in this controller. Mandatory to have.
This value corresponds to tsnStreamIdHandle of cbstreamidset command.

-—-seq_len <value>

SEQ_SPACE_LOG2:Min value is 1 and maximum value is 28.
tsnSegRecSegSpace = 2**SEQ REC SPACE LOG2
For example, if this value is 12, then valid sequence numbers are from 0x0 to OxFFF.

--his len <value>

SEQ_HISTORY_LEN: Refer to SEQ_HISTORY, Min 1 and Max 32.

--rtag _pop_en

REDTAG_POP: If True, then the redundancy tag is popped by rewriter.

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024
156 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 58. dscpset

Parameter <argument> Description

--device <ifname> An interface such as swp0

--disable Disables DSCP to traffic class for frames
—--index DSCP value

--cos Priority number of queue which is mapped to
--dpl Drop level which is mapped to

Table 59. qcicapget

Parameter <argument> Description

--device <ifname> An interface such as swp0

Table 60. tsncapget

Parameter <argument> Description

--device <ifname> An interface such as swp0

5.1.2.2.1.4 Input tips

While providing the command input, user can use the following shortcut keys to make the input faster:

* When a user inputs a command, use the TAB key to help list the related commands.
For example:

tsntool> gbv

Then press TAB key, to get all related gbv* start commands.
If there is only one choice, it is filled as the whole command automatically.

* When you want to input parameters and do not remember the parameter name, you can just input “--". Then
pressing TAB key displays all the parameters.

* If you input only half the parameter’s name, pressing the TAB key lists all the related names.
* History: Press the up arrow “1” . User gets the command history and can re-use the command.

5.1.2.2.1.5 Non-interactive mode

Tsntool also supports non-interactive mode.
For example:

In the interactive mode:

tsntool> gbuset --device eno0 --preemptable Oxfe

In non-interactive mode:

tsntool gbuset --device eno(0 --preemptable 0Oxfe
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

157 1404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

5.1.2.3 Remote configuration using NETCONF/YANG

1. Overview

The NETCONF protocol defines a mechanism for device management and configuration retrieval and
modification. It enables a client to adjust to the specific features of any network equipment by using a remote
procedure call (RPC) paradigm and a system to expose device (server) capabilities.

YANG is a standards-based, extensible, hierarchical data modeling language. YANG is used to model the
configuration and state data used by NETCONF operations, RPCs, and server event notifications.

2. Support for different platforms in Real-time Edge

Table 62. Real-time Edge platform support

TSN offload Real-time Edge
LS1028A i.MX 8DXL / i.MX 8M Plus /i.MX 93
libtsn te EE
802.1Qbv Y Y Y
(Time Aware Shaper)
802.1Qbu/802.3br Y Y Y
(Frame Preemption)
802.1Qav - - -
(Credit Based Shaper)
802.1CB - - N/A
(Frame Replication and Elimination for
Reliability)
802.1Qci Y Y N/A
(Per-Stream Filtering and Policing)
IP config Y Y Y
MAC config Y Y Y
VLAN config Y Y Y

3. Installation and configuration

Netopeer is a set of NETCONF tools built on the 1ibnetconf library. The sysrepo-tsn (https://github.com/
nxp-real-time-edge-sw/real-time-edge-sysrepo.git) helps to configure TSN features, including Qbv, Qbu, Qci,
and stream identification via network, without logging in to device. For details of configuring TSN features via

Netopeer, refer to NETCONF/YANG). Some application scenarios for tsn refer to Application scenarios.

5.1.2.4 Web-based configuration

5.1.2.4.1 Setting up web server

The Web Ul allows the remote control of the YANG model and also get devices information by websockets. This
demo is already added to tsntool in the folder tsntool/demos/cnc/.

In case user wants to setup the web server step by step, follow the below steps one by one:

1. Install related libraries: Suppose user is installing the demo on a Centos PC or Ubuntu PC as the
WebServer. CNC demo requires python3 and related libraries: pyang, libnetconf, and libssh.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

158 /404

https://github.com/nxp-real-time-edge-sw/real-time-edge-sysrepo.git
https://github.com/nxp-real-time-edge-sw/real-time-edge-sysrepo.git

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

For Ubuntu:
$ sudo apt install -y libtool python-argparse libtool-bin python-sphinx
libffi-dev
$ sudo apt install -y libxsltl-dev libcurl4-openssl-dev xsltproc python-
setuptools

sudo apt install -y zliblg-dev libssl-dev python-libxml2 libaugeas-dev
sudo apt install -y libreadline-dev python-dev pkg-config libxml2-dev
sudo apt install -y cmake openssh-server

sudo apt install -y python3-sphinx python3-setuptools python3-1libxml2
sudo apt install -y python3-pip python3-dev python3-flask python3-pexpect
sudo apt install -y libnss-mdns avahi-utils

pip3 install flask-restful

pip3 install websockets

For Centos 7.2:

Uy Ur i U Ur > > U

$ sudo yum install libxml2-devel libxslt-devel openssl-devel libgcrypt dbus-
devel

sudo yum install doxygen libevent readline.x86 64 ncurses-1libs.x86 64

sudo yum install ncurses-devel.x86 64 libssh.x86 64 libssh2-devel.x86 64
sudo yum install libssh2.x86 64 libssh2-devel.x86 64

sudo yum install nss-mdns avahi avahi-tools

U Ur > U

2. Install pyang

git clone https://github.com/mbj4668/pyang.git

cd pyang

git checkout b92b17718de53758c4c8a05b6818ea66fc0cd4d8 -b fornetconfl
sudo python setup.py install

U U > U

3. . Install libssh:

git clone https://git.libssh.org/projects/libssh.git

cd libssh

git checkout fel8ef279881b65434e3e44fc4743e4blc7cb891 -b fornetconfl
mkdir build; cd build/

cmake

make

sudo make install

U Uy > > Uy O

Note: There is a version issue for libssh installation on Ubuntu below version 16.04. Apt-get install libssh
may get version 0.6.4. But libnetconf needs a version of 0.7.3 or later. Remove the default one and reinstall
by downloading the source code and installing it manually.

4. Get tsntool source code on the web server PC:

git clone https://github.com/nxp-gorig/tsntool
cd tsntool/demos/cnc/

5. Install libnetconf:
In the below command segments,
* PATH-to-tsntool is the path to the tsntool source code.

$ git clone https://github.com/CESNET/libnetconf.git

$ cd libnetconf

$ git checkout 8e934324e4blelba6077b537e55636el1d7c85aed -b fornetconfl
$ cp PATH-to-tsntool/demos/cnc/0003-update-the-hostkeys-of-ssh-session-
connection.patch

$ git am 0003-update-the-hostkeys-of-ssh-session-connection.patch

S autoreconf --force --install

$./configure

$ make
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

159 /404

NXP Semiconductors REALTIMEEDGEUG

6.

9.

Real-time Edge Software User Guide

$ sudo make install

Install python library:
In the below command segments,

¢ PATH-to-libnetconf is the path to the libnetconf source code.
* PATH-to-tsntool is the path to the tsntool source code.

S cd PATH-to-libnetconf/

The libnetconf needs to add two patches based on the below commit point to fix the demo python support.
Ensure that the commit id is 313fdadd15427f7287801b92fe81ff84c08dd970.

git checkout 313fdaddl5427£7287801b92fe81£f£84c08dd970 -b cnc-server

cp PATH-to-tsntool/demos/cnc/*patch

git am 000l-1lnctool-to-make-install-transapi-yang-model-proper.patch
git am 0002-automatic-python3-authorizing-with-root-password-non.patch
cd PATH-to-libnetconf/python

python3 setup.py build; sudo python3 setup.py install

Note:

If rebuilding python lib, user need to remove the build folder by command rm build -rf before rebuilding. On
the boards Real-time Edge supports, avahi-daemon and netopeer server are required. Remember to also
add the netopeer2-server run at boards.

Ur Ur > > Ur

. To start the web server on webserver PC, input the command below at shell into the folder: PATH-to-

tsntool/demos/cnc/:

sudo python3 cnc.py

. Start topoagent server on the boards supported

¢ Make sure the netopeer2-server run at boards(Not necessary for topology discovery).
* Make sure the lldpd daemon is running at boards.

* Make sure the avahi-daemon is running at boards.

 Start the topology server on boards:

ifconfig eno2 up

ip link add name switch type bridge vlan filtering 1
ip link set switch up

ip link set swpO master switch && ip link set swpO up
ip link set swpl master switch && ip link set swpl up
ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up

#Stop 1lldpd service.

pkill 11dpd

#Start 1lldpd and limit interfaces to use. Use all ports except the control
port.

1ldpd -I swpO,swpl,swp2, swp3

#If the hostname is not real-time-edge-S$boardname, change to real-time-edge-
Sboardname.

avahi-set-host-name real-time-edge-1s1028ardb

cd /home/root/samples/cncdemo/

python3 topoagent.py

Use the web browser to track the topology and configuration of the devices. Input the IP of web server with
the port 8180 at browser. For example:

http://10.193.20.147:8180
Note:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

160 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

TSN configuration debug:

* |t is recommended to track the boards using tsntool to check the real tsn configuration for comparison.

* For tsn configuration, it is also recommended to track if the netopeer2-server is running at board or not.

Limitations of Web Ul are:

e The server setup on a Centos PC or Ubuntu PC could be more compatible.

e Supports Qbv, Qbu, and Qci in current version.

* For Qci setting, Stream-gate entry should be set ahead of setting the Stream-filter as sysrepo required. Or
else, user will get failure for setting Stream-filter without a stream gate id link to.

* The boards and the web server PC are required to be in the same IP domain since the bridge may block
the probe frames.

5.1.2.4.2 Remote configuration

This section describes the steps for remote configuration.

* Overview
The Web Ul allows the remote control of the YANG model. The user can connect to the http server and input
TSN parameters on the web Ul. Click "Yes, confirm" button to send the parameters to the board as shown in

Figure 48.

LS1028ARDB - PC running Web UI

E

I.MX8M Plus EVK

Example setup for remote configuration

Figure 48. A sample setup for remote configuration
* User Interface
Click the device displayed on the home page, and an interface description table appears. Click the interface to
jump to the configuration page.
* Qbv Configuration: Selecting 'qvb' option setting displays the options as shown in Figure 49.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

161 /404

NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

ADD TSN SETTING @

console output

jgetconfig operation: true

@enable Odisable

basetime: E example: s.ns

*gate control list:

GATE PERIOD

. T O

=]

lgetconfig operation: true

jgetconfig operation: true

2

editconfig operation: true

{

"interfaces":{

"@xmlns":"urn:ietf:params:xml:ns:yang:ietf-interfaces",
"interface":

"name": "swp2",

"enabled":"true",

"type":{
"@xmlns:ianaift":"urn:ietf:params:xml:ns:yang:iana-if-type",
"#text":"ianaift:ethernetCsmacd”

Yr

"gate-parameters":{
"@xmlns":"urn:ieee:std:802.1Q:yang:ieee802-dotlg-sched",
"gate-enabled":"true",

"config-change":"true",
"admin-control-list-length":"1",
"admin-control-list™:{
"index":"0",
"operation-name
"sgs-params": {
"gate-states-value":

set-gate-states™,

STATUS | Get Config I

"time-interval-value":"4000"

Figure 49. Qbv Configuration

ADD TSN SETTING @

* Qbu Configuration: Selecting 'qvb' option setting displays the options as shown in Figure 50.

qbu

®@enable Odisable

TCO0 Opreemptable ®express
TC1 Opreemptable ®@express
TC2 Opreemptable ®@express
TC3 ®preemptable Oexpress
TC4 Opreemptable ®express
TC5 Opreemptable ®express
TC6 ®preemptable Oexpress
TC7 Opreemptable ®express

| =]

STATUS | Get Config

= T
"gate-states-value":
"time-interval-value":

1

.
"admin-base-time": {
"seconds":"0",
"fractional-seconds":"0"
¥
i
"frame-preemption-parameters”:{
"@xmlns":"urn:ieee:std:802.1Q:yang:ieee802-dotlg-preemption™,
"frame-preemption-status-table": [
{
"traffic-class":"0",
"frame-preemption-status":"express"

"traffic-class":"1",
"frame-preemption-status™:"express”

"traffic-class":"2",
"frame-preemption-status”:"express"

“"traffic-class":"3",
"frame-preemption-status":"preemptable™

“"traffic-class":"4",
"frame-preemption-status":"express"

“"traffic-class":"5",
"frame-preemption-status":"express"

My FEi] m.mgn

Figure 50. Qbu configuration

* Qci Configuration: Selecting 'gei' option setting displays the options as shown in Figure 51.

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024
162 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

console output
ADD TSN SETTING @ jgetconfig operation: true

:

jgetconfig operation: true

e
lgetconfig operation: true
stream gate [V|)

®@enable Odisable leditconfig operation: true

*index: {

initial gate state:®open Oclose

"interfaces":{
"@xmlns":"urn:ietf:params:xml:ns:yang:ietf-interfaces",
initial ipv:m "interface":{
"name": "swp2",
basetlme:lil "enabled":"true",
"type™: {
"@xmlns:ianaift":"urn:ietfiparams:xml:ns:yang:iana-if-type",
"#text":"ianaift:ethernetCsmacd”

Ocopen @close

period: IIESSOM ipv: I

Ty

° "gate-parameters”: {
"@xmlns":"urn:ieee:s5td:802.1Q:yang:ieee802-dotlg-sched”,
"gate-enabled":"true",

_ "config-change":"true",
"admin-control-list-length":"1",
"admin-control-list™:{

"index":"0",
"operation-name":"set-gate-states",

"gate-states-value":"3",
. "t —int 1-value":"4000"
STATUS | Get Config I . ime-interval-value

Figure 51. Qci configuration
The qci interface allows user to select the configuration for "stream identify", "stream filter", "stream gate", and
"flow metering".
Note:
1. Configure the "stream identify"first, then configure the "stream gate"and "flow metering”,
configure the "stream filter"atlast.
2. "index"in "stream filter"configuration and "streamhandle"in "stream identify" should be the
same value.
3. "flow meter index"in"stream filter"and "index"in "flow metering” should be the same
value (63-246).

5.1.2.4.3 Dynamic remote configuration

The dynamic TSN configuration is used for the TSN configuration dynamically. Users do not need to log into
each TSN node to specify the TSN parameters for TSN configuration. They only need to select the path,

the base time, and then specify the cycle time. Then, the schedule mapping component calculates the TSN
configuration parameters according to the user input and the path selected. The configuration parameters are
delivered to each node by YANG models.

5.1.2.4.3.1 TSN working flow

This section provides an example of the TSN configuration working flow, which is described below:

After topology discovery and device registration, the network topology can be displayed over the web-browser.
The user should select the nodes, specify the stream, input the timing requirement through the stream
reservation component, and schedule configuration component. The results are passed down to the schedule
mapping component to calculate the mapping from customer input to the TSN configuration. The configuration
is instantiated using the YANG model and is delivered to different nodes for actual configuration.

The major components include:

* TSN network topology discovery
* Schedule mapping
* NETCONF/YANG configuration

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

163 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

* TSN Protocol Driver and TSN configuration
» Dashboard for stream management and customer input parse

Figure 52 shows the architecture diagram.

Stream Stream ‘ Topology ’ Schedule ‘ Industrial
registration reservation display configuration dashboard

7Y 7

On-field controller

v
Stream Schedule ‘ Cfg Instantiation ’ Topology
management mapping for YANG model discovery

TSN protocol YANG model YANG model Topology
driver analysis configuration discovery

= —

Talker Bridges Listeners

Figure 52. TSN architecture diagram

The Figure 52 illustrates the three layers of the TSN architecture. The first layer is the TSN network layer. The
second layer is the service layer, which runs on the on-field controller/server. The third layer is an optional
service that runs in the cloud or on-field server.

The TSN network layer includes TSN switches and endpoints that form the TSN network. For example, it
includes the LS1028A TSN switch and TSN endpoints such as LS1028 ENETC TSN and i.MX 8M Plus TSN
endpoint. The different components run on each of the nodes. For example, the topology discovery component
collects the network topology, YANG model performs the TSN register configuration, and NETCONF server
parses the YANG model for TSN configuration.

The second layer is the on-field controller layer. It is the server running on-field to host the services of the
industrial board, topology discovery and schedule mapping.

The third layer runs on the cloud, which could host the services running on the on-field controller. This layer is
an optional layer.

5.1.2.4.3.2 Topology discovery

The topology discovery component is used to discover network connections by running LLDP on each TSN
network node. The connection information is delivered to topology discovery service running on the on-field
server.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024
164 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

5.1.2.4.3.3 Path selection

Path selection implements an algorithm to select the path between the selected talker and listener. If there are
multiple paths, the dashboard displays all paths and the user can select one of the paths for the stream. Set a
different VLAN ID for the selected path, and the stream with this VID can flow in the path.

5.1.2.4.3.4 Path delay

Clock synchronization and path delay calculation are two prerequisites for schedule mapping. Clock
synchronization uses gPTP to synchronize the clock of the system. The example described in this document
uses linuxptp PMC tool to get the path delay.

Figure 53 shows a sample configuration to show the PMC running environment on LS1028ARDB boards.

Boundary clock
ptpdl -i swp0 -i swp1 -2 -P -f master.cfg &

LS1028ARDB-1 # cat master.cfg
[global]
swp0 swp1 priority1 127

LS1028ARDB-2 LS1028ARDB-3

Ordinary clock Ordinary clock
ptp4l -i swp0 -2 -P & # ptp4l -i swp1-2-P &

Figure 53. PMC running environment on LS1028ARDB boards

5.1.2.4.3.5 Schedule mapping

The schedule mapping component is a critical component to convert the customer requirement to TSN register
configuration. This component performs the following:

» Gets the user input and converting the input into TSN parameters.
» Gets the path and path delay from the link object of the NetworkGraph file.

* Gets the old TSN configuration for each node and calculates a new configuration to meet the user's
requirements.

5.1.2.4.3.6 Dashboard configuration demo

The figure below shows the dashboard for the configuration demo.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. Al rights reserved.

User guide Rev. 2.8 — 29 March 2024

165/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

LS1028ARDB
enol
PC running WebUl
swp0 swpl
swp0 swpl
LS1028ARDB
eno0

Example setup for dynamic remote configuration

Figure 54. Dashboard Configuration Demo

Registering a stream

Click “Check Path” button, input the start device in “first device” input box, and end device in “Second device”
input box. Then click the “submit” button, path is described in the Figure 55.

Check Path

First Device: ‘

‘ real-time-edge 01.local ‘
Second Device: I

‘ real-time-edge 02.local ‘ ‘

real-time-edge 01.local

real-time-edge 02.local

Figure 55. Stream Registration

Click “Register Stream” button, then select the path in path select. Fill VLAN ID, Stream ID, Priority, and then
click “Add” button. The Figure 56 shows the output a stream table.

Figure 56. Registering a Stream

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

166 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

‘ Register Stream ‘

Path Select:
| real-time-edge_01.local-real-time-edge 02.local- v |
VLANID: |100 |

Stream ID: ‘1
Priority: |1 || Add

Stream List:

STREAM ID VLAN IDPRIORITY

1 100 1

Configure stream identification

Click one stream ID in stream table, jump to stream configuration page. Select streamidentify and fill information
in input boxes. The stream MAC information and VLAN ID identify a stream according to the 802.1CB definition.
This information is used by the PSFP configuration. Therefore, the streamidentify page should be configured
before configuring Qci and CFQ. Refer Figure 57.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

167 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

console output
ADD TSN SETTING @ editconfig operation: true

streamidentify v

@enable Cdisable
*filter type:| destinate mac v

*mac address:
11 [11 B 11 [11 [11 [1]

*vlan type:
®vid none 0 Ovid=0 Ovid ignore

Figure 57. Configuring stream identification

Configure Qbv and Qci On Stream

Select Qbv, and then fill basetime, cycletime, and gate open time in the respective input textboxes. Select
enable Qci button to configur both Qci gate control on input port and Qbv control list on the output port. The
CNC server calculates the gate open time slot on each board and get a minimum time delay. Each path node
tries to open gate with a minimum time delay. Refer to Figure 58.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

168 / 404

NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

ADD TSN SETTING @

gbv v

console output

editconfig operation: true

editconfig operation: true delay:0

basetime: example: s.ns
cycletime: | 10000 | example: ns
Gate open time: | 2000

example: ns

Zenable Qci

N
A9

Figure 58. Configuring Qbv and Qci On Stream

Configuring CQF

The CQF configuration is based on the 802.1Qch definition to configure Qbv and Qci. The CQF configuration
cannot be mixed with the previous Qbv configuration. In CQF configuration, the cycle time and gate open time
for all streams should be the same, and cycle time must be an integer multiple of gate open time. Packets are

delayed for a gate open time on each path node. Refer Figure 59.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

169 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

console output
ADD TSN SETTING @ editconfig operation: true

CQF v editconfig operation: true delay:

il
U

cycletime: | 10000 | example: ns
Gate open time: | 2000 |

example: ns

Figure 59. Configuring CQF

5.1.3 TSN on i.MX 8DXL / i.MX 8M Plus / i.MX 93
The following sections describe TSN configuration on i.MX 8DXL, i.MX 8M Plus, or i.MX 93 hardware platforms

5.1.3.1 Test environment

On i.MX 8M Plus EVK/i.MX 93 EVK/i.MX 93 14x14 EVK platform, the interface name of ENET QOS port which
supports TSN is eth1. On i.MX 8DXL EVK/i.MX 93 9x9 LPDDR4 QSB, the interface name of ENET QOS port
which supports TSN is ethOQ.

Note: Fori.MX 93 14x14 EVK, in order to use ENET_QOS interface, TJA1103SDB ENET PHY daughter card
is needed to be connected on J9 connector. To verify the TSN features, two i.MX 93 14x14 EVK boards are
connected back-to-back on ENET_QOS interface via TUA1103ADB ENET PHY daughter card. Also on one of
the TJA1103SDB, connect jumper to short pin 2-3 of J14 (CONFIG 6).

Connect ENET_QOS port to the TestCenter to test TSN features. The commands in this section use the i.MX
8M Plus EVK platform as example:

Use the following command to check the TSN Ethernet device name:

#1ls /sys/devices/platform/soc@0/30800000.bus/30bf0000.ethernet/net/ ethl

The Figure 60 shows the TSN test environment setup.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

170/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

ETHO

.MX8MP

ETH1 Test Center

Figure 60. TSN test environment setup

Note: TestCenter is a device used to capture streams from eth1 of .MX8MP board. For this example, Spirent
TestCenter is used to capture preemptable frames in Qbu test case.

5.1.3.2 Clock synchronization

To test 1588 synchronization on dwcMAC interfaces, use the following procedure:

1. Connect eth1 interfaces on two boards in a back-to-back manner. The Linux booting log is as follows:

pps pps0: new PPS source ptpO

2. Configure the IP address using the command below:

ifconfig ethl 192.168.3.1

3. Check PTP clock and time stamping capability:

ethtool -T ethl
Time stamping parameters for ethl:
Capabilities:
hardware-transmit (SOF _TIMESTAMPING TX HARDWARE
software-transmit (SOF TIMESTAMPING TX SOFTWARE
hardware-receive (SOF TIMESTAMPING RX HARDWARE
(
(
(

_ — — —

software-receive SOF TIMESTAMPING RX SOFTWARE
software-system-clock (SOF TIMESTAMPING SOFTWARE)
hardware-raw-clock SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 1
Hardware Transmit Timestamp Modes:

off (HWTSTAMP_TX_ OFF)

on (HWTSTAMP_TX ON)
Hardware Receive Filter Modes:

none HWTSTAMP FILTER NONE)

(- -
all (HWTSTAMP FILTER ALL)
ptpvl-ld-event (HWTSTAMP FILTER PTP V1 L4 EVENT)
ptpvl-l4-sync (HWTSTAMP FILTER PTP V1 L4 SYNC)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

17117404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

ptpvl-l4-delay-req (HWTSTAMP FILTER PTP V1 L4 DELAY REQ)
ptpv2-l4-event (HWTSTAMP FILTER PTP V2 L4 EVENT)
ptpv2-1l4-sync (HWTSTAMP FILTER PTP V2 L4 SYNC)
ptpv2-l4-delay-req (HWTSTAMP FILTER PTP V2 L4 DELAY REQ)
ptpv2-event (HWTSTAMP FILTER PTP V2 EVENT)
ptpv2-sync (HWTSTAMP FILTER PTP V2 SYNC)

(

ptpv2-delay-req HWTSTAMP FILTER PTP_ V2 DELAY REQ)

4. Run ptp4l on two boards:

ptp4l -i ethl -p /dev/ptpl -m -2

5. After running, one board is automatically selected as the master, and the slave board displays
synchronization messages.

6. For 802.1AS testing, use the configuration file gpTP.cfgin 1inuxptp source. Run the below command on
the boards, instead:

ptp4l -i ethl -p /dev/ptpl -f /etc/ptp4l cfg/gPTP.cfg -m

Or use GenAVB/TSN Stack with the following command: 'avb.sh start'. Note that the configuration file /
etc/genavb/fgptp.cfg is automatically used.

Note: i.MX 8M Plus current dwmac driver (eth1) initializes few hardware functions while opening net device,
including PTP initialization. Before that, the operations such as ethtool queries, and PTP operations might not
work. So, the workaround is to do operations on the eth1 and PTP of dwmac only after "i fconfig ethl up".

Note: If Qbu preemption is enabled on remote device and the PTP packets are sent as preemption frames,
run clock synchronization using the ptp4/ command along with the parameter --hwts filter=full. For
example:

ptp4l -i ethl -p /dev/ptpl -f /etc/ptpdl cfg/gPTP.cfg -m --hwts filter=full

5.1.3.3 Qbv

Note: The Qbu frame preemption capability is enabled automatically if the link partner also supports frame
preemption. This is achieved by LLDP protocol by which the link partner announces its support for the
preemption capability via an Additional Ethernet Capabilities TLV in an LLDPDU addressed to the Nearest
Bridge group address (see IEEE Std 802.1Q).. So firstly user needs to check whether frame preemption

is active by command ethtool --show-frame-preemption ethl. If so, user needs to disable frame
preemption using command ethtool --set-frame-preemption ethl disabled before configuring Qbv
using s (SetGateStates) command in sched-entry.

1. Enable the ptp device, and get the current ptp time.

ptp4l -i ethl -p /dev/ptpl -m
#Get current time (seconds)
devmem?2 0x30bf0b08

O0x5EQ01F9B2

2. Get the basetime to be 2 minutes later.

#Basetime = (currentime + 120) * 1000000000 = 1577187882000000000

3. Set time schedule, open queue 1 in 100 pys and open queue 2 in 100 ps.

tc gdisc replace dev ethl parent root handle 100 taprio \

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

1727404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

num tc 5 map 0 1 2 3 4 queues 1Q@0 1Q@1 1@2 1@3 1@4 base-time
1577187882000000000 \
sched-entry S 1 100000 \
sched-entry S 2 100000 \
sched-entry S 4 100000 flags 2

4. Send two streams into queue 1 and queue 2.

/home/root/samples/pktgen/pktgen twoqueue.sh -i ethl -g 1 -s 1000 -n 0 -m
90:e2:ba:ff:ff:ff

5. Capture the streams on TestCenter, 100 ps queue 1 frames (length=1004) and 100 us queue 2 frames
(length=1504) will be got. Or if the Ethernet port is connected to another board, the frames can be captured on
that board by using Linux tcpdump command as shown below:

tcpdump -i eth0 -e -n -t -xx -c 10000 -w tsn.pcap

Then Wireshark can be used to analyze the pcap file on host PC.
Note:

* More than one entry needs to be set on each tc taprio command.

» Use “devmem2 0x30bf0c58”to get Obv status and check if gbv status is active. Refer to the
MTL EST Status register.

5.1.3.4 Qbu

1. Using ethtool to enable Qbu on eth1, set queue 2 to be preemptable.
ethtool --set-frame-preemption ethl preemptible-queues-mask 0x04 min-frag-
size 60

Note: Once Qbu is enabled, queue 0 is always preemptable queue. To support preemption, MAC should
have at least 1 queue designated as express queue.

Note: On a back-to-back setup using two i.MX8M Plus EVK boards connected via eth1, ensure that Qbu is
enabled on eth1 of both boards.

2. Send two streams into queue 1 and queue 2.

/home/root/samples/pktgen/pktgen twoqueue.sh -i ethl -g 1 -s 150 -n 0 -m
90:e2:ba:ff:ff:ff

3. Capture the mPacket on Spirent TestCenter. Users can observe that Q2 frames are preempted into
fragments.
Note: Spirent TestCenter can capture the preamble of mPacket. Refer to Section 99.3, "MAC Merge Packet
(mPacket)" of IEEE standard for Ethernet 802.3-2018 for the mPacket format.

a. Below is an example mPacket that contains an express packet, which has SMD value of 0xD5.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

173 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

No. Time Source Destination Protocol Length Info L
2228 9.011866000 162
2229 0.011868920 162
2230:0.011872370 162
2231 0.011912420 1268
2232 9.011922660 162
2233 0.011924050 256
2234 0.611926260 1ee
2235 ©.611927090 162 v
< >
> Frame 223@: 162 bytes on wire (1296 bits), 162 bytes captured (1296 bits) i

v User encapsulation not handled: DLT=147, check your Preferences->Protocols->DLT_USEF
> [Expert Info (Warning/Undecoded): User encapsulation not handled: DLT=147, check
v Data (162 bytes)
Data: 555555555555 50e2baF-Fffffeeeeec629bele89945@9608898b509002911 cb740000...

v

Fl Aaneat+h. 1£91
< >
Rl 55 55 55 55 55 55 55 d5 f+ ff ff 00 €9 . al
N MOc 02 ©b 01 @8 6@ 45 00 b5 06 00 20 11 - .
0020 00 00 00 c6 12 12 00 09 00 74

0030 9b e9 55 00 @0 00 00 00 B0 99 ..
0040 0O 00 00 06 B0 00 00 BO 00 09 v

Figure 61. Sample mPAcket that contains an express packet

b. Below is an example mPacket containing an initial fragment of a preemptable packet, which has SMD-
S1 value of 0x4C.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

1741404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

No. Time Source Destination Protocol Length Info L
2228 9.011866000 162
2229 0.011868920 162
2230 9.011872370 162
2231:0.011912420 § 1268
2232 09.011922660 162
2233 0.011924050 256
2234 9.0119262680 100
2235 0.0119270690 162
< >

> Frame 2231: 1268 bytes on wire (10144 bits), 1268 bytes captured (10144 bits)
v User encapsulation not handled: DLT=147, check your Preferences->Protocols->DLT_USEF
> [Expert Info (Warning/Undecoded): User encapsulation not handled: DLT=147, check
v Data (1268 bytes)
Data: 55555555555 550e2ba'F'F'F'F'F'FOBe€)0c029b810806450895 €ed00e0e02011cee30000..

FlN Aan~a+hs 1201

~

W

< >
0000 55 55855055 55055 90 e2 ba ff ff ff 00 e0
0010 92 Ob @1 08 00 45 05 ce 00 00 60 00 20 11
0020 €3 0O 00 B0 00 c6 00 2a 00 1c 00 @9 @5 ba
0030 08 be 9b e9 55 00 00 01 0O 60 6O B0 00 00
0040 00 00 00 00 00 00 00 00 00 00 00 00 0O 00

Figure 62. Sample mPacket containing an initial fragment of a preemptable packet

c. Below is an example mPacket containing a continuation fragment of a preemptable packet, which has
SMD-C1 value of 0x52, as well as frag count value of OXEG.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

17517404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

No. Time Source Destination Protocol Length Info L

2228 9.011866000 162

2229 9.011868520 162

2230 9.011872370 162

2231 9.011912420 1268

2232 0.011922660 162

2233 9.011924050 : i 256

2234 0.011926200 - 100

2235 0.0119270990 162 v
< >

Frame 2233: 256 bytes on wire (2048 bits), 256 bytes captured (2048 bits) A

v User encapsulation not handled: DLT=147, check your Preferences->Protocols->DLT_USEF
[Expert Info (Warning/Undecoded): User encapsulation not handled: DLT=147, check
v Data (256 bytes)
Data: 55555555555 éﬁ@@seeeeeeeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeeeeeem

NN Anc+h. ACCT
< >
<I=[<]- 55 55 55 55 55 55 52 e6 00 00 00 00 00 00 00 00 . ~
L NO00 €0 00 00 00 B0 60 06 00 90 B0 0O 06 B0 00 00
PI00 00 00 00 00 00 G0 PO 00 PO 00 60 00 B0 00 00
SEI 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 09
00 €0 00 G0 00 00 00 PO 00 00 60 00 06 0O 00 00 v

v

Figure 63. Sample mPacket containing a continuation fragment of a preemptable packet
4. User can also check the below counter for the number of fragments transmitted.

ethtool -S ethl | grep "mmc tx fpe fragment cntr"

5. Qbu combined with Qbv test
Once a queue is set to be a preemptable queue and the gate open/close is invalid in Qbv gate control list,
the queue is considered as always "Open". Use Hold/Release to control all preemptable queues. When
the GCL entry is set from Hold to Release, preemptable queues begin transmitting. When GCL entry is set
from Release to Hold, preemptable queues are held.

tc gdisc replace dev ethl parent root handle 100 taprio \
num _tc 5 map 0 1 2 3 4 queues 1@0 1@1 1@2 1@3 1@4 base-time
1577187882000000000 \
sched-entry H 2 100000 \
sched-entry R 4 100000 flags 2

5.1.3.4.1 Preemption Verification

The preemption capability is enabled only if the link partner announces its support for the preemption capability
via an Additional Ethernet Capabilities TLV in an LLDPDU addressed to the Nearest Bridge group address (see
IEEE Std 802.1Q). The preemption capability is disabled if the MAC Merge sublayer receives indication of link
failure.

Connect eth1l of two boards back to back. Then, run below command to enable the hardware verification:

ethtool --set-frame-preemption ethl fp on preemptible-queues-mask 0x04 min-frag-
size 60
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2.8 — 29 March 2024

176 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

After that, make the link down and then up to enable the verify mPacket and response mPacket to be
exchanged between two boards. Run below command to show the preemption status.

ethtool --show-frame-preemption ethl

Capture the LLDP frames on eth1 port to check the Additional Ethernet Capabilities TLV.

5.1.3.5 Qav

1. Set a queue map handle.

tc gdisc add dev ethl root handle 1: mgprio num tc 5 map 0 1 2 3 4 queues 1Q0
1@1 1@2 1@3 1@4 hw O

2. Set bandwidth of queue 3 to be 20 Mbps.

tc gdisc replace dev ethl parent 1:4 cbs locredit -1470 hicredit 30 sendslope
-980000 idleslope 20000 offload 1

3. Send a stream into queue 3:

/home/root/samples/pktgen/pktgen sampleOl simple.sh -i ethl -g 3 -s 500 -n 3000

4. Get the result, bandwidth is 19 Mbps.

WARN : Missing destination MAC address
WARN : Missing destination IP address
Running... ctrl”C to stop
Done
Result device: ethl
Params: count 3000 min pkt size: 500 max pkt size: 500
frags: 0 delay: 0 clone skb: 0 ifname: ethl
flows: 0 flowlen: 0
queue map min: 3 queue map max: 3
dst min: 198.18.0.42 dst max:
src min: Src max:
src mac: a6:85:82:fc:89:bf dst mac: 02:5d:ae:ba:e0:00
udp_src min: 9 wudp src max: 109 udp dst min: 9 wudp dst max: 9
src mac _count: 0 dst mac count: O
Flags: UDPSRC RND NO TIMESTAMP QUEUE MAP RND
Current:
pkts-sofar: 3000 errors: O
started: 5631940023us stopped: 5632560030us idle: 79984us
seq num: 3001 cur dst mac offset: 0 cur src mac offset: 0
cur saddr: 0.0.0.0 cur daddr: 198.18.0.42
cur udp dst: 9 cur udp src: 41
cur_ queue map: 3
flows: 0
Result: OK: 620007 (c540023+d79984) usec, 3000 (500byte,0frags)
4838pps 19Mb/sec (19352000bps) errors: 0

5. Set bandwidth of queue 4 to be 40 Mbps.

tc gdisc replace dev ethl parent 1:5 cbs locredit -1440 hicredit 60 sendslope
-960000 idleslope 40000 offload 1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

177 1 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

6. Send a stream into queue 4 and get the result.

/home/root/samples/pktgen/pktgen sampleOl simple.sh -i ethl -g 4 -s 500 -n 3000
WARN : Missing destination MAC address
WARN : Missing destination IP address
Running... ctrl”C to stop
Done
Result device: ethl
Params: count 3000 min pkt size: 500 max pkt size: 500
frags: 0 delay: 0 clone skb: 0 ifname: ethl
flows: 0 flowlen: 0
queue map min: 4 queue map max: 4
dst min: 198.18.0.42 dst max:
Src _min: src_max:
src mac: a6:85:82:fc:89:bf dst mac: 02:5d:ae:ba:e0:00
udp _src min: 9 udp src max: 109 udp dst min: 9 udp dst max: 9
src_mac _count: 0 dst mac count: O
Flags: UDPSRC RND NO TIMESTAMP QUEUE MAP RND
Current:
pkts-sofar: 3000 errors: 0
started: 6113136017us stopped: 6113443758us idle: 38457us
seq num: 3001 cur dst mac offset: 0 cur src mac offset: 0
cur _saddr: 0.0.0.0 cur daddr: 198.18.0.42
cur udp dst: 9 cur udp src: 17
cur queue map: 4
flows: O
Result: OK: 307741 (c269283+d38457) usec, 3000 (500byte,0frags)
9748pps 38Mb/sec (38992000bps) errors: 0

7. Send two streams into queue 3 and queue 4 using the command below:

/home/root/samples/pktgen/pktgen twoqueue.sh -i ethl -g 3 -s 1500 -n 0

8. Capture the streams on TestCenter, the frames sort by one Q3 frame and two Q4 frames.

5.1.4 TSN on LS1028A
The tsntool is an application configuration tool to configure the TSN capability on LS1028ARDB. The files lusr/
bin/tsntool and /usr/lib/libtsn.so are located in the rootfs. Run tsntool to start the setting shell.

5.1.4.1 TSN configuration on ENETC

The tsntool is an application configuration tool to configure the TSN capability. Users can find the files /usr/
bin/tsntool and /usr/1lib/libtsn.so in the rootfs. Run tsntool to start the setting shell. The following
sections describe the TSN configuration examples on the ENETC Ethernet driver interfaces.

Before testing the ENETC TSN test cases, you must enable mgprio by using the command below:

tc gdisc add dev eno0 root handle 1: mgprio num tc 8 map 0 1 2 3 4 5 6 7 hw 1

5.1.4.1.1 Clock synchronization

To test 1588 synchronization on ENETC interfaces, use the following procedure:

1. Connect ENETC interfaces on two boards in a back-to-back manner. (For example, eno0 to eno0.)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

178 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

The linux booting log is as follows:

pps pps0: new PPS source ptp0

2. Check PTP clock and timestamping capability:

ethtool -T eno0
Time stamping parameters for enoO:

Capabilities:
hardware-transmit (SOF TIMESTAMPING TX HARDWARE)
hardware-receive (SOF TIMESTAMPING RX HARDWARE)
hardware-raw-clock (SOF TIMESTAMPING RAW HARDWARE)

PTP Hardware Clock: O
Hardware Transmit Timestamp Modes:
off (HWTSTAMP_ TX OFF)
on (HWTSTAMP TX ON)Hardware Receive Filter Modes:
none (HWTSTAMP FILTER NONE)
all (HWTSTAMP FILTER ALL)

3. Configure the IP address and run ptp41 on two boards:

ifconfig eno0 <ip addr>
ptp4l -i eno0 -p /dev/ptp0 -m

4. After running, one board would be automatically selected as the master, and the slave board would print
synchronization messages.

5. For 802.1AS testing, just use the configuration file gPTP. cfg in linuxptp source. Run the below command
on the boards, instead:

ptp4l -i eno0 -p /dev/ptp0 -f /etc/ptp4l cfg/gPTP.cfg -m

5.1.4.1.2 Qbv

This test includes the Basic Gates Closing test, Basetime test, and the Qbv performance test. These are
described in the following sections.

5.1.4.1.2.1 Basic gates closing

The commands below describe the steps for closing the basic gates:

cat > gbv0.txt << EOF
t0 00000000b 20000
EQCF

#Explanation:

'NUMBER' 3 t0

'GATE VALUE' : 00000000b
'TIME LONG' 3 20000 ns

tsntool

tsntool> verbose

tsntool> gbvset --device eno0 --entryfile ./gbv0.txt

ethtool -S eno0

ping 192.168.0.2 -c 1 #Should not pass any frame since gates are all off.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

179 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

5.1.4.1.2.2 Basetime test

Base on case 1 gbvl.txt gate list.

fcreate 1s gate
cat > gbvl.txt << EOF

t0 11111111b 10000
tl 00000000b 99990000
EOF

#ENETC Qbv basetime can be set any past time or future time.

#For the past time, hardware calculate by:

effective-base-time = base-time + N x cycle-time

fwhere N is the smallest integer number of cycles such that effective-base-time
>= now.

#If you want a future time, you can get current time by:

tsntool> ptptool -g

#Below example shows basetime start at 260.666 s (start of 1 January 1970):

tsntool> gbvset --device enol --entryfile gbvl.txt --basetime 260.666

tsntool> gbvget --device enoO #User can check configchange time

tsntool> regtool 0 0x11lal0 #Check pending status, Oxl means time gate is working
#Waiting to change state, ping remote computer

ping 192.168.0.2 -A -s 1000

#The reply time will be about 100 ms

Since 10000 ns is the maximum limit for package size 1250 B.

ping 192.168.0.2 -c¢ 1 -s 1300 #frame should not pass

5.1.4.1.2.3 Qbv performance test
Use the setup described in the Figure 64 for testing ENETC port0 (MACO).

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

180/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

SWPO
(swp0) PO
SwP1
LS1028ARDB (swpl)P1
SwpP2
(swp2) P2
SWP3
(swp3)P3
TSN- Switch
ENETC
(eno3) enetc 3 P5 (swp5)
(eno2) enetc 2 P4 (swp4) Test Center
(enol)enetc 1 (¢
MACO
(eno0) enetc O
PCI BUS I ©1000 TFTP/BOOT
network

Figure 64. Setup for testing ENETC port0

Note: TestCenter is a device used to capture streams from enetc0 of LS1028ARDB board. Users can use
another board to capture streams by using tcpdump command and then use Wireshark to analyze it.

cat > gbvb.txt << EOF

t0 11111111b 1000000 tl 00000000b 1000000

EOF

gbvset --device eno0 --entryfile gbv5.txt
/home/root/samples/pktgen/pktgen twoqueue.sh -i eno0 -g 3 -n 0
#The stream would get about half line rate

5.1.4.1.2.4 Using taprio Qdisc Setup Qbv
LS1028ARDB support the taprio qdisc to setup Qbv either. Below is an example setup.

#Q0bv test do not require the mgprio setting.

If mgprio is enabled, try to disable it by below command:

tc gdisc del dev eno0O root handle 1: mgprio

Enable the Qbv for ENETC eno0 port

Below command set enoO with gate 0x01, means queue 0 open, the other queues
gate close.

tc gdisc replace dev eno0 parent root handle 100 taprio num tc 8 map O 1 2 3 4 5
6 7 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 sched-entry S 01 300000
flags 0x2

Ping through eno0 port should be ok

Then close the gate queue 0. Open gate queue 1. The other queues gate close.

tc gdisc replace dev eno0 parent root handle 100 taprio num tc 8 map O 1 2 3 4 5
6 7 queues 1Q@0 1@1 1@2 1@3 1Q@4 1@5 1@6 1Q@7 base-time 0 sched-entry S 02 300000
flags 0x2

Ping through eno0 port should be dropped

#Disable the Qbv for ENETC enol port as below

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

18117404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

tc gdisc del dev eno0 parent root handle 100 taprio

5.1.4.1.3 Qbu

* If user has two LS1028ARDB boards, then link the two eno0 ports back to back. In this case, the test does not
need the switch to be set up. Users can omit the steps 2, 3, and 4 and just perform steps 1, 5, and 6.

* If user has only one board, user can set the frame path from eno0 to switch by linking enetc ports MACO
- SWPO. The setup enables the switch SWPO port-merging capability. Then enetc eno0 can show the
preemption capability. Use the setup as shown in the for the Qbu test.

(swp0) PO

swpl) P1
LS1028ARDB (swpl) Test Center

(swp2) P2

(swp3) P3

TSN-Switch
ENETC

(eno3) enetc 3 P5 (swp5)

(eno2) enetc 2 P4 (swp4)

(enol) enetc 1

(eno0) enetc 0

PCI BUS

Figure 65. Qbu test

Before linking the cable between ENETC port0 to SWPO, set up the switch up (refer the Switch configuration)
and set IP for ENETC port0. To make sure the ENETC port0 is linked to SWPO, use the steps below:

1. Do not forget to enable the priority for each traffic class:

tc gdisc add dev eno0 root handle 1: mgprio num tc 8 map 0 1 2 3 4 5 6 7 hw 1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

182/404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2. Make sure link speed is 1 Gbps by using the command:

ethtool enoO

3. Ifitis not 1 Gbps, set it to 1 Gbps by using the command:

ethtool -s swpO speed 1000 duplex full autoneg on

4. Set the switch to enable merge (or user can link to another merge capability port in another board):

devmem2 O0x1£fcl100048 w Ox111 #DEV _GMII:MM CONFIG:ENABLE CONFIG

5. ENETC port setting set and frame preemption test:

ip link set eno0 address 90:e2:ba:ff:ff:ff

tsntool gbuset --device eno0 --preemptable 0Oxfe
/home/root/samples/pktgen/pktgen twoqueue.sh -i eno0 -g 0 -s 100 -n 20000 -m
90:e2:ba:ff:ff:ff

pktgen would flood frames on TCO and TC1.
6. Check the TX merge counter, if it has a non-zero value, it indicates that the Qbu is working.

tsntool regtool 0 0x11£f18

Note: 0x11f18 counting the merge frame count:

0x11f18 Port MAC Merge Fragment Count TX Register (MAC MERGE MMFCTXR)

LS1028ARDB also supports ethtool setup for preemption as in the example below:

ethtool --set-frame-preemption enoO preemptible-queues-mask Oxfe

This implies that we can get same result by using TCO to pass express MAC and TC1~TC7 to pass
preemptable MAC.

The ENETC also supports preemption verify. Use two boards to test preemption verification on eno0. Refer to
Section 5.1.3.4.1 "Preemption Verification".

5.1.4.1.4 Qci

Use the following as the background setting:
» Set eno0 MAC address
ip link set eno0 address 10:00:80:00:00:00

Opposite port MAC address 99:aa:bb:cc:dd:ee as frame provider as example.
* Use the figure below as the hardware setup.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

183/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

(swp0) PO

swpl) P1
LS1028ARDB (swpl) Test Center

(swp2) P2

(swp3) P3

TSN-Switch
ENETC

(eno3) enetc 3 P5 (swp5)

(eno2) enetc 2 P4 (swp4)

(enol) enetc 1

(eno0) enetc 0

PCI BUS

Figure 66. Qci test case setup
Note: TestCenter is a device to send streams to enetcO of LS1028ardb board. User also can use another
board to send streams.

5.1.4.1.4.1 Test SFI No Streamhandle

Qci PSFP can work for the streams without stream identify module, which are the streams without MAC address
and vid filter. Such kind of filter setting always sets a larger index number stream for filter entry. The frames that
are not filtered then flow into this stream filter entry.

The below example tests no streamhandle in a stream filter, set on stream filter entry index 2 with a gate stream
entry id 2. Then none stream identifies frames would flow into the stream filter entry index 2 then pass the gate
entry index 2, as shown in the following example:

tsntool> qgcisfiset --device eno0 --index 2 --gateid 2

» Streams no streamhandle should pass this filter.

tsntool> gcisfiget --device eno0 --index 2

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

184 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

* Send a frame from the opposite device port (ping for example).

tsntool> gcisfiget --device eno0 --index 2

» Set Stream Gate entry 2

tsntool> gcisgiset --device eno0 --index 2 --initgate 1

« Send a frame from the opposite device port.

tsntool> gcisfiget --device eno0 --index 2

» Set Stream Gate entry 2, gate closes permanently.

tsntool> gcisgiset --device eno0 --index 2 --initgate 0

« Send a frame from the opposite device port.

tsntool> gcisfiget --device eno0 --index 2

#The result should look like below:

match pass gate drop sdu pass sdu drop red
1 0 1 1 0 0

5.1.4.1.4.2 Testing null stream identify entry

Null stream identify in stream identify module means trying to filter using destination MAC address and vlan id.

Following steps show the stream identify entry index 1 set with filtering destination mac address as
10:00:80:00:00:00 and vlan id ignored (with or without vland id). Then stream filter is set on the entry index 1
with stream gate index entry id 1.

1. Set main stream by closing gate.
2. Set Stream identify Null stream identify entry 1.

tsntool> cbstreamidset --device eno0 --index 1 --nullstreamid --nulldmac
0x000000800010 --nulltagged 3 --nullvid 10 --streamhandle 100

3. Get stream identify entry index 1.

tsntool> cbstreamidget --device eno0O --index 1

4. Set Stream filer entry 1 with stream gate entry id 1.

tsntool> gcisfiset --device eno0 --streamhandle 100 --index 1 --gateid 1

5. Set Stream Gate entry 1, keep gate state close (all frames dropped. return directly if ask user for editing
gate list).

tsntool> gcisgiset --device eno0 --index 1 --initgate O

6. Send one frame from the opposite device port should pass to the close gate entry id 1.

tsntool> gcisfiget --device eno0 --index 1

7. The result should look like the output below:

match pass gate drop sdu pass sdu drop red
101100

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

185/404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

5.1.4.1.4.3 Testing source stream identify entry

Source stream identify means stream identify the frames by the source mac address and vlan id.
Use the following steps for this test:

1. Keep Stream Filter entry 1 and Stream gate entry 1.

2. Add stream2 in opposite device port: SMAC is 66:55:44:33:22:11 DMAC:20:00:80:00:00:00 (Not
with destination mac address 10:00:80:00:00:00 which stream identify entry index 1 is filtering that dmac
address)

3. Set Stream identify Source stream identify entry 3

tsntool> cbstreamidset --device eno0 --index 3 —--sourcemacvid --sourcemac
0x112233445566 --sourcetagged 3 —--sourcevid 20 --streamhandle 100

4. Send frame from opposite device port. The frame passes to stream filter index 1.

tsntool> gcisfiget --device eno0 --index 1

5.1.4.1.4.4 SGI stream gate list

Use the command below for this test:

cat > sgil.txt << EOF
t0 0b -1 100000000 O
tl 1b -1 100000000 O

EQCOFE

tsntool> gcisfiset --device enol --index 2 --gateid 2

tsntool> gcisgiset --device eno0 --index 2 --initgate 1 --gatelistfile sgil.txt
#flooding frame size 64bytes from opposite device port. (iperf or netperf as
example)

tsntool> gcisfiget --device eno0 --index 2

Check the frames dropped and passed, they should be the same since stream gate list is setting 100ms open
and 100ms close periodically.

5.1.4.1.4.5 FMI test

Only send green color frames (normally it is the TCI bit value in 802.1Q tag). Flooding the stream against the
eno0 port speed to 10000 kbsp/s:

tsntool> qgcisfiset --device eno0 --index 2 --gateid 2 --flowmeterid 2
tsntool> gcifmiset --device eno0 --index 2 --cm --cf --cbs 1500 --cir 5000 --ebs
1500 --eir 5000

The 'cm' parameter set color mode enable means frames to separate green frames and yellow frames judged
by the TCI bit in frame. Or else, any frames are green frames.

The 'cf' parameter sets the coupling flag enable. When CF is set to 0, the frames that are declared yellow are
bound by EIR. When CF is set to 1, the frames that are declared Yellow are bound by CIR + EIR, depending on
volume of the offered frames that are declared Green.

After the above commands are setup, since green frames are not larger than EIR + CIR 10 Mbit/s. So the green
frame would not be dropped.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

186 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

The below setting shows the dropped frames:

tsntool> gcifmiset --device eno0 --index 2 --cm --cf --cbs 1500 --cir 5000 --ebs
1500 --eir 2000

This case makes the green frames pass 5 Mbit/s in CIR, then it pass to the EIR space. However, EIR is 2 Mbit/
s, so total EIR + CIR 7 Mbit/s still do not qualify the total 10 Mbit/s bandwidth. So green frame would be dropped
part.

To get information of color frame counters showing at application layer, use the code as in the below example:

tsntool> gcifmiget --device eno0 --index 2

bytecount drop dr0 green drl green dr2 yellow remark yellow dr3 red remark red
1c89 0 4c 0 0 0 0 O

index = 2
cir = c34c
cbs = 5dc
eir = 4c4b3c
ebs = 5dc

couple flag
color mode

5.1.4.1.5 Qav

5.1.4.1.5.1 Using tsntool

The following figure illustrates the hardware setup diagram for the Qav test.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

187 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

(swp0) PO

swpl) P1
LS1028ARDB (swpl) Test Center

(swp2) P2

(swp3) P3

TSN-Switch
ENETC

(eno3) enetc 3 P5 (swp5)

(eno2) enetc 2 P4 (swp4)

(enol) enetc 1

(eno0) enetc O

PCI BUS

Figure 67. Qav test setup

Note: TestCenter is a device to capture streams from enetcO of LS1028ARDB board. Users can also use
another board to capture streams by using tcpdump command, and use Wireshark network protocol analyzer
to analyze results.

0. Ensure to enable the priority for each traffic class:

tc gdisc add dev eno0 root handle 1: mgprio num tc 8 map 0 1 2 3 4 5 6 7 hw 1

1. Run the following commands:

tsntool cbsset --device eno0 --tc 7 --percentage 60
tsntool cbsset --device eno0 --tc 6 —--percentage 20

2. Check each queue bandwidth (pktgen requires enabling NET_PKTGEN in kernel)

/home/root/samples/pktgen/pktgen sample0l simple.sh -i eno0 -g 7 -s 500 -n
30000

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

188 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Wait a few seconds later to check the result. It should get about 60% percentage line rate.

/home/root/samples/pktgen/pktgen sample0l simple.sh -i eno0 -g 6 -s 500 -n
30000

Wait a few seconds later to check the result. It should get about 20% percentage line rate.

5.1.4.1.5.2 Using CBS Qdisc to setup Qav

LS1028a supports the CBS qdisc to setup Credit-based Shaper. Below commands set CBS with 100 Mbit/s for
queue 7 and 300 Mbit/s for queue 6.

tc gdisc add dev eno0 root handle 1: mgprio num tc 8 map 0 1 2 3 4 5 6 7 hw 1

tc gdisc replace dev eno0O parent 1:8 cbs locredit -1350 hicredit 150 sendslope
-900000 idleslope 100000 offload 1

tc gdisc replace dev eno0 parent 1:7 cbs locredit -1050 hicredit 950 sendslope
-700000 idleslope 300000 offload 1

Try to flood stream here (require kernel enable NET PKTGEN)
/home/root/samples/pktgen/pktgen sample0l simple.sh -i eno0 -g 7 -s 500 -n 20000
/home/root/samples/pktgen/pktgen sample0l simple.sh -i eno0 -g 6 -s 500 -n 20000
tc gdisc del dev eno0 parent 1:7 cbs

tc gdisc del dev enoO parent 1:8 cbs

5.1.4.2 TSN configuration on Felix switch

The following sections describe examples for the basic configuration of TSN switch.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

189 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

5.1.4.2.1 Switch configuration

SWPO
(swp0) PO
SWP1
LS1028ARDB (swpl) P1
SWP2 Test Center
(swp2) P2
SWP3
(swp3) P3
TSN-Switch
ENETC
(eno3) enetc 3 P5 (swp5)
(eno2) enetc 2 P4 (swp4)
(enol) enetc 1 X
MACO
(eno0) enetc 0
PCI BUS

Figure 68. TSN switch configuration

Use the following commands to configure bridge on LS1028ARDB:

ls /sys/bus/pci/devices/0000:00:00.5/net/

Get switch device interfaces for swp0, swp1, swp2 and swp3 as shown below:

ip link set eno2 up

ip link add name switch type bridge vlan filtering 1
ip link set switch up

ip link set swpO master switch && ip link set swpO up
ip link set swpl master switch && ip link set swpl up
ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up

5.1.4.2.2 Linuxptp test

To run PTP clock synchronization cases on TSN switch in:

* 4.3.5 Quick Start for IEEE 1588
* 4.3.6 Quick Start for IEEE 802.1AS

There are additional configurations of PTP packets trapping besides basic L2 switch mode configuration of
“4.1.4.2.1 Switch configuration”. An available IP should be configured on bridge, and don’t configure IP on swpX
interfaces.

$./switch-ptp-trap.sh

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

190 / 404

NXP Semiconductors

REALTIMEEDGEUG

$ ifconfig switch

<ip address>

Real-time Edge Software User Guide

switch-ptp-trap.sh

swpO, trap ptp

tc gdisc add dev swp0O clsact

tc filter add
chain 10000
tc filter add
chain 11000
tc filter add
chain 12000
tc filter add
chain 20000
tc filter add
chain 21000
tc filter add
chain 30000
tc filter add dev
trap action goto
tc filter add dev

dev
dev
dev
dev
dev

dev

swpl, trap ptp

swp0O ingress chain

swpO ingress chain

swpO ingress chain

swp0O ingress chain

swpO ingress chain

swpO ingress chain
swp0O ingress chain

chain 21000

0 pref 49152 flower skip sw action goto

10000 pref 49152

11000 pref 49152
12000 pref 49152
20000 pref 49152
21000 pref 49152

20000

flower skip sw action

flower

flower

flower

flower

skip sw
skip sw
skip sw

skip sw

goto
action goto
action goto
action goto

action goto

protocol 0x88f7 flower skip sw action

tc filter add dev swpO ingress chain 20000 protocol ip flower
skip sw dst ip 224.0.1.129 action trap action goto chain 21000
tc filter add dev tc filter add dev swp0O ingress chain 20000 protocol ip flower
skip sw dst ip 224.0.0.107 action trap action goto chain 21000

tc gdisc add dev swpl clsact

tc filter add
chain 10000
tc filter add
chain 11000
tc filter add
chain 12000
tc filter add
chain 20000
tc filter add
chain 21000
tc filter add
chain 30000
tc filter add dev
trap action goto
tc filter add dev

dev

dev

dev

dev

dev

dev

swpl ingress chain

swpl ingress chain

swpl ingress chain

swpl ingress chain

swpl ingress chain

swpl ingress chain

swpl ingress chain
chain 21000
swpl ingress chain

224.0.1.129 action trap action goto

tc filter add dev

swpl ingress chain

224.0.0.107 action trap action goto

swp2, trap ptp

tc gdisc add dev swp2 clsact

tc filter add dev
chain 10000

tc filter add dev
chain 11000

tc filter add dev
chain 12000

tc filter add dev
chain 20000

tc filter add dev
chain 21000

REALTIMEEDGEUG

swp2 ingress chain

swp2 ingress chain

swp2 ingress chain

swp2 ingress chain

swp2 ingress chain

All information provided in this document is subject to legal disclaimers.

0 pref 49152 flower skip sw action goto

10000 pref 49152

11000 pref 49152

12000 pref 49152

20000 pref 49152

21000 pref 49152

20000

20000
chain
20000
chain

21000

21000

flower skip sw action
flower skip sw action
flower skip sw action
flower skip sw action

flower skip sw action

goto
goto
goto
goto

goto

protocol 0x88f7 flower skip sw action
protocol ip flower skip sw dst ip

protocol ip flower skip sw dst ip

0 pref 49152 flower skip sw action goto

10000 pref 49152
11000 pref 49152
12000 pref 49152

20000 pref 49152

flower skip sw action goto

flower skip sw action goto

flower skip sw action goto

flower skip sw action goto

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024

191 /404

NXP Semiconductors

REALTIMEEDGEUG

tc filter add dev
chain 30000

tc filter add dev
trap action goto

tc filter add dev

swp2 ingress chain

swp2 ingress chain
chain 21000
swp2 ingress chain

224.0.1.129 action trap action goto

tc filter add dev

swp2 ingress chain

224.0.0.107 action trap action goto

swp3, trap ptp

tc gdisc add dev swp3 clsact

tc filter add
chain 10000
tc filter add
chain 11000
tc filter add
chain 12000
tc filter add
chain 20000
tc filter add
chain 21000
tc filter add
chain 30000
tc filter add dev
trap action goto
tc filter add dev

dev

dev

dev

dev

dev

dev

swp3 ingress chain

swp3 ingress chain

swp3 ingress chain

swp3 ingress chain

swp3 ingress chain

swp3 ingress chain

swp3 ingress chain
chain 21000
swp3 ingress chain

224.0.1.129 action trap action goto

tc filter add dev

swp3 ingress chain

224.0.0.107 action trap action goto

ebtables,

route ptp,

ebtables --table broute
ebtables --table broute
ip-destination-port 320
ebtables --table broute
ip-destination-port 319

not bridge

--jump DROP

—-—jump DROP

21000

20000

20000
chain
20000
chain

Real-time Edge Software User Guide

pref 49152 flower skip sw action goto

protocol 0x88f7 flower skip sw action

protocol ip flower skip sw dst ip

21000

protocol ip flower skip sw dst ip

21000

0 pref 49152 flower skip sw action goto

10000
11000
12000
20000
21000
21000
21000
chain

21000
chain

pref 49152
pref 49152
pref 49152
pref 49152

pref 49152

flower skip sw action

flower

flower

flower

flower

skip sw
skip sw
skip sw

skip sw

goto
action goto
action goto
action goto

action goto

protocol 0x88f7 flower skip sw action

protocol ip flower skip sw dst ip

21000

protocol ip flower skip sw dst ip

21000

—-—append BROUTING --protocol 0x88F7 —--jump DROP
——append BROUTING --protocol 0x0800 --ip-protocol udp --

—-—append BROUTING --protocol 0x0800 --ip-protocol udp --

5.1.4.2.3 Qbv test setup for LS1028ARDB

The following figure describes the setup for gbv test on LS1028ARDB.

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024

192/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Stream

(swp0) PO

LS1028ARDB (swpl) P1 Capture Test Center

(swp2) P2

(swp3) P3

TSN-Switch
ENETC

(eno3) enetc 3 P5 (swpb)

(eno2) enetc 2 P4 (swp4)

(enol) enetc 1

(eno0) enetc 0

PCI BUS

Figure 69. Qbv test

Reserve buffer for each queue on ingress and egress port to avoid resource depletion when Qbv gate is closed.

ingressport=0
egressport=1
for tc in {0..7}; do {
devlink sb tc bind set pci/0000:00:00.5/$ingressport sb 0 tc Stc type
ingress pool 0 th 3000
devlink sb tc bind set pci/0000:00:00.5/$ingressport sb 1 tc $tc type
ingress pool 0 th 10
devlink sb tc bind set pci/0000:00:00.5/Segressport sb 0 tc $tc type egress
pool 1 th 3000
devlink sb tc bind set pci/0000:00:00.5/Segressport sb 1 tc $tc type egress
pool 1 th 10
}

done

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024
193 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

5.1.4.2.3.1 Tsntool usage

Closing basic gates

Use the set of commands below for basic gate closing.

echo “t0 00000000b 20000” > gbv0.txt

#Explaination:

'NUMBER' : to0

'GATE VALUE' : 00000000Db
'"TIME LONG' : 20000 ns
./tsntool

tsntool> verbose

tsntool> gbvset --device swpl —--entryfile ./gbv0.txt
#Send one broadcast frame to swpO from TestCenter.
ethtool -S swpl

#Should not get any frame from swpl on TestCenter.
echo “t0 11111111b 200007 > gbv0.txt

tsntool> gbvset —--device swpl --entryfile ./gbv0.txt
#Send one broadcast frame to swpO on TestCenter.
ethtool -S swpl

#Should get one frame from swpl on TestCenter.

Basetime test

For the basetime test, first get the current time in seconds:

#Get current time:
tsntool> ptptool -g -d /dev/ptpl

#add some seconds, for example user gets 200.666 time clock, then set 260.666 as
result

tsntool> gbvset --device swpl --entryfile ./gbv0.txt --basetime 260.666

#Send one broadcast frame to swpO on the TestCenter.
#Frame could not pass swpl until time offset.

Qbv performance test

Use the following commands for the QBv performance test:

cat > gbvb5.txt << EOF

t0 11111111b 1000000

tl 00000000b 1000000

EOF

gbvset --device swpl --entryfile gbvb5.txt

#Send 1G rate stream to swp0 on TestCenter.
#The stream would get about half line rate from swp1.

Note: Each entry time must be larger than guard band, the guard band is set by "--maxsdu”, if it's not set, use
default 1518Bytes, the least entry time is (1518*8)/1G=12us.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

194 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

5.1.4.2.3.2 Tc-taprio usage
LS1028ARDB supports the tarprio qdisc to setup Qbv either. Below is an example setup.

1. Enable the Qbv for swp1 port, set queue 1 gate open, set circle time to be 300 ps.

tc gdisc replace dev swpl parent root handle 100 taprio num tc 8 map 0 1 2 3 4 5
6 7 \
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1Q@7 base-time 0 sched-entry S 02
300000 flags 0x2

Note: Since the hardware can only use PCP, DSCP or other methods to classify QoS, it cannot map QoS to
different hardware queues. mqprio is not implemented in the felix driver, so "map 0 12 34 5 6 7" in the tc-taprio
command is invalid.

Note: Tc-taprio uses default port max SDU(1518B) as guard band value. Each entry time must be larger than
guard band(1518*8/1G=12us).

2. Send one frame with PCP=1 in vlan tag to swp0 from TestCenter, so as to capture the frame from swp1.

3. Send one frame with PCP=2 in vlan tag to swp0 from TestCenter, gate is closed and the frame from swp1
cannot be captured.

4. Disable the Qbv for swp1 port as below:

tc gdisc del dev swpl parent root handle 100 taprio

5.1.4.2.4 Qbu

The figure below illustrates the setup for performing the Qbu test using the TSN switch.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

195/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Figure 70. Qbu test on switch

PCP=0 Streaml
SWPOJ A
(swp0) PO
SWP1
LS1028ARDB (swpl) P1
swrzl PCP=1 Stream? Test Center
(swp2) P2
SWP3
(swp3) P3
ENETC TSN-Switch| ™
\ Preemption
(eno3) enetc 3 P5 (swp5)
(eno2) enetc 2 P4 (swp4)
(enol) enetc 1 =X
MACO
(eno0) enetc 0
PCI BUS

5.1.4.2.4.1 Tsntool usage

1.

Disable the Cut-through mode before enabling preemption on switch ports.

tsntool> ctset --device swp3 --queue stat 0x0

Set queue 1 to be preemptable. There are two ways to set preemptable queues, users can choose tsntool
or ethtool to set it.

#tsntool command to set preemptable queues:
tsntool> gbuset --device swp3 --preemptable 0x02

. Send two streams from TestCenter, set packet size to be 1500 Byte and bandwidth to be 1G. Now, check

the number of additional mPackets transmitted by PMAC using the command below:

ethtool -S swp3 | grep tx merge fragments

Follow the steps below to perform Qbu combined with Qbv test.
Set queue 0 gate open 20 ps, queue 1 gate open to 20 ps.

cat > gbv0.txt << EOF

t0 00000001b 200000

tl 00000010b 200000

EOF

gbvset --device swp3 --entryfile gbv0.txt

Send two streams from TestCenter. Observe that packets in queue 1 are preempted when gate 1 is closed.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

196 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

5.1.4.2.4.2 Ethtool usage

1.

Set queue 1 to be preemptable. There are two ways to set preemptable queues, users can choose tsntool
or ethtool to set it.

#ethtool command to set preemptable queues:
ethtool --set-frame-preemption swp3 preemptible-queues-mask 0x02 min-frag-
size 124

Explanation:

* preemptible-queues-mask: An 8-bit vector that specifies preemptable queues within the 8 priorities
(with bit-0 for priority-0 and bit-7 for priority-7).

* min-frag-size: specifies the least frame bytes that have been transmitted in the fragment. The
minimum non-final fragment size is 64, 128, 192, or 256 octets (include 4 Bytes fragment header).

Send two streams from TestCenter. Set packet size to be 1500 Bytes and bandwidth to be 1 G. Now, check

the number of additional mPackets transmitted by PMAC:

ethtool -S swp3 | grep tx merge fragments

. Qbu combined with Qbv test.

Set queue 0 gate open 20 us, queue 1 gate open 20 ps.

tc gdisc replace dev swp3 parent root handle 100 taprio num tc 8 map 0 1 2 3
4 5 6 7\
queues 1@0 1Q@Q1 1@2 1@3 1Q@4 1@5 1@6 1Q@7 base-time 0 \
sched-entry S 01 200000 \
sched-entry S 02 200000 flags 0x2

Send two streams from TestCenter. Note that packets in queue 1 are preempted when gate 1 closed.

. The felix switch port also supports preemption verify. Use two boards to test preemption verification on

swp0-3. Refer to "4.1.3.4.1 Preemption verify.

5.1.4.2.5 Qci

The figure below illustrates the Qci test case setup.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

197 1 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Streaml

(swp0) PO <

LS1028ARDB swpl) P1
el swp2Stream1(Forward) Test Center

(swp2) P2

(swp3) P3

TSN-Switch
ENETC

(eno3) enetc 3 P5 (swp5)

(eno2) enetc 2 P4 (swp4)

(enol) enetc 1

(eno0) enetc 0

PCI BUS

Figure 71. Qci test case

5.1.4.2.5.1 Tsntool usage

Stream identification

Use the following commands for stream identification:

1. Set a stream to swp0 on TestCenter. Edit the stream, set the destination MAC as: 00:01:83:fe:12:01,
Vlan ID : 1

2. Add the MAC to MAC table on LS1028a. (This step is not needed if the mac is already learned on port)
bridge fdb add 00:01:83:fe:12:01 dev swpl vlan 1 master static

3. Use the destination MAC as: 00:01:83:fe:12:01, vlan ID : 1 to setthe stream identification on
LS1028A.

tsntool> cbstreamidset --device swpl --nullstreamid --index 1 --nulldmac
0x000183fel201 --nullvid 1 --streamhandle 1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

198 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Explanation:

* device: set the device port which is the stream forwarded to. If the {destmac, VID} is already learned by
switch, switch will not care device port.

* nulltagged: switch only support nulltagged=1 mode, so there is no need to set it.
¢ nullvid: Use "bridge vlan show" to see the ingress VID of switch port.

tsntool> gcisfiset --device swpO --index 1 --streamhandle 1 --gateid 1 --
priority 0 —--flowmeterid 68

Explanation:
e device: can be any one of switch ports.
¢ index: value is the same as streamhandle of cbstreamidset.
* streamhandle: value is the same as streamhandle of cbstreamidset.
e flowmeterid: PSFP Policer id, ranges from 63 to 383.
4. Send one frame, then check the frames.

ethtool -S swpl
ethtool -S swp2

Only swpl can get the frame.
5. Use the following command to check and debug the stream identification status.

gcisfiget --device swp0O --index 1

Note: The parameter streamhandle is the same as index in stream filter set, we use streamhandle as
SFID to identify the stream, and use index to set stream filter table entry.

Stream gate control

1. Use the following commands for stream gate control:

echo "t0 1b 3 50000 200" > sgi.txt
tsntool> gcisgiset --device swpO --enable --index 1 --initgate 1 --initipv O
-—-gatelistfile sgi.txt --basetime 0x0

Explanation:
* 'device': can be any one of switch ports.
* 'index": gateid
* 'basetime’; It is the same as Qbv set.
2. Send one frame on TestCenter.

ethtool -S swpl

Note that the frame could pass, and green_prio_3 has increased.
3. Now run the following commands:

echo "t0 Ob 3 50000 200" > sgi.txtx
tsntool> gcisgiset --device swpO --enable --index 1 --initgate 1 --initipv O
--gatelistfile sgi.txt —--basetime 0x0

4. Next, send one frame on TestCenter.

ethtool -S swpl

Note that the frame could not pass.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

199 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

SFI maxSDU test

Disable the cut-through mode on swp0 and swp1:

tsntool> ctset --device swp0O --queue stat O
tsntool> ctset --device swpl --queue stat 0

Use the following command to run this test:

tsntool> gcisfiset --device swp0 --index 1 --gateid 1 --priority 0 --flowmeterid
68 —-maxsdu 200

Now, send one frame (frame size > 200) on TestCenter.

ethtool -S swpl

Users can observe that the frame could not pass.

FMI test

Use the following set of commands for the FMI test.

1. Reserve buffer for each queue on ingress port to receive yellow frames(dp=1) in switch.

ingressport=0
for tc in {0..7}; do {

devlink sb tc bind set pci/0000:00:00.5/$ingressport sb 0 tc $tc type
ingress pool 0 th 3000

devlink sb tc bind set pci/0000:00:00.5/$ingressport sb 1 tc $tc type
ingress pool 0 th 10
}

done

2. Run the command:

tsntool> gcifmiset --device swpO --index 68 --cir 100000 --cbs 4000 --ebs
4000 --eir 100000
Note:
* The 'device' in above command can be any one of the switch ports.
e The index of gcifmiset must be the same as flowmeterid of gcisfiset.
3. Now, send one stream (rate = 100M) on TestCenter.

ethtool -S swpO

Note that all frames pass and get all green frames.
4. Now, send one stream (rate = 200M) on TestCenter.

ethtool -S swp0

Observe that all frames pass and get green and yellow frames.
5. Send one stream (rate = 300M) on TestCenter.

ethtool -S swpO

Note that not all frames could pass and get green, yellow, and red frames.
6. Send one yellow stream (rate = 100M) on TestCenter.

ethtool -S swpO

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

200/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

All frames pass and get all yellow frames.
7. Send one yellow stream (rate = 200M) on TestCenter.

ethtool -S swpO

Note that not all frames could pass and get yellow and red frames.
8. Test cf mode.

tsntool> gcifmiset --device swp0O --index 68 —--cir 100000 --cbs 4000 --ebs
4000 --eir 100000 --cf

9. Send one yellow stream (rate = 200M) on TestCenter.

ethtool -S swpO

All frames pass and get all yellow frames (use CIR as well as EIR).
10. Send one yellow stream (rate = 300M) on TestCenter.

ethtool -S swpO

Note that not all frames could pass and get yellow and red frames.

Port-based SFI set

LS1028A switch can work on port-based PSFP set. This implies that when a null-identified stream is received
on an ingress port, switch will use the port, default SFI.

Below example tests no streamhandle in qcisfiset to set a port, default SFI.
1. Use SFID 2 to set swp0 port as default SFI.

tsntool> qgcisfiset --device swpO --index 2 --gateid 1 --flowmeterid 68

After the port default SFI set, any stream sent from swp0 port will do the gate 1 and flowmeter 68 policy.

2. Set stream gate control.

echo "t0 1b 4 50000 200" > sgi.txt
tsntool> gcisgiset --device swp0 --enable --index 1 --initgate 1 --initipv 0 --
gatelistfile sgi.txt

3. Send any stream to swp0.

ethtool -S swpl

Note that the frame could pass, and green_prio_4 has increased.

5.1.4.2.5.2 Tc-flower usage

The figure below illustrates the TC-flower-based Qci test case setup.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

201/ 404

NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

LS1028ARDB

ENETC

(eno3) enetc 3
(eno2) enetc 2
(enol) gneic 1
(eno0) enetc O

(swp0) PO
(swpl) P1
(swp2) P2

(swp3) P3

TSN-Switch

P5 (swp5)

P4 (swp4)

Streaml

(piemuod)Twesalls

i
N

Figure 72.

PCl BUS

TC-flower based Qci test case

Test Center

1. Add the MAC address 'CA:9C:00:BC:6D:68"in MAC table by using bridge fdb command if it is not

learned.

bridge fdb add dev swp3 CA:9C:00:BC:6D:68 vlan 1 master static

2. Register chains on ingress port swp0. Refer to Section 5.4.2 "VCAP on LS1028A Felix switch".

tc gdisc add dev swp0O clsact

tc filter add

dev

chain 10000

tc filter add

dev

chain 11000

tc filter add

dev

chain 12000

tc filter add

dev

chain 20000

tc filter add

dev

chain 21000

tc filter add

dev

chain 30000

swpO
swp0
swp0
swpO
swp0

swp0

ingress
ingress
ingress
ingress
ingress

ingress

chain

chain

chain

chain

chain

chain

0 pref 49152 flower skip sw action goto

10000 pref
11000 pref
12000 pref
20000 pref

21000 pref

49152

49152

49152

49152

49152

flower skip sw action goto

flower

flower

flower

flower

skip sw
skip sw
skip sw

skip sw

action

action

action

action

goto
goto
goto

goto

3. Set Qci on ingress port swp0.

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2.8 — 29 March 2024

202/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

a) Use the following commands to set Qci gate.

tc filter add dev swpO ingress chain 30000 protocol 802.1Q flower skip sw
dst mac CA:9C:00:BC:6D:68 vlan id 1 action gate index 1 base-time 0 sched-entry
CLOSE 6000 -1 -1

b). Use the following commands to set Qci flow meter.

tc filter add dev swpO ingress chain 30000 protocol 802.1Q flower skip sw
dst mac CA:9C:00:BC:6D:68 vlan id 1 action police index 1 rate 10Mbit burst
10000 conform-exceed drop/ok

c). Use the following commands to set Qci SFI priority.

tc filter add dev swpO ingress chain 30000 protocol 802.1Q flower skip sw
dst mac CA:9C:00:BC:6D:68 vlan id 1 vlan prio 1 action gate index 1 base-time 0
sched-entry CLOSE 6000 -1 -1

d). Use the following commands to set both gate and flow meter.

tc filter add dev swp0O ingress chain 30000 protocol 802.1Q flower skip sw

dst mac CA:9C:00:BC:6D:68 vlan id 1 action gate index 1 base-time 0 sched-entry
OPEN 6000 2 -1 action police index 1 rate 10Mbit burst 10000 conform-exceed
drop/ok

3. Send a stream from TestCenter, set the stream destination mac as CA:9C:00:BC:6D: 68, set vid=1 and
vlan prio=1 in the vlan tag

4. Using "tcpdump -i eno0 -w enoO.pcap" to receive the stream on eno0, check if packets are received.

5. Use the following commands to delete a stream rule.

tc -s filter show dev swp0O ingress chain 30000
tc filter del dev swpO ingress chain 30000 pref 49152

Note:

» Each stream can only be added only once. If a user wants to update it, delete the rule and add a new one.
* MAC and VID of stream must have been learned in switch MAC table if the stream is required to be added.
* Qci gate cycle time is expected to be more than 5 us.

* Qci flow meter can only set cir and cbs now, and the policers are shared with ACL VCAPs.

5.1.4.2.6 Qav

The below figure illustrates the Qav test case setup.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

203 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

PCP=1 Streaml
SWPOJ A
(swp0) PO N
swp1] 4 PCP=2 Stream2
LS1028ARDB (swpl) P1 '< Test Center
swp2 N
(swp2) P2
SWP3 Capture
(swp3) P3
TSN-Switch
ENETC
(eno3) enetc 3 P5 (swp5)
(eno2) enetc 2 P4 (swp4)
(enol) enetc 1 =X
MACO
(eno0) enetc 0
PCI BUS

Figure 73. Qav test case

5.1.4.2.6.1 Tsntool usage

1. Set the percentage of two traffic classes:

tsntool> ctset --device swp0 --queue stat 0x0

tsntool> ctset --device swpl --queue stat 0x0
tsntool> ctset --device swp2 --queue stat 0x0
tsntool> cbsset --device swp2 --tc 1 --percentage 20
tsntool> cbsset --device swp2 --tc 2 —--percentage 40

2. Send two streams from TestCenter, then check the frames count.

ethtool -S swp2

Note that the frame count of queue1 is half of queue2.
Note: Stream rate must lager than bandwidth limited of queue.
3. Capture frames on swp2 on TestCenter.
The Get Frame sequence is: (PCP=1), (PCP=2), (PCP=2), (PCP=1), (PCP=2),
(PCP=2), ..

5.1.4.2.6.2 Tc-cbs usage

LS1028A supports the CBS qdisc to setup Credit-based Shaper. The below commands set CBS with 20 Mbit/s
for queue 1 and 40 Mbit/s for queue 2.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

204/ 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

1. Set the cbs of two traffic classes:

tc gdisc add dev swp2 root handle 1: mgprio num tc 8 map 0 1 2 3 4 5 6 7 \
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw O

tc gdisc replace dev swp2 parent 1:2 cbs locredit -1470 hicredit 30 \
sendslope -980000 idleslope 20000 offload 1

tc gdisc replace dev swp2 parent 1:3 cbs locredit -1440 hicredit 60 \
sendslope -960000 idleslope 40000 offload 1

2. Send one stream with pcP=1 from TestCenter, we can get the stream bandwith is 20 Mbit/s from swp2.

3. Send two streams from TestCenter, then check the frames count.

ethtool -S swp2

Note: The frame count of queue1 is half of queue2.

4. Delete the cbs rules.

tc gdisc del dev swp2 parent 1:2 cbs
tc gdisc del dev swp2 parent 1:3 cbs

5.1.4.2.7 802.1CB

The Figure 74 describes the test setup for the seamless redundancy test case.

N
(swp0)PQ,~ ~s (swp0O)PQ Board B
Board A 7 - \\
I N 1
LS1028ARDB (swpl)P1}” > ~< (swpl)P1l LS1028ARDB
1
(spr)Pza, ={swp2)P2
\
(swp3) P2~ (swp3)P3
TSN- Switch TSN Switch
ENETC ENETC
(eno3) enetc 3 P5 (swp5) P5 (swp5) (eno3) enetc 3
(eno2) enetc 2 P4 (swp4) /\ \/ \/ P4 (swp4) (eno2) enetc 2
(enol)enetc 1 X >~ (enol)enetc 1
(eno0) enetc 0 (eno0) enetc 0
MACO | MACO
Send Capture Capture,
Test Center
PCI BUS PCI BUS
Figure 74. Seamless redundancy test

5.1.4.2.7.1 Sequence Generator test

Use the following set of commands for the 'Sequence Generator' test.

1. Configure switch ports to be forward mode.
On board A:

ifconfig eno2 up

ip link add name switch type bridge vlan filtering 1
ip link set switch up

ip link set swpO master switch && ip link set swpO up

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

205/ 404

NXP Semiconductors REALTIMEEDGEUG

2.

W

5.

Real-time Edge Software User Guide

ip link set swpl up

ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up
bridge vlan add dev swpO vid 1 pvid

bridge vlan add dev swp2 vid 1 pvid

bridge vlan add dev swp3 vid 1 pvid

On board B

ifconfig eno2 up

ip link add name switch type bridge vlan filtering
ip link set switch up

ip link set swp0O master switch && ip link set swpO up
ip link set swpl master switch && ip link set swpl up
ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up
bridge vlan add dev swpO vid 1 pvid

bridge vlan add dev swpl vid 1 pvid

bridge vlan add dev swp2 vid 1 pvid

bridge vlan add dev swp3 vid 1 pvid

=

On board A, run the commands:

bridge fdb add 7E:A8:8C:9B:41:DD dev swp2 vlan 1 master static

tsntool> cbstreamidset --device swpO --index 1 --nullstreamid --nulldmac
0x7EA88C9B41DD --nullvid 1 --streamhandle 1

tsntool> cbgen --device swp3 --index 1 --iport mask 0x08 --split mask 0x07 --
seq len 16 --seq num 2048

In the command above,

¢ device: can be any one of switch ports.

¢ index: value is the same as streamhandle of cbstreamidset.

Send a stream from TestCenter to swp3 of board A, set destination mac as 7E:A8:8C:9B:41:DD.

. Capture frames on swp2 on TestCenter.

We can get frames from swp2 on TestCenter, each frame adds the sequence number: 23450801,
23450802, 23450803...
Capture frames from swp2 of board B on TestCenter, we can get the same frames.

5.1.4.2.7.2 Sequence Recover test

Use the following steps for the Sequence Recover test:

1.

2.

3.

On board B, run the following commands:

bridge fdb add 7E:A8:8C:9B:41:DD dev swp2 vlan 1 master static

tsntool> cbstreamidset --device swp2 --index 1 --nullstreamid --nulldmac
0x7EA88C9B41DD --nullvid 1 --streamhandle 1
tsntool> cbrec --device swp0O --index 1 --seq len 16 --his len 31 --

rtag pop en

In the cbrec command mentioned above:

e device: can be any one of switch ports.

¢ index: value is the same as streamhandle of cbstreamidset

Send a frame from TestCenter to swp3 of board A, set the destination MAC address to be
7E:A8:8C:9B:41:DD.

Capture frames from swp2 of board B on the TestCenter, we can get only one frame without sequence tag.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024

206 /404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

5.1.4.2.8 TSN stream identification

TSN module uses QoS class to identify and control streams. There are three ways to identify the stream to
different QoS class. These are explained in the following sections.

5.1.4.2.8.1 Stream identification based on PCP value of Vlan tag

The default QoS class is based on PCP of Vlan tag for a frame. If there is no Vlan tag for a frame, the default
QoS class is 0.

Set the PCP value on TestCenter.

General Frame Groups RxPort Preview
Preview:
Pya [] showallFields [] Allow Invalid Packets
Hame Value
Frames
=] Frame
Create new Frame > :
[+ EthernetIl
Save Frame as
Template... - Destination MAC 00:00:01:00:00:01
Manage Frame - Source MAC 00:10:94:00:00:02
Templates... - Vians
Actions B \flan
i T\rpe {hex}l 8100
Link Modifiers/VFDs.. - CF1 (i) 0
Insert Modifier.. LD Gnt) 100
- EtherType (hex) <auto> Internet IF
Others
[IPv4 Header
Expand all
Collapse all
Hex Editor
Q000 FB B B BR BR BR BR D& 00 00 01 00 00 01 00 10 uUUUUUUEi
0010: 94 00 00 02 &1 OO 64 DB 00 45 OO OO 140000 1 . . . L B
Q020 0000 FF FDr33 34 CO BR M1 02 CO 00 00 M ..nyII u. A, ..
oK Cancel
Figure 75. Using PCP value of Vlan tag
5.1.4.2.8.2 Based on DSCP of ToS tag
Use the below steps to identify stream based on DSCP value of ToS tag.
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.8 — 29 March 2024
207 / 404

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

1. Map the DSCP value to a specific QoS class using the command below:

tsntool> dscpset --device swpO --index 1 --cos 1 —--dpl O

Explanation:
¢ index: DSCP value of stream, 0-63.
* cos: QoS class which is mapped to.
e dpl: Drop level which is mapped to.
2. Set the DSCP value on TestCenter. DSCP value is the upper six bits of ToS in IP header, set the DSCP
value on TestCenter as shown in Figure 76.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. Al